Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
RC14-2234 (2)
Miami Shores Village Building Department 10050 NE 2nd Ave. Miami Shores, FL 33138 305-795-2204/Fax 305-756-8972 STRUCTURAL REVIEWS COMMENTS - AS OF 8/18/15 Permit No.: RC14-2234 Project Address: 1680 NE 104th Ave. Page 1 of I 1. PROVIDE SPE IC DESIGN CALC'S FOR ALL WELDED STEEL PLATE HANGERS AND 'U"BUCKETS AS SHOWN ON THE STRUCTURAL PLANS FOR THE ROOF RAFTERS AND STEEL I-BEAM CONNECTIONS TO THE EXISTINGSTRUCTURAL SUPPORTS. MUST CONSIDER THE WORST LOADING COMBINATIONS FOR WIND, GRAVITY (LIVE AND DEAD) LOAD CASES. 2. SHOW ON THE ROOF FRAMING PLAN LOCATIONS OF ALL FILLED CMU AND/OR CONCRETE COLUMNS SUPPORTING THE BEAMS AND GIRDER CONCENTRATED POINT LOAD REACTIONS. 3. CLARIFY ON THE ROOF FRAMING PLAN THE LENGTH OF ALL PROPOSED STRUCTURAL BEAMS AND THEIR BEARING END POINTS ... • 0000.. 0000 . . �e����e�e�e�e�����e�e�c�e�������e�r�����e�e��e�e��e�e �e�e�e�e�r�r��e��e�e���e�e�e���r��r�c���r�r�e�eSrr?�`�L'�t• 00 ADDITIONAL COMMENTS MAYBE PENDING AFTER REVIEW UF'THE • REQUESTED DOCUMENTS LISTED ABOVE •••0 0• •O• 0000 0000 0000. 0000.. 00 . . 0000 0000. 0000 0000 0000.. 0000.. • • . . . .0000. 0000.. 1) SEE ATTACHED CALCS PAGES 1-17 .0 0 0000 '•••• 2) SEE REVISED ROOF FRAMING PLAN, CEILING&FOUNDATION PLW INDICATING ALL COLUMNS &FILLED CELLS.ALSO,THE REACTIONS FOR GIRDERS. 3) SEE REVISED ROOF FRAMING PLAN W/REQUESTED DIMENSIONS. y s • BUILDING DEPARTMENT COMMENTS: Proiect: REMODLE FOR: 1680 NE 104TH STREET MIAMI SHORES, FL DATE 8-26-15 PAGES OR SHEETS COVERED BY THIS SEAL FROM 1-17 Alex Kondrat&Associates Inc : •••• •••••• 10305 NW 41 Street#124 ...... .... ...... Doral,Fl 33178 PE 58086 CA 9717 •••• •••• :"": (305)387-5770 "" •••• ••••• .. .. .... ...... . • ®®©®o®�►aaesaa®P®® �V N 01,90°®o ® ® •• , ® ••� o® ® • � A p to O �p u` • w A O a • �//fII . • s ®¶p7 p n • WN 'g®®➢offal%e%me®o � e TABLE OF CONTENTS Pro_i ect: REMODLE FOR: 1680 NE 104 TI STREET MMM SHORES, FL DESCRIPTION PAGE# • DESIGN CONNECTION FOR STEEL BEAM PLATE TO CONCRETE.................... 1-12 • DESIGN WELDED CONNECTIONS............................................................. • 13-17 000 ...... .... ...... Alex Kondrat&Associates Inc • 10305 NW 41 Street#124 • Doral,Fl 33178 .... .... ..... PE 58086, CA 9717 ;••• ••••• (305)387-5770 • 41 0 "" "'••• • . • Y, Dq � ® e e m N o. 5 • 6 e ® � 2� • ° gym ® TAT • ® -�, ®°°o° •°° ®�® /ON Ak- 11813111%0®®e ALEX KONDRAT&ASSOCIATES,INC. 10305 NW 41 STREET,SUITE 124 t PE 58086,CA 9717 DORAL,FL 33172 1 of 17 Ft ul �-- �� P�,,, �„�,.C'��„ � ••• 0000•• 0000•• c. V'-eAa 0000•• 0000 • • 0000•• • 0000 0000•• 0000 • 0 0000 0.00 96.00 ••000• • • •0•• 0000• •00.0• • • • • • • • • • • • • • • • ••• 0 • sl 7 57 1680 NE 104 STREET MIAMI SHORES,FLORIDA 33188 ALEX KONDRAT&ASSOCIATES,INC. 10305 NW 41 STREET,SUITE 124 PE 58086,CA 9717 DORAL,FL 33172 2 of 17 PROJECT INFORMATION Anchor arrangement Type of arrangement=Grid Number of anchors=2 Number of rows=2 with spacing= I 1 in. Number of columns= I Cright =4 in., cleft =4 in., ctop =4 in., cbottom =4 in. Concrete depth, ha= 16 in. Base plate properties Length of plate in X-direction=8 in. Length of plate in Y-direction= 19 in. Plates's left edge distance=0 in. Plates's right edge distance=0 in. Plates's top edge distance=0 in. Plates's bottom edge distance=0 in. 6000 Loading point(Profile)eccentricities from the center of the anchors "»..•` Eccentricity in X-direction=0.0 in. ••••• Eccentricity in Y-direction=0.0 in. ....• •.•• •••• .... *Goes Anchor properties •••• •A •• 6666 •••e• 6666•• • • Anchor used: Adhesive of AWS D1.1 Grade B steel • • • • a 00% [Anchor material is ductile] • 40 000 0 futa=60000 psi • Anchor diameter, da =0.5 in. Anchor effective cls area, Ase =0.142 in.2 Anchor embedment depth, he =6 in. Post-installed anchor design parameters Anchor category: Category I (low sensitivity to installation and high reliability) kc =Not set by user. Default value 17 will be used. Tc,H=Not set by user. Will be determined based on ACI 318-11. cac =Not set by user. Will be determined based on ACI 318-11. Np =Not set by user.Anchor pullout will be assumed not to govern. 1680 NE 104 STREET MIAMI SHORES,FLORIDA 33188 ALEX KONDRAT&ASSOCIATES,INC. 10305 NW 41 STREET,SUITE 124 PE 58086,CA 9717 DORAL,FL 33172 3 of 17 4 Vsa =Not set by user. Will be determined based on ACI 318-11. Installation and service condition: Outdoor (dry to fully saturated concrete with peak temperature of 175 F) Tuner =260 psi and Ter= 160 psi ......[From Table D.5.5.2. Reduced for seismic effects] Concrete properties f c =3000 psi eco=0.002 in./in. ecu =0.003 in./in. Concrete weight: Normal Wt......[X= 1 ;h for bond failure= 1 ] Concrete is cracked under service load. Supplementary reinforcement for tension: Not provided. Supplementary reinforcement for shear: No reinforcement or smaller than No.4 bar is provided. Strength reduction factor,+ for steel failure in tension=0.75 for steel failure in shear=0.65 for concrete breakout or side-face blowout in tension=0.65 sees for anchor bond failure in tension=0.65 • . . . sees sees. for concrete breakout in shear=0.7 •• •. .• • • sees sees. or anchor pryout in shear= sees..0.65 *::**a • • ee• • e Applied loads .4100 0006 sees goes.• sees • • 0000 0e •0 0000 sees. Tension: :so:*: Nu =4.1 kips; seismic percentage=0% ;sustained=0 kips e :**:so ...:. Moment about x-axis: :••e•a • •••• sees • Mux=0 kips-in.; seismic percentage=0% ;sustained=0 kips-in. ••.• Moment about y-axis: Muy =0 kips-in.; seismic percentage=0% ;sustained=0 kips-in. Shear in x-direction: Vux= 1.28 kips; seismic percentage=0% Shear in y-direction: Vuy=2.8 kips; seismic percentage=0% Moment about z-axis(pure torsion): Muz=0 kips-in.; seismic percentage=0% 1680 NE 104 STREET MIAMI SHORES,FLORIDA 33188 ALEX KONDRAT&ASSOCIATES,INC. 10305 NW 41 STREET,SUITE 124 PE 58086,CA 9717 DORAL,FL 33172 4 of 17 Miscellaneous information Seismic Design Category is C or higher Code used:ACI 318-11 Load combination to compute required strength: ACI 318 Section 9.2 Maximum load from attachment: tension=0 kips; x-shear=0 kips; y-shear=0 kips. Structural overstrength factor=2.5'' Anchor Forces (kips) Anchor Tension Shear x Shear y 1 2.06 0.64 1.40 2 2.06 0.64 1.40 �2 Resulting tension force=4.11 kips acting at(0.00,0.00)in. from the centroid of the tension anchors. y Seismic ratio of resulting tension=0.00 Seismic ratio of resulting shear x=0.00 Seismic ratio of resulting shear y=0.00 • .... .... . ... ...... .... . ... .. .. .... 0699V ...... 00 . . . . ...... 1. STEEL STRENGTH OF ANCHOR IN TENSION, +N� ••• ;....; •• . • ••• • Design strength of a single anchor: +Nsa =OAse feta =0.75x0.142x60000 lbs=6.39 kips Based on the most heavily loaded anchor. 1. Anchor No. 1 carries 2.06 kips which is equal to 50.00%of the total tension load. Design strength of the whole group=6.39/0.50= 12.78 kips 1680 NE 104 STREET MIAMI SHORES,FLORIDA 33188 ALEX KONDRAT&ASSOCIATES,INC. 10305 NW 41 STREET,SUITE 124 ,PE 58086,CA 9717 DORAL,.FL 33172 5 of 17 t . 2.CONCRETE BREAKOUT STRENGTH IN TENSION, �Ncbg Considering active anchors in tension: cright =4.00 in.; cleft =4.00 in.; clop =4.00 in.; cbottom =4.00 in.; hef=6 in. Three(or all)edge distances are less then 1.5hef.Therefore, hef is reduced to 3.67 in. ......[D.5.2.3] ANco =9hef 2 = 121.00 in.2 and ANc = 152.00 in.2 ......[Fig RD.5.2.I] Nb=kc ,Xa ;fc hef '-' lbs......[D.S.2.2J = 17xlx4 3000 x3.67'-' lbs=6.54 kips Eccentricity factor, Tec,N ......[D.5.2.4] For eccentricity in x-direction, Tec,Nx = I /(1 +2 e'N,x /3hef)= 1.00 For eccentricity in y-direction, ` ",Ny = 1 /(1 +2 e'N,y /3hef)= 1.00 Tec,N =Tec,Nx Tec,Ny = 1.00 Edge effect factor, Ted,N ......[D.5.2.5] ta,min =4.00 in. `I'ed,N =0.7+0.3 ( ea,min / I.Shef)=0.92 . . . .... . .... Factor for untracked concrete TN ......[D.S.2.6] . • c, .. . Because concrete is cracked under service load, Tc,N = 1.00 """ " * oleo" .... .... . . Factor for post-installed anchors without supplementary reinforcement, Tep,N ......[) S.�s�J ••••• ;•• For post-installed anchors designed for cracked concrete or with supplementary reinfd'rs`� &t66 1.0 00 00 , ,'1,cp N = "' ...... 0 00 • . . • •••• Design strength of the anchor group: •• +Ncbg-4(ANc /ANco )Tec,N Ted,N Tr,,N Tcp,N Nb ••-• =0.65x(152.00/121.00)x I.00x0.92x I.00x 1.00x6.54 =4.90 kips ACI 318-11 Section D.5.2.9 allows substituting the concrete breakout strength as calculated above by the design strength of anchor reinforcement where the anchor reinforcement is developed in accordance with Chapter 12 on both sides of the breakout surface. Strength reduction factor of 0.75 shall be used in the design of the anchor reinforcement. 1680 NE 104 STREET MIAMI SHORES,FLORIDA 33188 ALEX KONDRAT&ASSOCIATES,INC. 10305 NW 41 STREET,SUITE 124 PE 58086,CA 9717 DORAL,FL 33172 60f 17 uA 3. STRENGTH IN CONCRETE SIDE FACE BLOWOUT FOR HEADED ANCHOR IN TENSION,+N sbg Concrete side-face blowout does not apply for anchors without heads. 4.BOND STRENGTH OF ADHESIVE ANCHOR INTENSION, +Nag cNa= 10daTut+ ncr/i/1100 = I OxO.5x4 260/1100 =2.43 in. Row spacing> 2CNa ; For the purpose of bond failure in tension, anchor rows act independently instead of acting in a group. Design strengths of each row will be calculated separately, and the strength of the whole anchor formation will be calculated based on the one that governs. Row 2 governs the design strength of the anchor formation.This row includes 1 active anchors in tension. cright =4.00 in.; cleft =4.00 in.; ctop =4.00 in.; cbottom = 15.00 in.; hef=6.00 in. ANao =4c Na 2 =23.64 in.2 and ANa=23.64 in.2 ......[Fig RD.5.5.1] Because concrete is cracked at service load: Nba=ka rcr a da hef= 1 x l60x3.14x0.5x6 lbs= 1.51 kips For eccentricity in x-direction......[D.5.5.3], .. `Iiec,Nax = 1 I{1 + e'N,x /cNa )= 1.00 • ...... .... . .... .... .... . . Edge effect factor, `#'ed,Na ......[D.5.5.4] ` .... .... Camin =4.00 in. •• .•90:* .••.• • a .• •••.When c amin is greater or equal to cNa ,Ted,Na = 1.O • • • • • • • •••. Factor for post-installed anchors without supplementary reinforcement, ` ,,p,Na ......[V.5.S'S] ....: For post-installed anchors designed for cracked concrete or with supplementary reinforcement, ,+ � , _ • 1.0 Design strength of the anchor: ONag=�(ANa/ANao )Ted,Na Tep,Na Nba =0.65x(23.64/23.64)x LOOx 1.00x 1.51 =0.98 kips This anchor row carries 50.00%of the total tension load. Design strength of the whole anchor formation=0.98/0.50= 1.96 kips Check for Sustained Loading: Bond strength values Tuncr and Tcr are reduced by a factor of 0.4 for check against sustained loading. 1680 NE 104 STREET MIAMI SHORES,FLORIDA 33188 ALEX KONDRAT&ASSOCIATES,INC. 10305 NW 41 STREET,SUITE 124 .PE 58086,CA 9717 DORAL,FL 33172 7 of 17 Strength of a single anchor againsts sustained tension=0.554(0.4 Nba }=0.27 kips 5.CONCRETE BREAKOUT STRENGTH IN SHEAR, +Vcbg Shear in X-Direction 4Vcb8 =4(AVc/Avco ) Tec,V `Fed,V Tc,v `Ph,V Vb Governing failure mode corresponds to the positive X-direction. Breakout takes place from the I st line of anchors from the governing edge with 2 active anchors carrying 100.00 % of the total shear. (Since anchor spacing is less than primary edge distance, the entire shear load is applied to the front anchors as shown in AGI 318-1 I's Fig. RD.6.2.I(b)-Case 3) Anchors carrying shear in positive X-direction: Anchor Shear x 1 0.64 2 0.64 �2 .... • . ...... .... . .... 0000•• '• • • • 0000 0000 0000 • • 0000 0000 0000• 1 •••••• .... ... •• •• 0000 0000•• • 0000•• • 0000•• • • • ••••• Shear perpendicular to the edge: Governing edge distance in the direction of shear, cal =4 in. clop =4.00 in.; cbottom =4.00 in.; ha = 16 in. Projected breakout area: width= 19 in.;height=6 in. AVco =4.5c al 2 =72.00 in.2 and Ave = 114.00 in.2 ......[Fig R.D.6.2.I(a)and(b)] fe =Min. of hef and 8da=4 in. Vb is the smaller of(a)and(b): (a) [7( Ce /da )0.2 ]ha V I c (Cal )I.5 =3.29 kips (b)9 Aa (cal }i'S =3.94 kips Governing Vb =3.29 kips 1680 NE 104 STREET MIAMI SHORES,FLORIDA 33188 ALEX KONDRAT A ASSOCIATES,INC. 10306 NW 41 STREET,SUITE 124 ,PE 58086,CA 9717 DORAL,FL 33172 8 of 17 Eccentricity factor, ` ec,v ......[D.6.2.5] ` ecx = 1 /(I + 2e'v/3ca1 )= 1.00 Edge effect factor, `I 4v ......[D.6.2.6] Ted,v = 1.0 for cat> 1.5ca1 `I'ed,v =0.7+0.3[ ca2 / 1.5cat ] for cat< 1.5ca1 cat =4 in. ...... Ted,V =0.90 Factor for uncracked concrete, Tc,v ......[D.6.2.7] For cracked concrete at service load,with no or less than No.4 bar supplementary reinforcement, ` e,v = 1.0 Factor for small concrete depth, Th,v ......[D.6.2.8] Th,v = 1,for ha >_ 1.5ca1 Th,v = 1.5� ca!/ha , for ha < 1.5ca1 ha = 16 in. ...... `I'h,v = 1.00 �V cbg =(1/1.00)x 0.7x(114/72.0)x 1.00x 0.90x 1.Ox l.00x 3.29=3.28 kips Shear parallel to the edge: Governing edge distance parallel to the shear, cal =4 in. cright =4.00 in.; cleft=4.00 in.; ha = 16 in. 0'000. • • •••• ease:* Projected breakout area:width=8 in.; height=6 in. '00•.' 9066:6 Avco =4.5c at 2 =72.00 in.2 and Ave=48.00 in.2 ......[Fig RD.6.2.I(a)and(b)] •••••• • to= Min. of hef and 8da=4 in. 0000•• 0000•• • • . .... . .... ..... . . ...... .... ..... Vb is the smaller of(a)and(b): • •• •• 0000 0000• (a) [7( t/da )0.2 a ]ka 4 f (cat )I.5 =3.29 kips :••:•: 0 • (b)9 7�a (cat )ts -39 • 4 kips :•4141:• ..... Governing Vb =3.29 kips Do.* • :0: •• •••• •• Edge effect factor, `Yed,v = 1.0 for shear parallel to the edge[D.6.2.1) Factor for cracked concrete, Tex= 1.0 Factor for small concrete depth, Th,v= 1.00 OVcbg =(1/1.00)x x2x(48/72.0)x I.Ox 1.00x 3.29=3.07 kips Governing shear strength in X-direction, oVVcbg=3.07 kips 1680 NE 104 STREET MIAMI SHORES,FLORIDA 33188 ALEX KONDRAT&ASSOCIATES,INC. 10305 NW 41 STREET PE 58086,CA 9717 SUITE 124.DORAL,FL 33172 7 of 17 Strength of a single anchor againsts sustained tension=0.55((0.4 Nba)=0.27 kips 5.CONCRETE BREAKOUT STRENGTH IN SHEAR, +V ebg Shear in X-Direction OVcbg =+(Avc/Avco ) Tec,v Ted,v Tc,v `Ph,v Vb Governing failure mode corresponds to the positive X-direction. Breakout takes place from the I st line of anchors from the governing edge with 2 active anchors carrying 100.00 % of the total shear. (Since anchor spacing is less than primary edge distance, the entire shear load is applied to the front anchors as shown in ACI 315-1 I's Fig. RD.6.2.I(b)-Case 3) Anchors carrying shear in positive X-direction: Anchor Shear x 1 0.64 2 0.64 �2 . . .... ..... . ...... .... ..... 1 .... .... .... ...... .... .... . . .. .. .... ..... • Shear per eenndicular to the edge: •••••• Governing edge distance in the direction of shear, cal =4 in. • clop =4.00 in.; cbonom =4.00 in.; ha = 16 in. Projected breakout area: width= 19 in.;height=6 in. Avco =4.5c at 2 =72.00 in.2 and Avc = 114.00 in.2 ......[Fig RD.6.2.I(a)and(b)] f e =Min.of hef and Sda =4 in. Vb is the smaller of(a)and(b): (a) [7( ee/da )0.2 NFda Ra 'Ffc (cal )1.5 =3.29 kips (b)9 Xa (cal )"' =3.94 kips Governing Vb =3.29 kips 1680 NE 104 STREET MIAMI SHORES,FLORIDA 33188 ALEX KONDRAT&ASSOCIATES,INC. 10305 NW 41 STREET PE 58086,CA 9717 SUITE 124.DORAL,FL 33172 8 of 17 �r+ Eccentricity factor, `I'ec,v ......[D.6.2.5] `I'ec,V = I /(I + 2e'v/3cat )= 1.00 Edge effect factor, Ted,v ......[D.6.2.6] Ted,v = 1.0 for cat>_ 1.5ca1 Ted,v =0.7+0.3[ cat/ 1.5c at ] for cat < 1.5c at cat =4 in. ...... `Yed,V =0.90 Factor for uncracked concrete, Tc,v ......[D.6.2.7] For cracked concrete at service load,with no or less than No.4 bar supplementary reinforcement, Tc,v = 1.0 Factor for small concrete depth, Th,v ......[D.6.2.8] Th,v = 1,for ha ;-L 1.5cat `Yh,V = 1.5�, for ha < 1.5cat ha = 16 in. ...... Th,V = 1.00 �Vcbg =(1/1.00)x 0.7x(114/72.0)x 1.00x 0.90xl.Ox 1.00x 3.29=3.28 kips Shear parallel to the edge: Governing edge distance parallel to the shear, cat =4 in. cright=4.00 in.; cleft=4.00 in.; ha = 16 in. .••". . . 0000 . 0000 .. .. 0 Projected breakout area:width=8 in.;height=6 in. .0.0.0 '00000 0 00:0 Avco =4.5C at 2 =72.00 in.2 and Ave=48.00 in.'- ......[Fig RD.6.2.I(a)and(b)] fe = Min. of hef and 8da=4 in. 0 0 0 0 • 0000 ... 0000 . 0000.. 0000 0000 Vb is the smaller of(a)and(b): 0000 00000 . 00 0 0 .0. (a)[7( Ce/da )0.2 -Fd. (cat )1.5 =3.29 kips • .00 0 ' 0000:. (b)9 X. �(cat )1.5 =3.94 kips Governing Vb =3.29 kips 0.00 0 0000 ....0 .. . Edge effect factor, Ted,v = 1.0 for shear parallel to the edge[D.6.2.1] Factor for cracked concrete, Tc,v= 1.0 Factor for small concrete depth, Th,v = 1.00 OV cbg =(I/I.00)x x2x(48/72.0)x 1.Ox 1.00x 3.29=3.07 kips Governing shear strength in X-direction, OV cbg=3.07 kips 1680 NE 104 STREET MIAMI SHORES,FLORIDA 33188 ALEX KONDRAT A ASSOCIATES,INC. 10305 NW 41 STREET PE 58086,CA 9717 SUITE 124.DORM.,FL 33172 9 of 17 Shear in Y-Direction �Vcbg =�(Avc /Avco ) Tec,v Ted,v Tc,V Th,V Vb Governing failure mode corresponds to the positive Y-direction. Breakout takes place from the 2 nd line of anchors from the governing edge with 1 active anchors carrying 100.00 % of the total shear. Anchors carrying shear in positive Y•direction: Anchor Shear y 1 2.80 , L �t Shear perpendicular to the edges • •• Governing edge distance in the direction of shear, cal = 15 in. •••••• •••• ••••• Cright =4.00 in.; cleft =4.00 in.; ha= 16 in. Both orthogonal edge distances and concrete thickness are less than 1.5cal =>Cat is Yeduci3d to 1 'in. ....• ......[D.6.2.4] • Projected breakout area:width=8 in.; height= 16 in. • ...... Avco =4.5c a 1 512.00 in.2 and Avc = 128.00 in.2 ......[Fig R.D.6.2.1(a)and(b)] ; ••• •••• C e =Min. of hef and 8da =4 in. •• .• ;•; Vb is the smaller of(a)and(b): (a)[7( Ce/da )0 2 da ]X. �(ca! )1 5 = 14.32 kips (b)9 X. (Cal )1'S = 17.17 kips Governing Vb = 14.32 kips Eccentricity factor, Tec,v ......[D.6.2.5] `1'ec,v = 1 /(1 + 2e'v/3cal )= 1.00 Edge effect factor, Ted,v ......[D.6.2.6] 1680 NE 104 STREET MIAMI SHORES,FLORIDA 33188 ALEX KONDRAT&ASSOCIATES,INC. 10305 NW 41 STREET PE 58086,CA 9717 SUITE 124.DORAL,FL 33172 10 of 17 Ted,V = 1.0 for cat> (.Scat `1'ed,v =0.7+0.3[ ca2/ 1.5cal ] for ca2 < 1.5cal cat=4 in. ...... Ted,v =0.78 Factor for untracked concrete, ` e,v ......[D.6.2.7] For cracked concrete at service load,with no or less than No.4 bar supplementary reinforcement, `Ye,v = 1.0 Factor for small concrete depth, `1(h,v ......[D.6.2.8] `Ph,v = 1, for ha> 1.5cat `1'h,V = 1.5� cat /ha , for ha< 1.5cat ha = 16 in. ...... Th,v= 1.00 +V cbg =(1/1.00)x 0.7x(128/512.0)x 1.00x 0.78x l.Ox 1.00x 14.32= 1.94 kips Shear parallel to the edge: Governing edge distance parallel to the shear, cat =4 in. ctop = 15.00 in.; cbonom =4.00 in.; ha = 16 in. Projected breakout area: width= 10 in.; height=6 in. Avco =4.5ca1 2 =72.00 in.2 and Avc =60.00 in.2 ......[Fig RD.6.2.1(a)and(b)] f e=Min.of het and 8da =4 in. 000000 . . 0000 0 0000 Vb is the smaller of(a)and(b): • 000VO 0000 0 0000 (a) [7( e e/da )0.2 d.R. (Cal )1.5 _3.29 kips 0 0 0:0 0 • i 0 0 0: (b)9 X. (Cal \t.5 =3.94 kips 000000 000000 . 0 Governing Vb =3.29 kips •••• •• • . . 0000.. 0000 0000 . 0 00 00 0000 0 0000 Ede effect factor, T1( • Edge Ted,v = 1.0 for shear parallel to the edge[D.6.2.1] :":': '. Factor for cracked concrete Tex= 1.0 �••• 0000.. Factor for small concrete depth, Th,v'= 1.00 •••••• .. 0000 �Vcbg =(1/1.00)x x2x(60/72.0)x I.Ox 1.00x 3.29=3.84 kips Governing shear strength in Y-direction, �V cbg = 1.94 kips 6. STEEL STRENGTH OF ANCHOR IN SHEAR, +Vsa Design strength of a single anchor: �Vsa = 0.6 Ase feta =0.650.6x0.142x60000 lbs=3.32 kips 1680 NE 104 STREET MIAMI SHORES,FLORIDA 33188 ALEX KONDRAT&ASSOCIATES,INC. 10305 NW 41 STREET PE 58086,CA 9717 SUITE 124.DORAL,FL 33172 11 of 17 In X-direction,governing concrete breakout involves 2 anchors. Based on the most heavily loaded anchor: Anchor No.2 carries 50.00%of the total shear in positive X-direction. Design strength of the whole group in X-direction=3.32/0.50=6.65 kips In Y-direction, governing concrete breakout involves I anchors. Based on the most heavily loaded anchor: Anchor No. I carries 100.00%of the total shear in positive Y-direction. Design strength of the whole group in Y-direction=3.32/1.00=3.32 kips 7. CONCRETE PRYOUT STRENGTH OF ANCHOR IN SHEAR, +Vcpg �V cpg =+kcp Ncpg hef>_2.5 in. ...... kcp =2.0 Ncpg =Lesser of Nag and N cbg where Nag and Ncbg are determined for anchors carrying shear in the direction of the applied shear force (see Anchor Forces table) assuming e'N =e'v Shear in X-Direction -- -------------------------__ 0000 Nag =(ANa/ANao )Tec,Na 'Ped,Na Tcp,Na Nba ••• 0.0• ease:* =(46.08/23.64)x 1.00x 1.00x l.00x 1.510000.. 0000 0000• . =2.94 kips 00.000 • 0000. 0000 Goes 0000 0 0000 Ncbg _ A.Nc /ANco ) Ted,N Tec,N ` c 00 N Tc N Nb 0 ' • =(152.00/121.00)x 1.00x 0.92x 1.00x 1.00x6.54 •• •• 0000 ••••• =7.54 kips 0000.. . . s . lose:* G..... Ncpg =min( Nag,Ncbg } =2.94 kips so.* a 00e 0.00 +V cpg =0.65x2x2.94=3.82 kips Shear in Y-Direction Nag =(ANa/ANao )Ted,Na Tec,Na Tcp,Na.Nba =(46.08/23.64)x 1.00x 1.00x l.00x 1.51 =2.94 kips Ncbg =(ANc/ANco )Tec,N Ted,N Tc,N Tcp,N Nb 1680 NE 104 STREET MIAMI SHORES.FLORIDA 33188 ALEX KONDRAT&ASSOCIATES,INC. 10305 NW 41 STREET PE 58086,CA 9717 SUITE 124.DORAL,FL 33172 12 of 17 =(152.00/121.00)x 1.00x 0.92x l.00x l.00x6.54 =7.54 kips Ncpg =min{ Nag ,Ncbg ] =2.94 kips t V cpg =0.65x2x2.94=3.82 kips SUMMARY OF STRENGTH CALCULATIONS OF THE ANCHOR GROUP Tension: 1.96 kips Shear in X-direction: 3.07 kips Shear in Y-direction: 1.94 kips Interaction: [Nua/+Nn ]5/3 + [Vu. /+Vnx ]5/3 + [Vuay /�Vny ]5/3 = [4.11/1.96]'/' +[1.28/3.07]5/3 +[2.80/1.94]5( =5.52 ......NOT OK 0000 . . 666• 6 6666 0000.. 0000 . 6006 0000.. 0000. 0000. 0000 . . 0000 0000 0000 0000.. 0000 0000 0000 0000 0000. 066600 00 0 0 0 0 0006 06000. . . . 0060 60 . 6 600 1680 NE 104 STREET MIAMI SHORES.FLORIDA 33188 ALEX KONDRAT&ASSOCIATES,INC. 10305 NW 41 STREET PE 58086,CA 9717 SUITE 124.DORAL,FL 33172 13 of 17 F -77 i Fe-ccr wew) ,sL T�( „ . . 0000 000... 606.60 6666 ...... _�. 66666666 0000 ..00 6666. 000000 0000 00:0.• .,.., ,�, 6666 6666 6666.. 6666.. . 6666.. 00 . . . 6666.. .. . . 00. `s 1680 NE 104 STREET f MIAMI SHORES,FLORIDA 33188 ALEX KONDRAT&ASSOCIATES,INC. 10305 NW 41 STREET ,PE 58086,CA 9717 SUITE 124.DORAL,FL 33172 14 of 17 2, L .� e :... . 67 1-.5 C � 1 C.`7) 4 �o _.._ 0000 . . 0000 0000.. 0000.. 0000 0000.. 0000.. .0000. 0000 0000 . . 0 0 0 0000 0000 0000. 06.46. 0000 99.00 .. .. 00000000.. 0000.. . . . . . . . .06660 000000 . . . 0000.. 00 . 000 0 0 0 1680 NE 104 STREET MIAMI SHORES,FLORIDA 33188 ALEX KONDRAT&ASSOCIATES,INC. 10305 NW 41 STREET • w PE 58086,CA 9717 SUITE 124.DORAL,FL 33172 15 of 17 61` Corr t fiv 7441� 7. ps •••••• •••• ••••• •• •• •••• •••••• • • • • • •••••• • • • 3 Y3fv 6�.•• • 60 �• 0 ops: s 1680 NE 104 STREET MIAMSHORES,FLORIDA 33188 ALEX KONDRAT&ASSOCIATES,INC. 10305 NW 41 STREET SPE 58086,CA 9717 SUITE 124.DORAL,FL 33172 16 Of 17 004j 453 to 0 000 e • • • • • Alp FV.= 1680 NE 104 STREET MIAMI SHORES,FLORIDA 33188 ALEX KONDRAT&ASSOCIATES,INC. 10305 NW 41 STREET PE 58086,CA 9717 SUITE 124.DORAL,FL 33172 17 of 17 y 9-'l'k'-_--' A-' 4 a® 7--.f • 9 '�Z x 3% T ...... .... ...... .. .. .... ...... /r 33 . . . . . ...... fv _ . . co 1680 NE 104 STREET MIAMI SHORES,FLORIDA 33188 all Miami Shores Village Building Department 0R1DA 10050 N.E.2nd Avenue Miami Shores, Florida 33138 Tel: (305) 795.2204 Fax: (305) 756.8972 MIAMI SHORES VILLAGE NOTICE TO BUILDING DEPARTMENT OF EMPLOYMENT AS SPECIAL INSPECTOR UNDER THE FLORIDA BUILDING CODE I(We)have been retained by to perform special inspector services under the Florida Building Code at the &&:)Ata !a 4-ST project on the below listed structures as of to /!F;,—(date).I am a registered architect or professional engineer licensed in the State of Florida. PROCESS NUMBERS: ❑ SPECIAL INSPECTOR FOR PILING,FBC 1822.1.20(R4404.6.1.20) ❑ SPECIAL INSPECTOR FOR TRUSSES>35'LONG OR 6'HIGH 2319.17.2.4.2(R4409.6.17.2.4.2) �' SPECIAL INSPECTOR FOR REINFORCED MASONRY,FBC 2122.4(R4407.5.4) ••e• V SPECIAL INSPECTOR FOR STEEL CONNECTIONS,FBC 2218.2(R4408.5.2) . * 00::e e e e e•e ❑ SPECIAL INSPECTOR FOR SOIL COMPACTION,FBC 1820.3.1(R4404.4.3.1) •..' ; . .' ❑ SPECIAL INSPECTOR FOR PRECAST UNITS&ATTACHMENTS,FBC 1927.12(R4405.9.1 • • • • ",SPECIAL INSPECTOR FOR sees.• .•.• sees . . Note:Only the marked boxes apply. • sees sees sees. The following individual(s)employed by this firm or me are authorized representatives to performjpgp%ction* .... e e;e e• 1. 4-4A)S .e'.i 2. sees sees sees.. 3. 4. sees.. . e *Special Inspectors utilizing authorized representatives shall insure the authorized representative isAualifled by e>96M;h or ee. licensure to perform the duties assigned by the Special Inspector. The qualifications shall include Ii8anstre:as a professional e engineer or architect; graduation from an engineering education program in civil or structural engineering; graduatiom4r; an architectural education program;successful completion of the NCEES Fundamental Examination;or registration as building inspector or general contractor. I, (we)will notify Miami Shores Village Building Department of any changes regarding authorized personnel performing inspection services. I, (we) understand that a Special Inspector inspection log for each building must be displayed in a convenient location on the site for reference by the Miami Shores Village Building Department Inspector.All mandatory inspections, as required by the Florida Building Code,must be performed by the County.The Village building inspections must be called for on all mandatory inspections. Inspections performed by the Special Inspector hired by the Owner are in addition to the mandatory inspections performed by the Department.Further,upon completion of the work under each Building Permit I will submit to the Building Inspector at the time of fin ghi,Wddd thQ):pmpleted inspection log form and a sealed statement indicating that,to the best of my knowledge, belief and r**, ose portions of the project outlined above meet the intent of the Florida Building Code and are in \� fganed . ltj the approved plans. and Sea d Engineer/Architect !)I 58086 = Name A (.e z /4,v O 2A i Address W !V-7 .4va � 6 a � 4ij 7� Q STA F !✓O.¢,OrC. �/ S 3 I7 2 C-3�i ¢ Phone No. 0.i,� 3 �-7— S -7 0 ®0NA1- � Created ` on 6) 0\ 009 Alex Kondrat & Associates, Inc. Alex Kondrat P.E. Telephone(305)387-5770 10305 NW 41 Street,Suite 124 Fax(305)387-5769 Doral,Florida 33178 alexkondratAbellsouth.net Date: August 10,2015 Miami Shores Village Building Department 10050 NE 2nd Ave Miami Shores,Florida 33138 RE: Residence 6� 1680 NE 104 Street Gentlemen, This letter is to certify that after repairs as specified on the structural plans are performed the existing first floor structure will meet loading the requirements of the Florida Building Code 2010 edition. At the end of the job we will provide a special inspection affidavit certifying all structural repairs to the first floor have been performed and are in compliance with the permitted plans. Shouk4 yoz imgIaJTe any additional information, do not hesitate to call us. , � N D ,® ST �• sE '% •••• UJ • W • • • • ;'ilex Kondrat &S '.S�ate.�fF�3�1P.•� C�� 0.00 �••••� Engineer No: 58086 ;•••• � SION ��I� •••• •0000 0000•llllll�� • 0000•• 0000 0000• • • • 0000•• 0000••• • • • • • • • • • 0000•• •000.0 • • • • • ' • • • 0000•• 1 '• l , EVALUATION Most Widely Accepted and Trusted o ICC-ES Evaluation Report ESR-3445 rF1-1* 1.7 232 Reissued March 2014 This report is subject to renewal October 1, 2016. www.1cc-es.orA 1 (800)423-6587 1 (562) 699-0543 A Subsidiary of the International Code Council® DIVISION:06 00 00—WOOD,PLASTICS AND cold-formed from No. 14 gage steel;and is prepunched for COMPOSITES 16d common nails into the supporting member, and either Section:06 05 23—Wood,Plastic,and Composite 10d common or 10d-by-1'/2-ninch nails into the supported Fastenings member.See Table 2 and Figure 2 for product dimensions, (, fastener schedule, allowable loads, and typical installation REPORT HOLDER: details. USP STRUCTURAL CONNECTORS,A MiTeko 3.3 HUS Slant Nail Joist Hanger: COMPANY The HUS Slant Nail Joist Hanger is designed to provide 14305 SOUTHCROSS DRIVE,SUITE 200 double shear nailing for joist/truss-to-beam connections. BURNSVILLE,MINNESOTA 55306 The HUS Slant Nail Joist Hanger is cold formed from No. (952)898-8772 14 gage or No. 16 gage steel and is prepunched for 16d www.usoconnectors.com common nails into both the joist and the header.See Table infoft-usaconnectors.com 3 and Figure 3 for product dimensions, fastener schedule, allowable loads,and typical installation details. EVALUATION SUBJECT: 3.4 JL Standard Joist Hangers: USP STRUCTURAL CONNECTORS: FACE MOUNT The JL Standard Joist Hangers are designed as face HANGERS mount hangers for connecting nominal dimension lumber to headers, beams or girders. The JL hangers are cold- 1.0 EVALUATION SCOPE formed from No. 20 gage steel. The hangers are prepunched for 16d common or 10d common nails into the Compliance with the following codes: header,and 10d-by-1'/,–inch nails into the joigt Ape Table ■ 2012,2009 and 2006 International Building Code®(IBC) 4 and Figure 4 for product dimensions,fasteggr sAedules e e e 9 e ■ 2012, 2009 and 2006 International Residential Code® allowable loads,and a typical ir$stalla�i0 tetviii. .' (IRC) 3.5 JN and JNE Power Nail Fes§: '.:.. goo*** Property evaluated: JN and JNE Joist Hangers are►deafgned to support one:....: and two-ply nominally 2-by-6 and&bV= woQdlClb1s. ThEr Structural JN joist hangers are cold form8d.frem No.18"Me steep•:"e 2.0 USES and have a seat depth of 15/8 kut"e(41 mm)i•lifte JNE'• The USP structural connectors described in this report joist hangers are cold formed f ut Nd 20 gaga steel and'•••:• (see Table 12 for complete listing)are used for connecting have a seat depth of 2 inches /.5.1.mm). JN and dNE joist •. wood framing members in accordance with Section hangers are not prepunched fir ndils; See.Table 5 and*••••• 2304.9.3 of the 2012,2009 and 2006 IBC.The connectors Figure 5 for product dimen;ions, requigif*fastener; may also be used in structures regulated under the IRC schedule,allowable loads,and aetypitatinstallaftoa detail. • • when an engineered design is submitted to, and approved 3.6 JUS Slant Nail Joist Hanger. •• • by, the code official, in accordance with Section R301.1.3 The JUS Slant Nail Joist Hanger is designed for face- of the 2012,2009 and 2006 IRC. mount applications to provide double shear nailing for 3.0 DESCRIPTION joist/truss-to-beam connections. The JUS Slant Nail Joist 3.1 CLPBF Butterfly Hanger: Hanger is cold formed from No. 18 gage steel and is The CLPBF Butterfly Hanger is a face-mount hanger with prepunched for either 10d common or 16d common nails triangular header flanges having prepunched nail holes for into both the joist and the header.See Table 6 and Figure joist-to-header or truss-to-truss connections. The CLPBF 6 for product dimensions, fastener schedule, allowable Butterfly Hanger Is cold-formed from No.18 gage steel and loads,and a typical installation detail. is prepunched for 10d common nails into the header and 3.7 SUH Joist Hanger: 10d-by-1'/cinch nails into the joist.See Table 1 and Figure The SUH Joist Hanger is designed as a face-mount hanger 1 for product dimensions, fastener schedule, allowable to support nominal dimension joists.The SUH Joist Hanger loads,and a typical installation detail. is cold-formed from No. 16 gage steel. The SUH Joist 3.2 HD Face Mount Hanger: Hanger has prongs in the header flanges to temporarily The HD Face Mount Hanger is designed to support position the hanger on the header. The hanger is headers,joists and trusses.The HD Face Mount Hanger is prepunched for 10d common or 16d common nails into the ICC-ES Evaluation Reports are not to be construed as representing awtredw or any otter attributes norspedfrcally addressed,nor are they to be construed '0 as an endorsement of the subject of the report or a recommendation for its use.There Is no warranty by ICC Evaluation Service,LLC,express or implied,as ` t to anyjlading or other matter in this repor4 or as to any product covered by the report. �. Copyright©2014 Pagel of 15 ESR-3445 I Most Widely Accepted and Trusted Page 2 of 15 hedder and 10d-by-11/2, 10d common, or 16d common used for connectors described in this report must comply nails into the joist. See Table 7,and Figure 7 for product, with material requirements,physical properties,_toierances, dimensions, fastener schedule, allowable loads, and a workmanship, protective coating and finishes, and typical installation detail. packaging and package marking requirements specified in 3.8 THD Face Mount Hanger: ASTM F1667; and must have lengths, diameters and The THD Face Mount Hanger is designed to support LVL, bending yield strengths as shown in the following table: LSL and PSL beams. The THD Face Mount Hanger is FASTENER FASTENER SHANK MINIMUM cold formed from either No. 12 gage, No. 14 gage, or No. DESIGNATION LENGTH DIAMETER REQUIRED 16 gage steel; and is prepunched for 16d common nails (inches) (inch) Frb(Psi) into the header, and either 10d common or 10d-by- P-nail' 1.375 0.105 100,000 1 1/2-inch nails into the joist. See Table 8 and Figure 8 for , product dimensions, required fastener schedule, allowable 1od x 1 /2 1.5 0.148 90,000 loads,and a typical installation detail. 10d common 3.0 . 0.148 90,000 3.9 THDH Face Mount Hanger: 16d common 3.5 . 0.162 90,000 The THDH Face Mount Hanger is designed as a hanger For SI:1 inch=25.4 mm,1 psi=6.895 kPa. for metal-plate-connected wood trusses. The THDH Face 'The fastener designation °P-nail° refers to pneumatically driven Mount Hanger is cold-formed from No. 12 gage steel and nails described in ESR-1539.The fastener must have a minimum Is prepunched for 16d common nails. See Table 9 and diameter, length, and bending yield strength as specified in this Figure 9 for product dimensions, fastener schedule, table. allowable loads,and a typical installation detail. 3.11.4 Use In Treated Wood: Connectors and fasteners 3.10 THF Face Mount Hanger: used in contact with preservative-treated or fire-retardant- The re-retardantThe THF Face Mount Hanger Is designed to provide lateral treated wood must comply with Section 2304.9.5 of the top chord support for I joist to-header applications. The 2012,2009 and 2006 IBC;Section R317.3 of the 2012 and THF Face Mount Hanger is cold formed from either No. 18 2009 IRC;or Section R319.3 of the 2006 IRC.The lumber gage, No. 16 gage, or No. 12 gage steel; and is treater or the report holder(USP Structural Connectors),or prepunched for 10d common nails into the header, and both, should be contacted for recommendations on the either 10d common or 10d-by-1'/:-inch nails into the joist. appropriate level of corrosion resistance to specify for the See Table 10 and Figure 10 for product dimensions, connectors and fasteners as well as the connection fastener schedule, allowable loads, and a typical capacities of the fasteners used with the specific installation detail. proprietary preservative-treated or fire-retardant-treated 3.11 Materials: lumber. 3.11.1 Steel: The specific types of steel and corrosion 4.0 DESIGN AND INSTALLATION protection for each product are described in Table 11 of 4.1 Design: .••••• this report. Minimum steel base-steel thicknesses for the •••' •••• • different gages are shown in the following table: The allowable load capacities M.Tabrps 1 t4rougb 10 are •• based on allowable stress desig �TI•use ofO.Wrowable,.•••• GAGE NO. MINIMUM BASE-STEEL load values for the rodu lista !rf Tpble 12 of this report • THICKNESS(inch) must comply with all appliCN13le requirejpqqts and••••• conditions specified in this r 0000 20 l5wabIQ....• ' 20 0.033 p � . �•� • . loads are for normal load duiWon and/or r?a4 load..... 18 0.044 duration,based on load duratiorif 664,CD,in 2�cpordance...... 16 0.055 with Section 10.3.2 of the NDS,•as•SidicaW In Tables 1 .' 14 0.070 through 10 of this report. IW04fter increases are permitted for load durations other thbn thotoos; 1fled.. . 12 0.099 Tabulated allowable loads are;for•ftnecti8ns in wood••••••; For SI.1 inch=25A mm. seasoned to a maximum moistufo cotitent of•1$percent 3.11.2 Wood: Wood members must be sawn lumber or (16 percent for engineered wood products) or•Pess, used under continuously dry conditions and where sustained structural glued laminated timber with a minimum specific temperatures are limited to 100°F (37.80C) or less. When gravity of 0.50, or approved structural engineered lumber connectors are installed in wood having a moisture content (structural composite lumber, alternative strand lumber, or greater than 19 percent (16 percent for engineered wood prefabricated wood I joists) with a minimum equivalent products), or where the in-service moisture content Is specific gravity of 0.50, unless otherwise noted in the expected to exceed this value, the applicable wet service • applicable table within this report. Wood members must factor, CM, must be applied. Unless otherwise noted in the have a moisture content not exceeding 19 percent tables of this report, the applicable wet service factor, CM, (16 percent for structural engineered lumber), except as is as specified in the NDS for lateral loading of dowel-type noted in Section 4.1. For connectors installed with nails, fasteners. When connectors are installed in wood that will the thickness of each wood member must be sufficient experience sustained exposure to temperatures exceeding such that the specified fasteners do not protrude through 100^F (37.8—C), the allowable loads in this evaluation the opposite side of the member, unless otherwise report must be adjusted by the temperature factor, Q, permitted in the applicable table within this report. Wood specified in Section 10.3.4 of the NDS. Connected wood members that are structural engineered lumber must be members must be checked for load-carrying capacity at recognized in, and used in accordance with, a current the connection in accordance with NDS Section 10.1.2. evaluation report.Refer to Section 3.11 A for issues related to treated wood. 4.2 Installation: 3.11.3 Nails: Required fastener types and sizes for use Installation of the connectors must be in accordance with with the USP structural connectors described in this report this evaluation report and the manufacturer's published are specfied in this section and Tables 1 through 10.Nails installation instructions. ESR-3445 I Most WldelyAccepted and Trusted Page 3 of 15 rh4.3' Special Inspection: Instructions must be available at the jobsite at all 4.3.1 Main Windforce-resisting Systems under the times during installation. In the event of a conflict IBC: Periodic special inspection must be conducted for between this report and the manufacturer's published components within the main windforce-resisting system, Installation instructions,this report governs. where required in accordance with Sections 1704.2 and 5.2 Calculations showing compliance with this report must 1705.10 of the 2012 IBC, Sections 1704 and 1706 of the be submitted to the code official. The calculations 2009 IBC,and Section 1704 of the 2006 iBC. must be prepared by a registered design professional 4.3.2 Seismic Force-resisting Systems under the IBC: where required by the statutes of the Jurisdiction in Periodic special inspection must be conducted for which the project is to be constructed. components within the seismic force-resisting system, 5.3 Connected wood members and fasteners must where required in accordance with Sections 1704.2 and comply with Sections 3.11.2 and 3.11.3,respectively. 1705.11 of the 2012 IBC, and Sections 1704 and 1707 of 5.4 Adjustment factors, noted in Section 4.1 of this report the 2009 and 2006 IBC. and the applicable codes, must be considered where 4.3.3 Installations under the IRC: Special inspections applicable. are normally not required for connectors used in structures 5.5 Use of connectors and fasteners with preservative- systems under the IRC. However, for components and treated or fire-retardant treated lumber must be in systems requiring an engineered design in accordance with IRC Section R301, periodic special inspection accordance with Section 3.11.4. requirements and exemptions must be in accordance with 6.0 EVIDENCE SUBMITTED Sections 4.3.1 and 4.3.2 of this report. Data in accordance with the ICC-ES Acceptance Criteria 5.0 CONDITIONS OF USE for Joist Hangers and Similar Devices (AC13), approved The USP Structural Connectors described in this report October 2010(editorially revised December 2011). comply with, or are suitable alternatives to what is 7.0 IDENTIFICATION specified In,those codes listed in Section 1.0 of this report, Each connector described in this report is Identified by the subject to the following conditions: product model (stock) number, the number of the ICC-ES 5.1 The connectors must be manufactured, Identified and Index evaluation report for USP Structural Connectors Installed In accordance with this report and the (ESR-2685), and by one or more of the following manufacturer's published installation instructions. A designations USP Structural Connectors, a Wek copy of the manufacturer's published installation Company,or:USP,or United Steel Products Company. TABLE 1—CLPBF BUTTERFLY HANGER ALLOWABLE LOADS''2'3'4 JOIST DIMENSIONS FASTENER SCHEDULE ALLOWABL LOAD$•(11161. ••••• STOCK STEEL + • NO. WIDTH GA W H D Header Joist Do$nloed• ••Uplift •• (in.) Qty Type Qty Type C.=1.0 Cp•='y1�+ Cp=1.�5. Ab=1.60 ••••• CLPBF 11/2 18 1s/ie 2'/2 2'/2 12 10d Common 6 1 10dx 11/2 815 1 21&;+ 815 ' 215 :see* For Sh 1 inch=25A mm,1 Ib.=4.45 N. • • • •••••• 'Allowable loads have been adjusted for load duration factors,CD,as shown,in accordance with the NDS.The allowable loads do pgWply to••:••• loads of other durations,and are not permitted to be adjusted for other load durations.See Sections 4.1 and 4.2 i'oW811onal desifLand ***see installation requirements. •• •• '• • 2See Section 3.11.3 for required fastener dimensions and mechanical properties. •••••• ' •• 3Allowable loads shown are for installations In wood members complying with Section 3.11.2.Wood members mist also wave a Mriorr •'•••• compression perpendicular to grain design value,F...,of 625 psi(4.31 MPa)or greater. • + • see**: ; 4CLPBF hangers provide torsional resistance up to a maximum Joist depth of 3.5 inches(88.9 mm),where torsional resl4rice Is c eedoas a • moment not less than 75 pounds(334 N)times the depth of the joist at which the lateral movement of the top or bottom of the joiSt•V h ; respect to the vertical position of the joist is 0.125 Inch(3.2 mm). a ¢ L d l Ac 009 I i1 ° TYPICAL CLPBF CLPBF INSTALLATION FIGURE 1—CLPBF BUTTERFLY HANGER ESR-3445 I Most WldelyAccepted and Trusted Page 11 of 15 TABLE 8—THD FACE MOUNT HANGER ALLOWABLE LOADS�A"4 FASTENER SCHEDULE ALLOWABLE LOADS(lbs.) STOCK STEEL DIMENSIONS(in.) NO. GAGE Header Joist F =460 psi Fes, =625 psi Uplift W H D Qty Type CD=1.60 Type CD=1.0 CD=1.15 CD=1.25 CD=1.0 CD=1.15 CD=1.25 CD=1.60 THD26 16 15/B 5'/1e 3 18 16d Common 2170 10dx1'/2 2485 2855 3060 2485 2855 3060 2170 THD28 1 16 15/8 7 3 28 16d Common 2330 10dx1'/2 3865 3965 3965 3865 3965 3965 2330 THD210 16 15/8 9 3 38 16d Common 3095 10dx1'/2 4330 4670 4895 5075 5115 5115 3095 THD26-2 14 3'/le 53/8 3 18 16d Common 2285 10d Common 2540 2920 3175 2540 2920 3175 2285 THD28-2 14 el,, 7'/8 3 28 16d Common 2595 10d Common 3950 4540 4935 3950 4540 4935 2595 THD210-2 14 3!/18 91/8 3 38 16d Common 3810 10d Common 5360 6160 6700 6360 6160 6700 3810 THD210-3 1 12 5'18 9 3 38 16d Common 3850 10d Common 5660 6510 7045 5660 6510 7045 3850 THD46 14 3818 58/,8 3 18 16d Common 2285 10d Common 2540 1 2920 3175 1 2540 2920 3175 2285 THD48 14 38/8 7'/I8 3 28 16d Common 2595 10d Common 3950 4540 4935 1 3950 4540 4935 2595 TH0410 14 3818 9'/,e 3 38 16d Common 3810 10d Common 5360 6160 6700 5360 6160 6700 3810 THD412 14 38/8 11 3 48 16d Common 3810 10d Common 6770 7045 7045 6770 7045 7045 3810 THD414 1 14 38/e 12/8 3 58 16d Common 3810 10d Common 7045 7045 7045 7045 7045 7045 3810 THD610 12 51/2 9 3 38 16d Common 3410 10d Common 5660 6510 7080 5660 6510 7080 3410 THD612 12 51/2 11 3 48 16d Common 4065 10d Common 7150 8225 8415 7150 8225 8415 4065 THD614 12 5'/2 127/8 3 58 16d Common 4065 10d Common 1 8415 8415 8415 8415 1 8415 8415 4065 THD7210 12 7'/4 9 3 38 16d Common 3410 10d Common 1 5660 6510 7080 5660 1 6510 7080 3410 For Sh I inch=25.4 mm,1 Ibf=4.45 N,1 psi=6.895 kPa. _Allowable loads have been adjusted for load duration factors,CD,as shown,In accordance with the NDS.The allowable loads do not apply to loads of other durations,and are not permitted to be adjusted for other load durations.See Sections 4.1 and 4.2 for additional design and installations requirements. 2See Section 3.11.3 for required fastener dimensions and mechanical properties. 3Allowable loads shown are for installations in wood members complying with Section 3.11.2.Wood members must also have a minimum reference compression perpendicular to grain design value,Fes„of either 460 psi(3.17 MPa),or 625 psi(4.31 MPa),as specified In the table above. 4THD hangers provide torsional resistance up to a maximum joist depth of H+1 inch(H+25.4 mm),where torsional resistance Is defined as a moment not less than 75 pounds(334 N)times the depth of the Joist at which the lateral movement of the top or bottom of the joist with respect to the vertical position of the joist is 0.125 inch(3.2 mm). go**** • .••••• .A, Typical THD xa D bend line nail Installation W Typical THD THO Inotallation FIGURE 8—THD FACE MOUNT HANGER q T SIM200803 Used for Florida State Wide Product Approval# FL11470 Products on this Report which are approved: Product FL# DSC2 11470.1 H16 11470.2 H16-2 11470.2 H16-2S 11470.2 H16S 11470.2 _ H8 11470.3 HGA10 11470.4 HRS12 11470.5 HRS6 11470.5 HRS8 11470.5 LGT2 11470.7 LGT3-SDS2.5 11470.7 LGT4-SDS3 11470.7 MGT 11470.9 MSTA49 11470.10 •6•: MSTC48B3 11470.1 •' 0 MSTC66B3 11470.1 000• 0000.. 00 0000.0 MTS24C 11470.1000 ' 0000.. • 0 .. MTS28C 11470.1 •••• •••• • MTS30C 11470.1 0 0000 0000000000. TSP 11470.1 ... ' "" VGT 11470.9 000600 ••O: 6690•6 0000.. 00 . . . . 0000.. 0000.. . .0000. 0 O s SIMPSON STRONG-TIE COMPANY, INC t R Jax Apex Technology, Inc. FBPE CA NO.7547 4745 Sutton Park Court,Suite 402 Jacksonville,FL 3222419041821-5200 Evaluation reports are the opinion of the engineer who prepared the report,based on the findings,and in no way constitute or imply approval by a local building authority. The engineer,in review of the data submitted,finds that,in his opinion,the product,material,system,or method of construction specifically identified in this-report conforms with or is a suitable alternate to that specified in the Florida Building Code, SUBJECT TO THE LEWTATIONS IN THIS REPORT _ Jeffrey P.Arneson,an employee of Jax Apex Technology, Inc.(Apex Technology),is the authorized evaluating engineer of this report.Apex Technology is the prime professional,as defined in Florida Rule 61 G-30.002,authorized to sell the engineering services performed by Jeffrey P.Arneson,and is in no way acting,nor attempting to act,as an approved evaluation entity. Neither Jeffrey P.Arneson,nor-any ` other employee of Apex Technology,has performed calculations or testing for the products listed in this report. This evaluation is based solely upon the review,under the direct supervision of Jeffrey P. Arneson,of testing and/or calculations submitted by the manufacturer. The capacities listed in this report are based on the limiting capacities as determined from the substantiating data. We reviewed the substantiating data to a degree that allowed us to determine whether or not the work performed is consistent with the intended use of the product,and that the •• • methods used are in compliance with,or meet the intent of,the Florida Building Code.All testreports••••• 000000 were prepared by an approved testing laboratory. 0 9• • 0 0 9 0 496.06 0000 .11000: REPORT NO.: SIM200803 0 0 6 0 0 0 • 0000 0000 . . CATEGORY: Structural Components 11 0000 601194 4444 SUB CATEGORY: Metal Connectors 44440. 4444 4444. SUBMITTED BY: •••••• 0• 0 • • 6600.. 4444.. SIMPSON STRONG-TIE COMPANY, INC. 9 :0000: 5956 W.LAS POSITAS BOULEVARD •• 4 • PLEASANTON,CA 94588 00 1. CERTIFICATION OF INDEPENDENCE: • Jeffrey P.Amason,the Florida engineer who prepared this report,and Apex Technology have no financial interest in the manufacturing,sales,or distribution of the products included in this report. Jeffrey P.Amason and Apex Technology comply with all criteria as stated In Florida Administrative Code Chapter 913-72.110. 2. PRODUCT NAME Truss to Wall Connectors H8, MTS24C, MTS28C, MTS30C, H16, H16S, H16-2, H16-2S, HGA10 Page 1 of 13 Simpson Strong-Tie 1 , Girder Tiedowns LGT2, LGT3-SDS2.5, LGT4-SDS3, MGT,VGT,VGTR,VGTL Strap Ties HRS6, HRS8, HRS12 • Pre-bent Strap Ties MSTC48133, MSTC66133 Stud to Plate Tie TSP Drag Strut Connector DSCR-SDS3, DSRL-SDS3 3. SCOPE OF EVALUATION Load Evaluation as a Structural Component using the requirements of the Florida Building Code 4. DESCRIPTION: 4.1 H8 Hurricane Tie. The H8 is used to anchor wood trusses or rafters to wood top plates, wood top plates to studs,and studs to bottom plates. They can be used to resist uplift loads from wind or other loading. Itis installed with 10-10dxlY2"nails. The H8 is manufactured from 18 ga.steel meeting ASTM A-653 SS Grade 40. It is coated with a G96 galvanized finish. Allowable loads and fasteners are shown in Table 1. See Figure 1 for additional details. 4.2 MTS24C, MTS28C,and MTS30C Twist Strap. These Twist Straps are used to anchor wood trusses or rafters to wood top plates,wood top plates to studs, and other applications requiring uplift anchorage. They can be used to resist uplift from wind or other loading. Tb&. C denotes that the twist is in the center of the strap. They are installed with gither 14-108....' •••••• common nails or 14-10dx I YS"nails. The MTS24C, MTS28C,and MTS30C 8rA' ; . 00" • manufactured from 16 ga.steel meeting ASTM A-653 SS Grade 33. They are coated with a.• •••• • G90 galvanized finish. Allowable loads and fastener schedule are shown in T, Se 91. See • Figure 1 for additional details. 60909 • 6666 66666666 66660 4.3 H16, H16S, H16-2,H16-2S Hurricane Tie. The H16, H16S, H16-2,and4446-2S are ';••• 66 used to anchor wood trusses or rafters to wood top plates. The H16 and 1-116+l can alsotj1;0 "000 used to anchor wood trusses to masonry or concrete walls. These connectors wjap over the '. top of the rafter or truss. For wood wall applications,the straps are then wrapped under t&.:. 06.6 0 top plate and nailed to the face of the top plate with 4-10dxI Y2"nails and to tlp bgttpm of the :9600: top plate with 6-10dx1Y2"nails. For masonry or concrete wall applications,thc#Straps are•' fastened to a masonry wall with%x2W Titen Masonry Screws,or a concrete wall with 00 0 %xlY4"Titen Masonry Screws. These connectors are manufactured from 18 ga.steel meeting ASTM A-653 SS Grade 40. They are coated with a G90 galvanized finish. 0 Allowable loads and fastener schedule are shown in Table 1 for wood framing and Table 2 for masonry walls. See Figures 2 and 3 for additional details. 4.4 HGA10 Heavy Gusset Angle. The HGA10 is used to anchor wood trusses, rafters,or beams to wood walls. The HGA10 fastens to the truss, rafter,or beam with Simpson%X 1'/z"SDS screws(provided with the part),and fastens to the wall with Simpson%X 3"SDS screws(provided with the part). Allowable loads are shown in Table 1. The HGA10 is manufactured from 14 ga.steel meeting ASTM A-653 SS Grade 33. It is coated with a G90 galvanized finish. Allowable loads and fastener schedule are shown in Table 1. See Figure 2 for additional details. Page 2 of 13 Simpson Strong-Tie 4.5 LGT2 Light Girder Tiedown. The LGT2 is used to anchor a two-ply wood truss or beam (3"wide)to a wood or masonry wall. The LGT2 fastens to the wood truss or beam with 16-16d sinker nails. It attaches to wood studs beneath with 14-16d sinker nails,to a • masonry wall beneath with 7-%x2'/"Titen Masonry Screws,or to a concrete wall beneath with 7-'/x13/"Titen Masonry Screws. The LGT2 is manufactured from 14 gauge steel meeting ASTM A-653 SS Grade 50, Class 1. It is coated with a G90 galvanized finish. Allowable loads and fastener schedule are shown in Table 3. See Figure 4 for additional details. 4.6 LGT3-SDS2.5 Truss/Girder Tiedown:The LGT3-SDS2.5 is used to anchor a three-ply wood truss or beam(maximum 5"wide)to a wood or masonry wall. The LGT3-SDS2.5 fastens to the wood truss or beam with Simpson Strong-Tie SDS screws. It attaches to wood studs with 16d sinker nails or to a masonry or concrete wall with four 3/8 x 5 Titen HD Screws. The LGT3-SDS2.5 tiedown is formed from No. 12 gage[0.099 inch)ASTM A653 Grade 40 steel,with minimum yield and tensile strengths of 40 and 55 ksi, respectively. The finish is G90 galvanized. Allowable loads and fastener schedule are shown in Table 3. See Figure 5 for additional details. 4.7 LGT4-SDS3 Truss/Girder Tiedown:The LGT4-SDS3 girder tiedown is used to anchor a four-ply wood truss or beam(maximum 6W wide)to a wood wall. The LGT4- SDS3 fastens to the wood truss or beam with Simpson Strong-Tie SDS screws. It attaches to wood studs with 16d sinker nails. The LGT4-SDS3 tiedown is formed from No. 12 gage(0.099 inch)ASTM A653 Structural Quality Grade 40 steel,with minimum yield and tensile strengths of 40 and 55 ksi, respectively. The finish is G90 galvanized. Allowable loads and fastener schedule are shown in Table 3. See Figure 5 for additional details. 0000 4.8 MGT Medium Girder Tiedown. The MGT is used to anchor a multiple-fly wood truss••• or beam(3"minimum width)to a wood or masonry wall. The MGT fastens to 4h;wood tgJSP6'e '0 or beam with 22-10d common nails. A minimum of six nails must be into the4ecp of the 0 0 a a 000000 truss adjacent to the MGT. A minimum of four nails must be into the top of the tits. The :0 8 0 6: base of the MGT attaches to a single 8/8"diameter anchor bolt or rod. For maSc>rM% 0"". 0 •0:0 0 construction,this%"anchor must be designed by the building designer to prolix boat least&V• • much anchorage as is required of the MGT. For wood frame construction,thtd294"dnchor may be a length of all thread rod that is attached to an anchor fastened to thd 90cls beneath 0 the girder. This anchor must provide at least as much anchorage as is requirb1f 8f 4he MGT. e• For example,a Simpson Strong-Tie PHD5 Holdown attached to multiple stud's below of al•••:• 0 0.0.6 least Spruce-Pine-Fir lumber will provide anchorage equivalent to the anchorage-SRhe MCZT060 to the truss. The stud to which the anchor is attached must be anchored to the foundatiorll4• such a manner as to transfer this uplift to the foundation. The MGT is manufactured from 12 gauge steel meeting ASTM A-653 SS Grade 50, Class 1,coated with a G90 galvanized finish. The washer in the seat is 3a"plate steel that meets the provisions of ASTM A36. Allowable loads and fastener schedule are shown in Table 3. See Figure 6 for additional details. 4.9 VGT Variable Girder Tiedown. The VGT girder tiedown Is used to anchor a milli-ply wood truss or beam(minimum 3"wide)to a wood or masonry wall. The VGT fastens to the wood truss or beam with Simpson Strong-Tie SDS Strong-Drive Screws. It then fastens to a threaded rod or anchor bolt. The rod can be fastened to a connector mounted to framing below the girder. The anchor bolt can be anchored to a concrete or masonry wall that is designed by the building designer to resist the high concentrated uplift load at that location. The VGT can be installed singly or in pairs for higher uplift resistance. The crescent washer Page 3 of 13 Simpson Strong-Tie allows the VGT to be installed at an angle from 3:12 to 8:12. If the VGT is installed on a member sloped less than or greater than that amount,the VGT must be rotated so that it is sloped between 3:12 and 8:12. The VGTR and VGTL have one of the side flanges concealed so they can be placed at the end of a truss or beam. The VGT is formed from No. 7 gage[0.099 inch]ASTM A653 SS Grade 33 steel,with minimum yield and tensile strengths of 33 and 45 ksi,respectively. Allowable loads and fastener schedule are shown in Table 3. See Figure 6 for additional details. 4.10 HRS Heavy Strap Tle. The HRS Strap Tie models are straps used to provide a tension connection between two wood members. The HRS6, 8,and 12 are 13/8"wide and. are installed with 10d common nails. The straps are manufactured from 12 ga.steel meeting ASTM A-653 SS Grade 33,with minimum yield and tensile strengths of 33 and 45 ksi,respectively. They are coated with a G90 galvanized finish. Allowable loads and fastener schedule are shown in Table 4. See Figure 8 for additional details. 4.11 MSTC133 Pre-bent Strap Tie. The MSTC48133 and MSTC66133 Pre-bent Strap Ties are designed to.transfer a heavy tension load from framing on an upper story wall to a beam or header on the story below. For example,this could be from shearwall overturning or a large girder truss uplift load. They are installed with 10d common nails,with a minimum of four nails in the bottom of the beam or header. The straps are manufactured from 14 ga. steel meeting ASTM A-653 SS Grade 50,Class 1. They are coated with a G90 galvanized finish. Allowable loads and fastener schedule are shown in Table 5. See Figure 9 for additional details. 4.12 TSP Stud to Plate Connector. The TSP is used to connect a stud to either double top plates or a single sill plate. The TSP twists to attach to the side of the stud to reduce interference with sheathing,drywall, and trim nailing. The TSP has a short flange on it that installs either over the top of the top plates or hooked under the sill plate. For sill plate 0000 application,fill all round holes. For top plate application,fill all round and triangle shaped....' •••••• holes. The TSP is installed with either 10dx1%2"or full-length 10d common r1WW. The TSP •• •• is formed from No. 16 gage(0.057 inch)ASTM A653 SS Grade 40 steel,witbivinimum '•0••0 ••••'• yield and tensile strengths of 40 and 55 ksi,respectively.' The galvanized coatirg complies • ;• •.; with the G90 requirements of ASTM A653. Allowable loads and fastener schedule are •••• • shown in Table 6. See Figure 10 for additional details. 00060• ••••• •'; • 000000 0000 0000. 4.13 DSC211 and DSC2L Drag Strut Connector. The DSC2 Drag Strut-08nn6or ••.. transfers diaphragm shear forces from drag struts, such as drag trusses,trf V Shear •• walls. The R and L suffix refers to right or left hand bend to accommodatd diffetent :••• •• •• layout configurations. The DSC2 fastens to the drag strut and wood top.pate&th •• •• ;•••• Simpson Strong-Tie SDS Strong-Drive Screws,which are included.The SIM screws•••• ; are installed best with a low-speed'/2"drill and a 3/8"hex head driver. Predrilling holes for SDS screws is not required. The DSC2 is formed from No.7 gage(0.173 inch) ASTM A653 Structural Quality Grade 33 steel,with minimum yield and tensile strengths of 33 and 45 ksi, respectively. The galvanized coating complies with the G90 • requirements of ASTM A653. Allowable loads and fastener schedules are shown in Table 7. See Figure 11 for additional details. S. MATERIALS 5.1 Steel. Steel specifications for each product listed in this evaluation report shall be as indicated in the previous section. Page 4 of 13 Simpson Strong-Tie 5.2 Wood. Wood members to which these connectors are fastened shall be solid sawn lumber,glued-laminated lumber,or structural composite lumber having dimensions consistent with the connector dimensions shown in Tables'! through 4. Unless otherwise noted,lumber shall be Southern Pine or Douglas Fir-Larch having a minimum specific gravity of 0.50. Where indicated by SPF, lumber shall be Spruce-Pine-Fir having a minimum specific gravity of 0.42. 5.3 Nails and Bolts. Unless noted otherwise, nails shall be common nails. Nails shall compwith ASTM F 1667 and shall have the minimum bending yield strength Fyb: Common Nail Nail Shank Diameter Fyb (psi) Pennyweight inch 10d 0.148 90,000 16d 0.162 90,000 Fasteners for galvanized connectors in pressure-preservative treated wood shall be hot- dipped otdipped zinc coated galvanized steel. Fasteners for stainless steel connectors shall be stainless steel. 5.4 Concrete/Masonry. Concrete and Masonry design specifications shall be the stricter of the specifications by the engineer of record,the Florida Building Code minimum standards, or the following: Material Specification Minimum Compressive Strength Concrete,fc - 2500 psi Masonry,f m ASTM E447 1500 psi Masonry Unit ASTM C90 1900 psi Mortar ASTM C270 Type S 1800 siorb proportions Grout ASTM C476 2000 psi orb proportio goes 6. INSTALLATION so. ••• •• . . 0000.. 0000 0000.. Installation shall be In accordance with this report and the most recent editiorottv?, ••••; Simpson Strong-Tie Wood Construction Connectors catalog. The Information in this repot•••• • supersedes any conflicting information between information provided in this r8postsnd the•••• ••;•• catalogue. 0000.. ee00 0000. es ee 0000 00000 7. SUBSTANTIATING DATA 000000 0 • • • • • • • :sees: Test data submitted by Testing Engineers Inc.and Product Testing, Inc.,and jigrVftand ' sees*: sealed calculations performed by Jeremy Gilstrap,P.E., performed in accordaned with the e 2007 Florida and Residential Building Codes. Product Test Number Date Tested H8 Uplift H204, 1-1220 5-6-99,5-13-99 MTSC Uplift 8845 1-30-90 H16 Uplift 1376, H591 9-24-01,3-3-00 H16-2 Uplift 1830,H591 3-19-02,3-3-00 HGA10 Uplift H062 1-12-99 HGA10 F1 Direction H042 12-29-98 HGA10 F2 Direction H043 12-29-98 LGT2 Uplift H429, 1839,K411 11-11-99, 1-29-02, 6-30-04 LGT2 F1 Direction L921 10-18-05 LGT2 F2 Direction +L922 10-18-05 Page 5 of 13 Simpson Strong-Tie LGT3 Uplift L431 6-9-05 LGT3 F1 Direction L233 5-20-05 LGT3 F2 Direction L234 5-20-05 _ LGT4 Uplift 0113,? 7-5-07,? LGT4 F1 Direction 0393 10-29-07 LGT4 F2 Direction 0394 10-1-07 MGT Uplift 1134 5-9-01 8/11/2006, 8/11/2006, M985, M988, M999, M990, 8/16/2006, 8/22/2006, VGT,VGTR/L Uplift M991, N075, M989, N142, 8/22/2006, 8/29/2006, N149 8/30/2006,9/12/2006, 9/15/2006 MSTC48133 Tension J367,J583 6-4-03, 11-19-03 MSTC66133 Tension J368 6-24-03 M481, M950, M812, M817, 4/19/2006,5/24/2006, TSP Uplift M202, N056, N074 8/10/2006, 8/15/2006, 18/18/2006,8/23/2006 _ DSC2R/L Tension FROM SIM200801 DSC2R/L Compression I FROM SIM200801 8. FINDINGS Upon review of the data submitted by Simpson Strong-Tie,it is my opinion that the models as described in this report conform with or are a suitable alternative to the standards and sections in the 2007 Florida Building and Residential code editions listed in section 10 of this report,subject to the limitations below. Maximum allowable loads shall not exceed the allowable loads listed in this report. ••'' 9. LIMITATIONS: •• •• ...... .... ...... 1. Maximum allowable loads shall not exceed the allowable loads listed in"s Tdport. :•••• Allowable loads listed in this report are based on allowable stress design,*1hWoads.ii5•'0 this report are not applicable to Load and Resistance Factor Design. ••• •• ••• 2. Capacity of wood members is not covered by this report. Capacity of wo�dd Wribers• •• • must be checked by the building designer. 3. The anchorage of the MGT and VGT to masonry or concrete wall is not ooverefi by this •• , report. Anchorage must be designed by the building designer. •• ;••••• 4. Allowable loads for more than one direction for a single connection cannsotVe added ... : together. A design load that can be divided into components in the directions given rAysi' be evaluated as follows: Design Uplift/Allowable Uplift+Design Lateral Parallel to Plate/Allowable Lateral Parallel to Plate+Design Lateral Perp.to Plate/Allowable Lateral Perp.to Plate< 1.0 10. CODE REFERENCES Florida Building Code, Building 2007 Edition Section 104.11 Alternate Materials and Methods Chapter 1714.2 Load Test Procedure Specified Chapter 21 Masonry Chapter 22 Steel Chapter 23 Wood Page 6 of 13 Simpson Strong-Tie Florida Building Code, Residential 2007 Edition R101.2.1 Scope R4407 HVHZ Masonry R4408 HVHZ Steel R4409 HVHZ Wood 11.ALLOWABLE LOADS: The tables that follow reference the allowable loads for the aforementioned products. TABLE 1 ALLOWABLE UPLIFT LOADS FOR TRUSSIRAFTER TO WOOD WALL CONNECTORS :dao- ? v M"' �--$ ..�"�.f .s �.. s k -ix x Fasteners Allowable U lift l Dads 160 y� [► /� a-,. �^ w: ,+ x s�� :»a,� r r z � 'L a.cz � x� c 5 K. i s, 'x, 'c' 's^> �� _ �,s. �o Palee k�fro StiudsN 161" a � Spice-Pe-Fr 0,t H8 ~18 5-10dxl% 5-10dxl% - 795 565 H8 18 - 5-10dxl% 5-10dxl% 795 565 MTS24 16 7-10dx1% 7-10dxl% - 1000 860 MTS28C 16 7-10dx1Ya 7-10dxl% - 1000 860 MTS30C 16 7-10dxl% 7-10dxl% - 1000 860 H160 18 2-10dxl% 10-10dxl% - 1400 1205 H16SO 18 2-10dxl% 10-10dxl% - 1400 1205 H 1645 18 2-10dxl% 10-10dxl% - 1325 1140 H16-2818 2-10dxl% 10-10dxl% - 1325 1140 HGA10 14 4-SDS'/,XI% 4-SDS'/,X3 - 435 375 Notes: 1. Loads include an increase of 60%for wind loading where permitted by the code for fasteners in wood. Loads do not Include a stress increase on the strength of the steel. No further Increases are permitted. Reduce loads where other loads govern. 2. Allowable loads are for one anchor. A minimum rafter thickness of 2Yz"is required when H8 connectors are installed on each side of the truss and on the same side of the plate. • • •°...` **Go:* 3. Hurricane ties are shown installed on the inside of the wall for clarity. Installation on the outside Of4wall is ° acceptable. For installation of H16 series on the outside of the wall,a minimum 15/32"wood structural panel' •••• • sheathing with 1-8d nail between straps to top plate is required. For a continuous load path,d&928 fop plate and• •••••• top plate to stud connections must be on the same side of the wall. •••°'• • :•••• 4. H8 will achieve 310 pounds uplift when connecting a stud to a single bottom plate. Install 5-10dk 1 Y'f mils tgs'tlid'° ` • and 4-10dx1Ya"nails to bottom plate. •ease •••• 5. MTS24C,MTS28C,MTS30C can be attached directly to the studs provided the(7)nails are attacked Qo the studoerO ••••• not split over the stud and the top plate. 00080` ••:• 9000:0 • 6. H16 is pre-sloped ata 5:12 pitch and can be used on pitches from 3:12 to 7:12. Minimum heeler for H16 series • is 4" • • • 7. HGA10 allowable F1 load(160)shall be 1165 lbs(DFUSYP)&775 lbs(SFP),and allowable A load(160)s§MPW• °000000•••° 940 lbs(DFUSYP)&815 lbs(SPF). . ° • •••"' 00 • Via. 4� ypical ! nstalladon of H8 attaciti SC connecting Wading russ to top plate rafter.to double top l3wes Figure 1 H8 and MTSC Typical Installation Page 7 of 13 Simpson Strong-Tie H16 tm °" strap MAY wrap Fi atrs°pn to back otppta.. k wrapto badt�pt�e. Fi. HGA10 Wd 4-1040%to hod 6.1061�h kIs1811atlalt t0 tmmHMld�t114to U 1a116109e194 k*fb6d dN, lorao3a`ft OM619Toppla s i�.ed�•t2e tafeca+�2x H16-2.installation Figure 2 H16,H16-2,and HGA10 Typical Installation TABLE 2 ALLOWABLE UPLIFT LOADS FOR TRUSS TO MASONRY OR CONCRETE WALL CONNECTORS Fasteners ¢Qoviable U IIf loads 160: Moder ,G Leng4t! a xy p u,,, CM� Cencre � ' to 'oYfthei R ne' ''+. 7 y 3 a J^ s ,5 i Nay (�h Tr1sslRafter > _ !) 5 rocs-Plne-FI on H16 18 .18% 2-10dxl% 6-'/4x2'/4 6-'/4x13/4 1,470 1265 H16-2 18 183/4 2-10dx1% 6-'/4x2'/4 6'/4x13/4 1470 1265 • ���• Notes: : . • ' 1. Loads include an increase of 60%for wind loading where permitted by the code for fasteners in Arood. Loads dd Ret • Include a stress increase on the strength of the steel. No further increases are permitted. Rede kmds whetA" ""'• other loads govem. 000000 ' :••..: •... •..• •••••• •e•• ••••• . • •• •• •••• •••••• • • •••••• k • • • y NN�• Y� r-T v 6 § r Y ,Ira�Reber::... a ''•' Figure 3 H16 Typical Installation to Masonry Wall Page 8 of 13 Simpson Strong-Tie TABLE 3 ALLOWABLE LOADS FOR GIRDER CONNECTORS M. c i v�bs- �+ A ` � {t i y�"i`�?�',�ttf�*f 2".-,a �`r.d``a�t's.*eL t '.a°x s�` �.•3 �.'*k i'v'' 'c i �Va�3 (�6�� a-tL y Pt Mode)NQ.� Qty, e., r y , =t L ,f G1rde y CMC1 Concret9 ` � tSp SPE �E1 ; �� F2 ,u+;•.,::, ..�-. } ,�*`� '� — 'Jdt ay '3aw, a'}. Q taming :.. a k_s ° -.4 ..a ;F•*.. ,Ar L, ...,. '° LGT2(Wood) 1 2 16-16d Sinker 14-16d _ _ 2050 1785 7004 1704 Sinkers LGT2(Masonry) 1 2 16-16d Sinker tan xcre 7-'/<ScreTitan 2150 1850 7004 1704 Titan Screw Screw LGT3-SDS2.5(Wood) 1 3 12-SDS'/4x2% 21-16d Sinkers - - 3685 2655 795 410 LGT3-SDS2.54-%a"x5° 4-%"x5" Mason 1 3 12-SDS'/ax2%a - Tden HD Titan HD 3285 2365 795 410 _ LGT4-SDS3(Wood) 1 4 16-SDS'/4x3 30-16d Sinkers - - 4060 2925 20005 6755 LGT4-SDS3 1 4 16-SDS%x3 4-Vs"xS' 4-VxY 3285 2365 - - Mason Titen HD Titen HD MGT(Wood) 1 2(min) 22-10d 1%"anchor - - 3965 3275 - - - MGT(Masonry) 1 2(min) 22-10d - 1 Va"anchor 1-Ye"anchor 3965 3275 - - 1 2(min) 16-SDS'/4x3 - 1%"anchor 1 8/e anchor 4940 3555 - - VGT 2 2(min) 32-SDS%x3 - 2-%"anchors 2-°/a"anchors 7185 5175 - - 3(min) 32-SDS%x3 - 2-'/e"anchors 2-%a"anchors 8890 6400 - - VGTL or VGTR 1 2(min) 16-SDS%x3 - 1%"anchor 1%"anchor 2230 1605 - - 2 2(min) 32-SDS%x3 - 2-$/"anchors 2-8/"anchors5545 3990 - - Notes: 1. Loads include an increase of 60%for wind loading where permitted by the code for fasteners in wood. Loads do not include a stress increase on the strength of the steel. No further increases are permitted. Reduce loads w4MbUr loads govern. • • •••• *see:• 2. Attached members must be designed to resist applied loads. •..• : • •• •. 3. For MGT and VGT application to wood framed wall,provide equivalent anchorage to wood fWkwo provideaaesislance 000t&* to applied load on the MGT or VGT. Provide continuous load path to the foundation. For MgT•gNQT application to • ••• masonry/concrete wall,provide$/e"anchor designed by building designer to provide Qi1�Qp resistance}ilied loa s :6006: dl?►it� MGT or VGT. Provide continuous load path to foundation. • • 4. LGT2 lateral loads require installation of optional 4-16d sinkers in triangle fastener holes into to �dates. 0000 ••••• 5. LGT4 lateral loads require installation of optional 7-16d sinkers in triangle fastener holes into{byplfts. • • ••••.. • • LGT2 Application to • • • • • Wood Framing LGT2 Appiicatt' pta(6sonry • • :••• • :6: " ifdo omb barriernot slim F T x • C� r t� Figure 4 f' ? Typical LGT2 Application Page 9 of 13 Simpson Strong-Tie LGt3.i0' LCT4•t� F2 ttsTa.c� LGT'I+sTA9ra - . . . LIP .h——1► F1 LGT3-SDS2.5 (LGT4-SDS3 smote} Figure 5 Typical LGT3 and LGT4 Application TTdtI�tANO o lY y • •••• •••••• ffilTTts ^�, �Srar '' r �. • • ! y� • • •••• .• GT Appli&0"40 MasoT rve••• ••••• •••••• •••• ••••• Figure 6 •• •• •••• •••••• 11���IVT Typical MGT Application ;'•;•; •• instelr taTtat" wiUt HOL19 YP Pp . . . . ...... .. . . ... . . . air � r tf K v Thdow VOTR Slop iypiraal VGT Double _ lostelMonwithHOU4 Indeltdoo with 110110 s Figure 7 Typical VGTNGTR Application Page 10 of 13 Simpson Strong-Tie TABLE 4 HRS ALLOWABLE TENSION LOADS Ipdel Nd Ga a N�il� C . HRS6 12 6-10d 605 525 HRS8 12 10-10d 1010 880 HRS12 12 14-10d 1415 1230 Notes 1. Loads include an increase of 60%for wind loading where permitted by the code for fasteners In wood. Loads do not include a stress increase on the strength of the steel. No further Increases are permitted. Reduce loads where other loads govern. 2. Install half the nails in each end of the strap. IitSb Figure 8 Typical HRS Strap TABLE 5 MSTCB ALLOWABLE UPLIFTITENSION LOADS ' B@am MI►timum a x Fa00101AIIOWable360s d ,� Mod@I�, Dimensions `� � k< Beim����; �` ;��fa���' N Lows(160 �� •••• - Tk Width^ De Face z Botox +> iiksee* 6006:6 OFIS .SPI MSTC4863 3" 9'/a° 12-10d 39304-1 38-10d �•• '•'• .00.0. MSTC66133 3'/z° 11'/° 1 14-10d 4440 .. 0000.. Notes: •����. �"••� • 1. Loads include an increase of 60%for wind loading where permitted by the code for fastentfelh wood. mal ..... do not include a stress increase on the strength of the steel. No further increases are psimReduce3mft 00:000 where other loads govern. •• •• 0000 •••••• 2. Using fewer than 38 nails in the studs/post will reduce the capacity of the connection. To salsulate•a reduced capacity use 129 lbs.per nail for DFUSP or 112 lbs.per nail for SPF : ' : ....% 3. Nails in studs/post shall be installed symmetrically. Nails may be installed over the entirg length of the,S11.915.. • over the studs/post.'..' i • ... i i 4. The 3"wide beam may be double 2-by members. • • 5. MSTC48133 and MSTC66133 installed over sheathing up to%a"thick will achieve 0.85 of the table loads. Mh2-2xer4c ean22tor.r M urozr 38N& LWO 2r MUM -t- Figure 9 ' tiara Typical MSTCB ;. I ags Application Bean learn . MUM I�atatlodon with Rtro MA MSTC48B3 zx aeaaa nI5TCM MMMdonwith no Rim Joist Page 11 of 13 Simpson Strong-Tie TABLE 6 TSP ALLOWABLE LOADS,FASTENERS,AND DIMENSIONS OAlwable U Lift Loads 10)M� A— 1� T1. ���LocB$on�� �hid`s'�,� �'��P�at�� ��=DFt$P �.x SPF' k Double Top 9-10dxIY2" 6-10dxIY2" 755 650 TSP 11/2 r/8 Plate 6-10d 1015 870 Single Sill F 6–10dxIY2" 3-10& 1/2 1 "' 395� 5T5— I Plate 3–10d 39 370 Notes: 1. Loads Include an Increase of 60%for wind loading where permitted by the code for fasteners In wood. Loads do not Include a stress Increase on the strength of the steel. No further Increases are permitted. Reduce loads where other loads govern. 2. TSP connectors achieve different loads depending on whether full length nails or IW long nails are used,and whether connector is used to fasten stud to top plates or sill plate. 3. When cross grain bending or cross grain tension cannot be avoided,mechanical reinforcement to resist such forces should be considered. Large plate washers on anchor bolts can serve this purpose. 4. TSP Southern Pine stud to Southern Pine sill plate,585 lbs.uplift. TSP SPF stud to Southern Pine sill plate,450 lbs.uplift. Typical TSP Installed to •sill slate *we* T Typical TSP Ica installed to AZ di rosutba I I d top :0 00 @*see p 0 plates Figure 10 ...... Typical TSB Application %see: so 0 0 V: 0 0 00 0 TABLE 7–DSC2R AND DSC21_DIMENSIONS,FASTENERS AND ALLOWABLE LOADS 1 H. E DSC2R-SDS3 16 20-SDS%"4" 2590 3720 1865 2680 DSC2L-SDS3 Notes: 1. Loads Include an Increase of 60%for wind loading where permitted by the code for fasteners In wood. Loads do not Include a stress increase on the strength of the steel. No further Increases are permitted. Reduce loads where other loads govern. 2. SDS screws minimum penetration Is 23/4",minimum end distance Is 2Y2"and minimum edge distance Is Ve" for full load values. 3. Lag screws will not achieve table loads. 4. Strong-Drive®screws are permitted to be Installed through metal truss plates as approved by the Truss Designer,provided the requirements of ANSVI-PI 1-2002 Section 8.10 are met(pro-drilling required through the plate using a maximum of 5132"bft.) Page 12 of 13 Simpson Strong-Tie . .... ...... .. 0000.. ......... .. .. . ... . . :.. . ...... _ 0000 .. r- .. 3 :':-: ':::: - ::::: : :• Figure 11 Typical DSC2 Application 12.IDENTIFICATION ` Each connector covered by this report shall be stamped with the manufacture's name and/or trademark and the product name. . . 0000 0000.. 0000.. 0000 .0060• 0000.. 0000.. 0000 ease • • • • 0000 0000 6090• 0000.. •090 0000. 00 •• 9966 0000.. 060.0- •0000• 0000.. • . . ...••• 00 0 s • �; s P.E. anuary 5;2009 Page 13 of 13 Simpson Strong-Tie SIM200802 Used for Florida State Wide Product Approval # FL11.473 Products on this Report which are approved: Product FL# Product FL# DETAL20 11473.1 LGUM210-2-SDS 11473.12 FGTR 11473.2 LGUM210-3-SDS 11473.13 FGTRE 11473.2 LGUM210-4-SDS 11473.14 FGTRHL 11473.2 LGUM26-2-SDS 11473.12 FGTRHR 11473.2 LGUM26-3-SDS 11473.13 HETA12 11473.3 LGUM26-4-SDS 11473.14 HETA16 11473.3 LGUM28-2-SDS 11473.12 HETA20 11473.3 LGUM28-3-SDS 11473.13 HETA24 11473.4 LGUM28-4-SDS 11473.14 HETA40 11473.4 LGUM410-SDS 11473.15 HETAL12 11473.5 LGUM46-SDS 11473.15 HETAL16 11473.5 LGUM48-SDS 11473.15 HETAL20 11473.5 LTA1 11473.16 _ HGAM10 11473.6 META12 11473.17 • HGUM5.25 11473.7 META14 11473.17 . '0000 0000.. HGUM5.50 11473.7 META16 11473.17 ••• •• • HGUM7.00 11473.8 META18 11473.17 "':000000" HGUM7.25 11473.8 META20 11473.18 0..... 0 0.00: 0000 0000 . . HGUM9.00 11473.8 META22 11473.18 '0000 00.0 HHETA12 11473.9 META24 11473.18 0.00•• •••• 00000 HHETA16 11473.9 META40 11473.18 .. .. 0000 6600:0 HHETA20 11473.9 MSTAM24 11473.19 ' • . . . 000000 HHETA24 11473.10 MSTAM36 11473.19 . 0 00000 • HHETA40 11473.10 MSTCM40 11473.19 : . ... :0000: HM9 11473.6 MSTCM60 11473.19 •• • HTSM16 11473.11 MTSM16 11473.2 HTSM20 11473.11 MTSM20 11473.2 SIMPSON STRONG-TIE COMPANY, INC r r Jax Apex Technology, Inc. FBPE CA NO.7547 4745 Sutton Park Court, Suite 402 Jacksonville, FL 32224/9041821-5200 1 1 Evaluation reports are the opinion of the engineer who prepared the report,based on the findings,and in no way constitute or imply approval by a local building authority. The engineer, in review of the data submitted, finds that, in his opinion, the product, material, system, or method of construction specifically identified in this report conforms with or is a suitable alternate to that specified in the Florida Building Code,SUBJECT TO THE LIMITATIONS IN THIS REPORT Jeffrey P.Arneson,an employee of Jax Apex Technology, Inc. (Apex Technology),is the authorized evaluating engineer of this report.Apex Technology is the prime professional, as defined in Florida Rule 61 G-30.002,authorized to sell the engineering services performed by Jeffrey P.Arneson, and is in no way acting, nor attempting to act,as an approved evaluation entity. Neither Jeffrey P.Arneson, nor any other employee of Apex Technology, has performed calculations or testing for the products listed in this report. This evaluation is based solely upon the review, under the direct supervision of Jeffrey P.Arneson,of testing and/or calculations submitted by the manufacturer. The capacities listed in this report are based on the limiting capacities as determined from the • substantiating data. We reviewed the substantiating,data to a degree that allowed us to deteoriiirfe. whether or not the work performed is consistent with the intended use of the procductr agd that 1I1e• ••••:• methods used are in compliance with,or meet the intent of,the Florida Building t Coag �I test •••• •• ••• 0 6000 000000 reports were prepared by an approved testing laboratory. • 6666.. :i•00• 6669 6666 • • REPORT NO.: SIM200802 • 0000 0000 0000• 6 0 0000•• 0000 0000• CATEGORY: Structural Components • 6666 6666 6666.. SUB CATEGORY: Metal Connectors •••••• •• . 6 . . 690069 6666.. SUBMITTED BY: *00 6• . 666.. 90 0 0 009 0 0 6 . SIMPSON STRONG-TIE COMPANY, INC. 0.0* 6 • 5956 W. LAS POSITAS BOULEVARD PLEASANTON, CA 94588 1. CERTIFICATION OF INDEPENDENCE: Jeffrey P.Arneson, the Florida engineer who prepared this report, and Apex Technology have no financial interest in the manufacturing, sales, or distribution of the products included in this report. Jeffrey P.Arneson and Apex Technology comply with all criteria as stated in Florida Administrative Code Chapter 96-72.110. 2. PRODUCT NAME Truss to Wall Connectors MTSM16, MTSM20, HTSM16, HTSM20, HM9, HGAM10 Page 1 of 13 Simpson Strong-Tie Embedded Truss Anchors META12, META14, META16, META18, META20, META22, META24, META40, HETA12, HETA16, HETA20, HETA24, HETA40, HETAL12, HETAL16, HETAL20, HHETA12, HHETA16, HHETA20, HHETA24, HHETA40, LTA1, DETAL Wood to Masonry Straps MSTAM24, MSTAM36, MSTCM40, MSTCM60 Girder Tiedowns FGTR, FGTRE, FGTRHL, FGTRHR Wood to Masonry Hangers LGUM26-2, LGUM28-2, LGUM210-2, LGUM26-3, LGUM28-3, LGUM210-3, LGUM26-4, LGUM28-4, LGUM210-4, LGUM46, LGUM48, LGUM410, HGUM5.25, HGUM5.50, HGUM7.00, HGUM7.25, HGUM9.00 3. SCOPE OF EVALUATION Load Evaluation as a Structural Component using the requirements of the Florida Building Code, Building. 4. DESCRIPTION: 4.1 MTSM16 and MTSM20 Twist Straps for Wood to Masonry. The MTSM16 and MTSM20 are used to anchor wood trusses, rafters, or beams to masonry or concrete walls. The MTSM fastens to the wood member with 10d common nails, and fastens-to the wall with either'/x2'/"Titen Masonry Screws for a masonry wall, or%x13/4"Titen Masonry Screws for a concrete wall. These connectors are manufactured from 16 gauge steel meeting ASTM A653 SS Grade 33. The galvanized coating complies with the G90 requirements of ASTM A653. Twist strap fastener schedules, dimensions and allowable loads are shown in Table 1. See Figure 1 for additional details of twist straps for masonry. • . . .... ...... 4.2 HTSM16 and HTSM20 Twist Straps for Wood to Masonry. Tha l;LTPSM16`arl'd.' ....:. HTSM20 are used to anchor wood trusses, rafters, or beams to masmWor.concrete. • walls. The HTSM fastens to the wood member with 10d common naiLvang fastgng to. • the wall with either'/x2'/e"Titen Masonry Screws for a masonry wall, orYxx 13/"Titem• ••••• Masonry Screws for a concrete wall. These connectors are manufactl.R$trtom 14:'•' "'•'• gauge steel meeting ASTM A653 SS Grade 50, Class 1. The galvanlYed Loating"'` complies with the G90 requirements of ASTM A653. Twist strap fastenef sehedules,*• ••• • dimensions and allowable loads are shown in Table 1. See Figure 1 fpr a4ditioA••••• details of twist straps for masonry. •..• ; . ... ;••••; 4.3 HM9 Hurricane Tie. The HM9 is used to anchor wood trusses, rafters, or beams to masonry or concrete walls. The HM9 fastens to the wood member with Simpson '/X 1'/2"SDS screws (provided with the part), and fastens to the wall with either%x2'/" Titen Masonry Screws for a masonry wall, or%x13/4"Titen Masonry Screws for a concrete wall. The HM9 is manufactured from 18 gauge steel meeting ASTM A653 SS Grade 33. The galvanized coating complies with the G90 requirements of ASTM A653. Hurricane tie fastener schedule, dimensions and allowable loads are shown in Table 1. • See Figure 2 for additional details of the HM9. 4.4 HGAM10 Hurricane Gusset Angle.The HGAM10 is used to anchor wood trusses, rafters, or beams to masonry or concrete walls. The HGAM10 fastens to the wood member with Simpson '/X 1'/2"SDS screws (provided with the part), and fastens to the wall with '/x2'/"Titen Masonry Screws. Allowable loads are shown in Table 2. The HGAM10 is manufactured from 14 gauge steel meeting ASTM A653 SS Grade 33. The galvanized coating complies with the G90 requirements of ASTM A653. Angle Page 2 of 13 Simpson Strong-Tie fastener schedule, dimensions and allowable loads are shown in Table 1. See Figure 3 for additional details of the HGAM10. 4.5 META, HETA, HETAL, HHETA Embedded Truss Anchors. Embedded Truss Anchors are used to anchor a wood member(usually a truss)to a masonry or concrete wall. Embedded truss anchors fasten to a single-ply wood truss with 10dx1'/2 nails or to a multiple-ply truss with 16d common nails. They are embedded in the masonry or concrete wall to a depth indicated on the side of the anchor(4"for META, HETA, and HETAL, and 51/16"for HETAL).The strap portion of the anchor is 1'/"wide. The anchors are manufactured from steel meeting ASTM A653 SS Grade 50, Class 1,with the exception of the truss seat of the HETAL which is manufactured from steel meeting ASTM A653 SS Grade 33. Steel thickness-is as specified in Table 9. The galvanized coating complies with the G90 requirements of ASTM A653. Embedded truss anchor fastener schedule, dimensions and allowable loads are shown in Table 2 for single installations and Table 3 for double installations. See Figures 4 and 6 for additional details of single and double embedded truss anchors. 4.6 LTA1 Lateral Truss Anchor.The LTA1 is used to anchor wood trusses, rafters, or beams to masonry or concrete walls. The LTA1 fastens to the wood member with 10dX1'/2"common nails and has legs which are embedded into the wall system. Allowable loads are shown in Table 2. The LTA1 is manufactured from 18 gauge steel meeting ASTM A653 SS Grade 33. The galvanized coating complies with.the G90 requirements of ASTM A653. Truss anchor fastener schedule, dimensions and allowable loads are shown in Table 2. See Figure 5 for additional details of the LTA1. 4.7 DETAL20 Double Embedded Truss Anchor. The DETAL is a high capacity connector used to anchor single-ply wood trusses or rafters to masonry or concrete walls. The DETAL fastens to the wood members with 10dx 1'/2"nails. They are ...... embedded in the masonry or concrete wall to a depth of 4%2 inches. 'Che$trrap portibtf ••••:• of the anchor is 1%"wide. The strap anchors are manufactured from sfdel ibeetirk 0 0 '. ASTM A653 SS Grade 50, Class 1, and the truss seat is manufactured'HO steel ... •••• meeting ASTM A653 SS Grade 33. The strap anchors are 16 ga. steel gpythe sept jI ;••••; 18 ga. steel. The galvanized coating complies with the G90 requirembrdrg of AST ,,,• ..... A653. Embedded truss anchor fastener schedule, dimensions and allowable loads are. ..:..' shown in Table 3. See Figure 6 for additional details of the DETAL. -.0o.0 ••:• •••••• :06:0: 4.8 MSTAM, MSTCM Wood to Masonry Strap Tie. The MSTAM arid MSTCM $ ••••'• Tie models are used to provide a tension connection between wood rderrifsrs and a ....: masonry or concrete structure. The MSTAM Straps are 1'/"wide for Ab oA 1'/2"•and': • larger members. They are installed with 10d common nails to the wood and either• • W%"Titen Masonry Screws to masonry, or'/x13/"Titen Masonry Screws to concrete. The MSTCM Strap is 3"wide for use on doubled 2-by or single 4-by and larger members. They are installed with 16d sinker nails to the wood and either%x2%" Titen Masonry Screws to masonry, or'/x13/"Titen Masonry Screws to concrete. The MSTCM Strap has countersunk nail slots for a lower nailing profile and coined edges for safer handling. The straps are manufactured from steel meeting ASTM A653 SS Grade 50, Class 1, of a thickness as specified in Table 4. The galvanized coating complies with the G90 requirements of ASTM A653. Masonry strap fastener schedule, dimensions and allowable loads are shown in Table 4. See Figure 7 for additional . details of wood to masonry straps. 4.9 FGTR, FGTRE, FGTRHL, FGTRHR Face Mount Girder Tie Down. The FGTR is a non-pitch specific girder be down that can be used in new construction or retrofit applications to be down a girder truss or beam to a concrete or masonry wall. The Page 3 of 13 Simpson Strong-Tie FGTR can be installed in a single application or can be doubled to achieve a higher uplift capacity.The FGTR fastens to the truss with Simpson Strong-Tie SDS'/"wood screws, and fastens to the masonry or concrete wall with Simpson Strong-Tie Y2" diameter Titen HD fasteners,which are supplied with the connector. The FGTRE uses a strap that is oriented with its flat dimension parallel to the truss for placement at the end of walls when the truss is parallel to the wall. The FGTRHL and FGTRHR are designed with the flat dimension of the strap at a 45 degree angle to the truss for anchorage of hip trusses. The FGTR straps are manufactured from 7 gauge ASTM A- 1011 Grade 33 steel having Fy=33ksi and Fu=52ksi and the plates are made from 3 gauge ASTM A-1011 Grade 33 steel having Fy=33ksi and Fu=52ksi.They have a gray powder coat finish. Girder tie down fastener schedule, dimensions and allowable loads are shown in Table 5. See Figure 8 for additional details of face mount girder tie down connectors. 4.10 LGUM, HGUM Masonry Girder Hangers. LGUM and HGUM girder hangers are high capacity joist hangers that are used to connect wood girders and beams to masonry or concrete walls. The LGUM and HGUM use Simpson Strong-Tie Titen HD anchors to attach to the masonry or concrete wall, and Strong-Drive Screws (which are provided)to attach the beam to the hanger. To install the Titen HD anchors,drill holes of the same diameter as the anchor into the masonry or concrete. Holes should be°/Z" deeper than the specified Titen HD length. The SDS screws are installed best with a low-speed '/z"drill and a3/8" hex head driver. Predrilling holes for SDS screws is not required. The LGUM is manufactured from galvanized steel complying with ASTM A 653 SS Grade 40 with minimum yield and tensile strengths of 40 and 55 ksi(275 and 379 MPa), respectively. The HGUM is manufactured from galvanized steel complying with ASTM A 653 SS Grade 33 with minimum yield and tensile strengths of 33 and 45 ksi (228 and 310 MPa), respectively.The galvanized coating complies with the G90 requirements of ASTM A 653.The steel thicknesses are 0.099" (2.51 mm)for the.••"• LGUM, and 0.173"(4.39 mm)for the HGUM. Girder hanger fastener dimensions and allowable loads are shown in Table 6. See Figure 9 tgr.ggqitionztl•;••• ••�;• details of masonry girder hangers. • •.•• .... 5. MATERIALS • .... .... ..... ...... .... ..... 5.1 Steel. Steel specifications for each product listed in this evaluation report shuti-be ••••;• as indicated in the previous section. . . . . ...... 5.2 Wood. Wood members to which these connectors are fastened sbpfiltle solid• ;••••; sawn lumber,glued-laminated lumber, or structural composite lumber having •��• dimensions consistent with the connector dimensions shown in Tables1 through 6. Unless otherwise noted, lumber shall be Southern Pine or Douglas Fir-Larch having a minimum specific gravity of 0.50. Where indicated by SPF, lumber shall be Spruce- Pine-Fir having a minimum specific gravity of 0.42. 5.3 Nails and Bolts. Unless noted otherwise, nails shall be common nails. Nails shall comp)y with ASTM F 1667 and shall have the minimum bending yield strep ths Fyb: Common Nail Nail Shank Diameter Fyb (psi) Pennyweight inch 10d 0.148 90,000 16d sinker 0.148 90,000 16d 0.162 90,000 Fasteners for galvanized connectors in pressure-preservative treated wood shall be hot-dipped zinc coated galvanized steel with coating weights in accordance with ASTM A153. Fasteners for stainless steel connectors shall be stainless steel. Page 4 of 13 Simpson Strong-Tie 5.4 Concrete/Masonry. Concrete and Masonry design specifications shall be the stricter of the specifications by the engineer of record,the Florida Building Code minimum standards,the following,or as noted in the report: Material Specification Minimum Compressive Strength Concrete,f c - 2500 psi Masonry,f m ASTM E447 1500 psi Masonry Unit ASTM C90 1900 psi Mortar ASTM C270 Type S 1800 psi or by proportions Grout ASTM C476 2000 psi or by proportions 6. INSTALLATION Installation shall be in accordance with this report and the most recent edition of the Simpson Strong-Tie Wood Construction Connectors catalog. The Information in this report supersedes any conflicting information between information provided in this report and the catalogue. 7. SUBSTANTIATING DATA Test data submitted by Testing Engineers Inc. and Product Testing, Inc., and signed and sealed calculations performed by Jeremy Gilstrap, P.E., and Samuel Hensen, P.E., performed in accordance with the 2007 Florida and Residential Building Codes. Product Test Number Date Tested MTSM B845, H756 2/27/90, 12/6/00 HTSM 02-3667 1/30102 •••• HM9 Uplift 02-3793 5/15/02 **of ••••0• HM9 F1 Direction 02-3793 5/15/0200 0 00 0 HM9 F2 Direction 02-3793 5/15/02 :0000: •00 HGAM10 Uplift 02-3884 7/29/02 *ease* HGAM10 F1 Direction H046 3/25/99 • 0000. HGAM10 F2 Direction H141 6/22/99 META Uplift 02-3674, 02-3802, 6/4/02,6/8/02,7/24/02,27;/04 02-3861,04-4675 000000 META F1 02-3674,02-3802 6/4/02,6/8/02 a 0 000000 META F2 02-3 02-3802, 6/4/02 6/8/02 7/24/6? • 0 0 0 0 0•••• 02-3861861 , , 0 0 . . 02-3803, 02-3862, " ' HETA Uplift 044676 6/10/02,7/26/02,2/8/04 HETA F1 02-3803 6/10/02 HETA F2 02-3803,02-3862 6/10/02, 7/26/02, HHETA Uplift 02-3676, 02-3863, 6/4/02,7/29/02,2/7/04 04-4674 HHETA F1 02-3676 6/4/02 HHETA F2 02-3676, 02-3863 6/4/02,7/29/02 HETAL Uplift 02-3803, 02-3862, 6/10/02, 7/26/02,2/8/04 04-4676 HETAL F1 D793 3/17/94 Page 5 of 13 Simpson Strong-Tie Product Test Number Date Tested HETAL F2 D844 3/28/94 DETAL Uplift 0797 3/28/08 DETAL F1 0795, 0799 5/12/08, 3/27/08 DETAL F2 0796, 0798 6/05/08,3/28/08 LTA1 Uplift 02-3616 2/13/02 LTA1 F1 02-3616 2/13/02 LTA1 F2 02-3616 2/13/02 MSTAM24 Uplift 02-3795 5/17/02, 5/17/02 MSTAM36 Uplift 02-3795 5/17/02, 5/17/02 MSTCM40 Uplift 02-3796 5/31/02 MSTCM60 Uplift N471 1/26/07 FGTR.0 lift 04-5004, 04-5005 10/6/04, 10/6/04 FGTRE Uplift 04-5010 10/29/04 FGTRHUR Uplift 04-4915 10/13/04 LGUM Down M202,M 203, M204, 7/13/06,7/13/06, 7/13/06, 7/14/06, M222, M224 8/03/06 LGUM Uplift M211, M212, M213 8/18/06,8/18/06, 8/21/06 HGUM Down M207, M209,M216, 9/11/06, 9/11/06, 10/20/06, 10/20/06 M217 HGUM Uplift M729, M731 8/3/06, 8/04/06 8. FINDINGS Upon review of the data submitted by Simpson Strong-Tie, it is my opinion that the models as described in this report conform with or are a suitable alternative to the standards and sections in the 2007 Florida Building Code, Building, and the Florids•••• Building Code, Residential code editions listed in section 10 of this reporlr Vbject to•• ••••;• the limitations below. Maximum allowable loads shall not exceed the d1lbwlible Idac$ listed in this report. "'"' "" 000000 0000.. 9. LIMITATIONS: f••• �••• • 0000 0000 0000. 1. Maximum allowable loads shall not exceed the allowable loads listed ia'this repast. Allowable loads listed in this report are based on allowable stress4mign. The •• loads in this report are not applicable to Load and Resistance Faolor besign.;••�;• *ago:* 2. Capacity of wood members is not covered by this report. Capacity otwpod members must be checked by the building designer. 00 0 ' 3. Allowable loads for more than one direction for a single connection cannot be Sdded together. A design load that can be divided into components in the directions given must be evaluated as follows: Design Uplift/Allowable Uplift+ Design Lateral Parallel to Plate/Allowable Lateral Parallel to Plate+ Design Lateral Perp.to Plate/Allowable Lateral Perp.to Plate< 1.0 10. CODE REFERENCES Florida Building Code, Building 2007 Edition Section 104.11 Alternate Materials and Methods Chapter 1714.2 Load Test Procedure Specified Chapter 21 Masonry Chapter 22 Steel Chapter 23 Wood Page 6 of 13 Simpson Strong-Tie Florida Building Code, Residential 2007 Edition R101.2.1 Scope R4407 HVHZ Masonry R4408 HVHZ Steel R4409 HVHZ Wood 11.ALLOWABLE LOADS: The tables that follow reference the allowable loads for the aforementioned products. TABLE 1 ALLOWABLE LOADS AND FASTENERS FOR TRUSS TO MASONRY OR CONCRETE WALL CONNECTORS R 8 a w t� r l x• � wr s; i�.'���# }, * a �',��•Y•aa �C� 1aVO NEW u oriel en Ul �, Y fl§5100-10- 16&11�111hbldluojwlt Aw E k�X�" �, mak, rr,1 �. w� MTSM16 16 16 7-10d 4-'/4x2% 4-'/4xl% 875 755 MTSM20 16 20 7-10d 4-Y4X2% 4-'/4xl% 875 755 HTSM16 14 16 8-10d 4-'/4X2'/4 4-'/4x13/4 1175 1010 gI10- 0 4-' x 'a 4-' x 3 7 1210 18 - -S S' 1' % 2'/4 -'/4 13/4 80 90 14 - 4-SDS'/4X1'/2 4-'/4x2'/4 4-'/4x2% 850 850 e o u o r e s e p o e I a Code. Loads do not include a stress increase on the strength of the steel. No further increases are permitted. Reduce loads where other loads govern. 2. HM9 allowable F1 load shall be 635 lbs(DFUSYP)&545 lbs(SFP),and allowable F2 load shall be 200 lbs(DFUSYP)& 170 lbs(SPF). 04000 3. HGAM10 allowable F1 load shall be 1005 lbs(DFVSYP)&870 lbs(SFP),and allowable F2 load shall be 11054I1;s • (DFUSYP)&950 lbs(SPF). • • ••• •••••• 4. Allowable loads for the HGAM10 are for one connector. A minimum rafter thickness of 2 Ya"must%ustd when fr@fl>W •. anchors are installed on each side of the joist or truss. ••••• ••g• • ••• •• use thTiGAM10••angl2'••• •••• one each side i evio HGAM10•4, • •• .•••�• ti6� ••• • • n'x 4 Maisture beater O not shaven Figure 1 Figure 2 Figure 3 Typical MTSMM/HTSM Application Typical HM9 Installation Typical HGAM10 Installation Page 7 of 13 Simpson Strong-Tie r t FORM 405-10 FLORIDA ENERGY EFFICIENCY CODE FOR BUILDING CONSTRUCTION Florida Department of Business and Professional Regulation - Residential Performance Method Project Name: 1680 NE 104 ST Builder Name: Street: 1680 NE 104 STREET Permit Office: City,State,Zip: MIAMI,FL,33188- Permit Number: Owner. Jurisdiction: Design Location: FL,Miami 1. New construction or existing Existing(Projecte 9. Wall Types(2309.2 sqft.) Insulation Area 2. Single family or multiple family Single-family a.Concrete Block-Int Insul,Exterior R=4.2 2116.50 ft2 b.Frame-Steel,Adjacent R=4.2 192.67 ft2 3. Number of units,if multiple family 1 c.N/A R= ft 4. Number of Bedrooms 3 d.N/A R= fta 5. Is this a worst case? No 10.Ceiling Types (2600.0 sqft.) Insulation Area a.Under Attic(Vented) R=30.0 2600.00 f12 6. Conditioned floor area above grade(ft2) 2600 b.N/A R= ft2 Conditioned floor area below grade(ft2) 0 c.N/A R= ft2 11.Ducts R ft2 7. Windows(589.2 sqft.) Description Area a.Sup:Attic,Ret:Attic,AH:Garage 6 200 a. U-Factor: Sgl,U=1.00 589.16 ft2 SHGC: SHGC=0.50 b. U-Factor. N/A ft2 12.Cooling systems kBtu/hr Efficiency SHGC: a.Central Unit 61.0 SEER:15.00 C. U-Factor: N/A ft2 SHGC: 13.Heating systems kBtu/hr Efficiency d. U-Factor: N/A ft2 a.Electric Strip Heat 32.7 COPA.00 SHGC: Area Weighted Average Overhang Depth: 2.000 ft. Area Weighted Average SHGC: 0.500 14.Hot water systems .8. Floor Types (2600.0 sqft.) Insulation Area a.Natural Gas Cap:50 gallons a.Slab-On-Grade Edge Insulation R=0.0 2600.00 ft2 b. Conservation features EF:0.900 b.N/A R= ft2 None ••• c.N/A R= ft2 • • 15.Credits • • •••• PState••••• Total Proposed Modified Loads: 54.95 •• •• • Glass/Floor Area: 0.227 •••;•• P� � 0690:9 Total Standard Reference Loads: 73.30 •..... • ®,�®••tt OF I hereby certify that the me`�nti peoifi � red by Review of the plans and •••• O� 1, ST,f1, ••�,•• this calculation are in Tmp rgy specifications covered by this • • ti+ _ _ •• Code. • � ••'� Op calculation indicates compliance •• •• � ,,, r,. ' J with the Florida Energy Code. ••: rnr, •-., ;;;:� • PREPARED BY: •. ¢ Before construction is completed DATE: this building will be inspected for ARO()15 compliance with Section 553.908 " * • • I hereby certify that tht�tg,aOs des g�ie�:is pliance Florida Statutes. with the Florida Energy�P •.°••• ••• • LL Ofl WE t4� OWNER/AGENT: _. � ' AR�N\ BUILDING OFFICIAL: s�e -- --- --- -- - -- DATE: _- �`� ---_- - DATE: -_. - Compliance requires completion of a Florida Air Barrier and Insulation Inspection Checklist 8/7/2015 10:54 AM EnergyGauge®USA-FlaRes2010 Section 405.4.1 Compliant Software Page 1 of 5 PROJECT Title: 1680 NE 104 ST Bedrooms: 3 Address Type: Street Address Building Type: User Conditioned Area: 2600 Lot* Owner. Total Stories: 1 Block/SubDhAsion: #of Units: 1 Worst Case: No PlatBook: Builder Name: Rotate Angle: 0 Street: 1680 NE 104 STREET Permit Office: Cross Ventilation: County: Miami-Dade Jurisdiction: Whole House Fan: City,State,Zip: MIAMI, Family Type: Single-family FL, 33188- New/Existing: Existing(Projected) Comment: CLIMATE IECC Design Temp Int Design Temp Heating Design DailyTemp vDesign Location TMY Site Zone 97.5% 2.5% Winter Summer Degree Days Moisture Range FL,Miami FL MIAMI_INTL AP 1 51 90 70 75 149.5 56 Low BLOCKS Number Name Area Volume 1 Block1 2600 22100 SPACES Number Name Area Volume Kitchen Occupants Bedrooms. InfilID Finished Cooled Heated 1 Main 2600 22100 Yes 4 3 1 Yes Yes Yes FLOORS Floor Type Space Perimeter R-Value Area _ Tile Wood Carpet 1 Slab-On-Grade Edge Insulatio Main 251 ft 0 2600 fta M 1 0 0 ROOF ' . . .... ...... Roof Gable Roof Solar SA * •o imitt E�••Deck ••P•o• Type Materials Area Area Color Absor. Tested0•• Teste$ Insul. . (deg), •••• •••• • • 1 Hip Barrel tile 2680 ft' 0 ftp Medium 0.96 No'•:.•b.9 ON04••' 0 •••1a. ATTIC ' .. .. .... ...... . . . . ...... Type Ventilation Vent Ratio(1 in) Area RBS • IRCC; ••••• • • 1 Full attic Vented 300 2600 ftz N •• N• • ••• • ' CEILING f� Ceiling Type Space R-Value Area Framing Frac Truss Type__ 1 Under Attic(Vented) Main 30 2600 ftz 0.11 Wood 8/7/2015 10:54 AM EnergyGauge®USA-FlaRes2010 Section 405.4.1 Compliant Software Page 2 of 5 WALLS Adjacent Space Cavity Width Height Sheathing Framing' Solar Below -Omt --To-- Wall Type _-_- p_-_ R Value Et In Et In- Area R-Value Fraction Abgor Grade% _ 1 W Exterior Concrete Block-IM Insul Main 4.2 54 8 6 459.0 ft2 0 0.21 0 2 S Exterior Concrete Block-Int Insul Main 4.2 59 8 6 501.5 ft2 0 0.21 0 3 E Exterior Concrete Block-Int Insul Main 4.2 77 8 6 654.5 ft2 0 0.21 0 4 N Exterior Concrete Block-Int Insul Main 4.2 59 8 6 501.5 ftz 0 0.21 0 5 W Garage Frame-Steel Main 4.2 22 8 8 6 192.7 1`12 0 0.21 0 DOORS # Omt Door Type Space Storms U-Value_ FtWidthIn Ft Height igh In Area 1 W Wood Main None .46 72 80 40 112 2 E Wood Main None .46 36 80 20 ft2 WINDOWS Orientation shown is the entered,Proposed orientation. / Wall Overhang �/ # Omt ID Frame Panes NFRC U-Factor SHGC Area Depth Separation Int Shade Screening 1 W 1 Metal Single(Clear) Yes 1 0.5 92.0 ft2 2 ft 0 in 0 ft 8 in None None 2 S 2 Metal Single(Clear) Yes 1 0.5 26.8 1112 2 ft 0 in 0 ft 8 in None None 3 S 2 Metal Single(Clear) Yes 1 0.5 8.9 ft2 2 ft 0 in 0 ft 2 in None None 4 E 3 Metal Single(Clear) Yes 1 0.5 50.0 1112 2 ft 0 in 0 ft 8 in None None 5 E 3 Metal Single(Clear) Yes 1 0.5 10.0 ft2 2 it 0 in 0 it 8 in None None 6 E 3 Metal Single(Clear) Yes 1 0.5 300.0 ft2 2 ft 0 in 0 it 8 in None None 7 N 4 Metal Single(Clear) Yes 1 0.5 17.9 ft2 2 ft 0 in 0 ft 0 in None None 8 N 4 Metal Single(Clear) Yes 1 0.5 33.1 ft2 2 ft 0 in 0 ft 8 in None None 9 N 4 Metal Single(Clear) Yes 1 0.5 9.8 ft2 2 ft 0 in 0 it 8 in None None 10 N 4 Metal Single(Clear) Yes 1 0.5 23.2 ft2 2 it 0 in 0 ft 8 in 1%% None 11 S 2 Metal Single(Clear) Yes 1 0.5 17.5 f12 2 ft 0 in D it 8 ig `ycyte•` Afoee•• GARAGE ` # Floor Area Ceiling Area Exposed Wall Perimeter Avg.Walt Height __F,xposed Wal6lr1�lation ••••'• • • 1 564 ft2 564 ft2 71 it 8 ft `•••• • ` a ` - •••• •••• INFILTRATION ` .. .. .... .•.... • . . . • . . . ...... # Scope Method SLA CFM 50 EIA EgLA ACH • kCH 50 :••••• • - -- -r--r-r--- - ---saw 1 Wholehouse Best Guess .0005 3409.9 187.2 352.06 .345 •• 12577 .` V: ` ` 00 8/7/2015 10:54 AM EnergyGauge®USA-FlaRes2010 Section 405.4.1 Compliant Software Page 3 of 5 HEATING SYSTEM System Type Subtype Efficiency Capacity Block Ducts 1 Electric Strip Heat None COP:1 32.7 kBtu/hr 1 sys#1 COOLING SYSTEM # System Type Subtype Efficiency Capacity Air Flow SHR Block Duds 1 Central Unit None SEER:15 61 kBtu/hr 1830 cfm 0.75 1 sys#1 HOT WATER SYSTEM # System Type SubType Location EF Cap Use SetPnt Conservation _ 1 Natural Gas None Garage 0.9 50 gal 60 gal 120 deg None SOLAR HOT WATER SYSTEM FSEC Collector Storage Cert # Company Name System Model# Collector Model# Area Volume FEF None None ft2 DUCTS —Supply— —Return— Air CFM 25 CFM25 HVAC# V # Location R-Value Area Location Area Leakage Type Handler TOT OUT QN RLF Heat Cool 1 Attic 6 200 ft' Attic 100 ft' Default Leakage Garage (Default) (Default) 1 1 TEMPERATURES Programable Thermostat: Y Ceiling Fans: Cooling Jan Feb Mar Apr I I Venting Jan Feb X Mar �JC�Apr May Juy ri n Jul Aug Sep OctNov n ri Jul rl Aug n Sep W Oct X Nov DNov H ec Thermostat Schedule: HERS 2006 Reference Hours Schedule Type 1 2 3 4 5 6 7 8 9 10'w w ,?t �,Z w w• Cooling(WD) AM 78 78 78 78 78 78 78 78 'tT0 ' 80; „'wgp 80% • PM 80 80 78 78 78 78 78 78 w w796•• 78 ••••r:8 •JS w•• Cooling(WEH) AM 78 78 78 78 78 78 78 78 ••TBS•• 78 ' 78 PM 78 78 78 78 78 78 78 78 �7,%, 78 •o o w78 Heating(WD) AM 66 66 66 66 66 68 68 68 0 o"•- 68•"'X68 'd9900 Q'• PM 68 68 68 68 68 68 68 68 ..6.8 .. 68 ... lig w 0 w Heating(WEH) AM 66 66 66 66 66 68 68 68 •Ao•* 68••:w 68 0@000* PM 68 68 68 68 68 68 68 68 68 68 66 66 • • w w • • • • • • • • w 8/7/2015 10:54 AM EnergyGauge®USA-FlaRes2010 Section 405.4.1 Compliant Software Page 4 of 5 FORM 405-10 Florida Code Compliance Checklist Florida Department of Business and Professional Regulations Residential Whole Building Performance Method ADDRESS: 1680 NE 104 STREET PERMIT# MIAMI, FL, 33188- MANDATORY REQUIREMENTS SUMMARY-See individual code sections for full details. COMPONENT SECTION SUMMARY OF REQUIREMENT(S) CHECK i Air leakage 402.4 To be caulked, gasketed,weatherstripped or otherwise sealed. Recessed lighting IC-rated as meeting ASTM E 283. Windows and _ doors=0.30 cfm/sq.ft.Testing or visual inspection required. Fireplaces: gasketed doors&outdoor combustion air. Must complete envelope leakage report or visually verify Table 402.4.2. Thermostat& 03 i At least one thermostat shall be provided for each separate heating controls and cooling system.Where forced-air furnace is primary system, programmable thermostat is required. Heat pumps with supplemental electric heat must prevent supplemental heat when compressor can meet the load. Ducts 403.2.2 i A11 ducts, air handlers,filter boxes and building cavities which form the primary air containment passageways for air distribution systems shall be considered ducts or plenum chambers, shall be constructed and sealed in accordance with Section 503.2.7.2 of this code. 403.3.3 Building framing cavities shall not be used as supply ducts. Water heaters 403.4 Heat trap required for vertical pipe risers. Comply with efficiencies in••••' ••• • Table 403.4.3.2. Provide switch or clearly marked circuibbreaker •• (electric)or shutoff(gas). Circulating system pipes insttl&V to= •• ••'• `�••• • R-2+accessible manual OFF switch. •••••• ;•• • — -- .{ - .— Mechanical 403.5 Homes designed to operate at positive pressure or with�;gltanicar....• ... ventilation i ventilation systems shall not exceed the minimum ASHRA,E.62 level. ...!. ✓..: .• No make-up air from attics,crawlspaces, garages or owtdoar§adjaes4t. ! ... .. j to pools or spas. •••••• • Swimming Pools 403.9 Pool pumps and pool pump motors with a total horsepower AHP)of 1"'• &Spas HP shall have the capability of operating at two or moresloeeds. Spas ..j. :•• •: and heated pools must have vapor-retardant covers or a liquid coveror other means proven to reduce heat loss except if 70%of heat from ✓ site-recovered energy. Off/timer switch required. Gas heaters minimum thermal efficiency=78% (82%after 4/16/13). Heat pump pool heaters minimum COP=4.0. Cooling/heating 403.6 Sizing calculation performed&attached. Minimum efficiencies per Tables 503.2.3. Equipment efficiency verification required. Special equipment occasion cooling or heating capacity requires separate system or variable capacity system. Electric heat>10kW must be divided into two or more stages. Ceilings/knee walls 405.2.1 R-19 space permitting. ✓ 8/7/2015 10:54 AM EnergyGauge®USA-FlaRes2010 Section 405.4.1 Compliant Software Page 5 of 5 ENERGY PERFORMANCE LEVEL (EPL) DISPLAY CARD ESTIMATED ENERGY PERFORMANCE INDEX* = 75 The lower the EnergyPerformance Index,the more efficient the home. 1680 NE 104 STREET, MIAMI, FL, 33188- 1. 3188-1. New construction or existing Existing(Projecte 9. Wall Types Insulation Area 2. Single family or multiple family Single-family a.Concrete Block-Int Insul,Exterior R=4.2 2116.50 ft2 b.Frame-Steel,Adjacent R=4.2 192.67 ft2 3. Number of units,if multiple family 1 c.N/A R= ft2 4. Number of Bedrooms 3 d.NIA R= ft2 10.Ceiling Types Insulation Area 5. Is this a worst case? No a.Under Attic(Vented) R=30.0 2600.00 ft2 6. Conditioned floor area(ft2) 2600 b.N/A R= ft2 7. Windows- Description Area 11.Ducts R R ft2 a. U-Factor Sgt,U=1.00 589.16 ft2 SHGC: SHGC=0.50 a.Sup:Attic,Ret:Attic,AH:Garage 6 200 b. U-Factor: N/A ft2 SHGC: 12.Cooling systems kBtu/hr Efficiency c. U-Factor. N/A ft2 a.Central Unit 61.0 SEER:15.00 SHGC: d. U-Factor: N/A ft2 13.Heating systems kBtu/hr Efficiency SHGC: a.Electric Strip Heat 32.7 COP:1.00 Area Weighted Average Overhang Depth: 2.000 ft. Area Weighted Average SHGC: 0.500 8. Floor Types Insulation Area 14.Hot water systems a.Natural Gas Cap:50 gallons a.Slab-On-Grade Edge Insulation R=0.0 2600.00 ft2 •••• EF:0.9 b.N/A R= ft2 • • b. Conservation features • • 0000 •••••• c.N/A R= ft • • •None • • •• • •• • 0 0 15.Credits •••:•• Pstat•••••• •••••• •••• •••• • • •••• •••• ••••• I certify that this home has complied with the Florida Energy Efficiency Code for Building •••••• T ••:•- Construction through the above energy saving features which will be installed (or exceeded) •• •• '�r� •••• in this home before final inspection. Otherwise, a e PL Display Card will be completed y ,,''''�• _,�-,•�� •, based on installed Code compliant features. - " ;,.�" 7 •• Builder Signature: Date: 7 -1 •• ca •• a • Address of New Home: City/FL Zip: - -- --- - --- - WE�.� *Note: This is not a Building Energy Rating. If your Index is below 70, your home may qualify for energy efficient mortgage(EEM)incentives if you obtain a Florida EnergyGauge Rating. Contact the EnergyGauge Hotline at(321) 638-1492 or see the EnergyGauge web site at energygauge.com for information and a list of certified Raters. For information about the Florida Building Code, Energy Conservation, contact the Florida Building Commission's • support staff. ""Label required by Section 303.1.3 of the Florida Building Code, Energy Conservation, if not DEFAULT. EnergyGauge®USA-FlaRes2010 Section 405.4.1 Compliant Software Residential System Sizing Calculation Summary Project Title: 1680 NE 104 STREET 1680 NE 104 ST MIAMI, FL 33188- 8/7/2015 Location for weather data: Miami, FL -Defaults: Latitude(25.82) Altitude(7 ft.) Temp Range(L) Humidity data: Interior RH 50% Outdoor wet bulb 77F Humidity difference 58 r. Winter design temperature(MJ8 99%) 50 F Summer design temperature(MJ8 99%) 90 F Winter setpoint 70 F Summer setpoint 75 F Winter temperature difference 20 F Summer temperature difference 15 F Total heating load calculation 31732 Btuh Total cooling load calculation 56401 Btuh Submitted heating capacity % of calc Btuh Submitted cooling capacity %of calc Btuh Total (Electric Strip Heat) 103.0 32700 Sensible(SHR=0.75) 97.6 45750 Latent 159.9 15250 Total 108.2 61000 WINTER CALCULATIONS Winter Heatin Load for 2600 sqft) Duc[s(7%) Load component Load Window total 589 sqft 11783 Btuh Infil.(,C%) Wall total 1660 sqft 5081 Btuh Wndowrs(37%) Door total 60 sqft 552 Btuh Doo-(2%) Ceiling total 2600 sqft 1656 Btuh Floor total 2600 sqft 5924 Btuh Infiltration 203 cfm 4472 Btuh Duct loss 2264 Btuh Floors(,s%) Subtotal 31732 Btuh ••• cenings(s%� • Ventilation 0 cfm 0 Btuh • ��„• •••••• Walls(,6%) • • TOTAL HEAT LOSS 31732 Btuh 0000•. 0000 0000.. SUMMER CALCULATIONS 0.0:00 .0000. Summer Cooling Load(for 2600sqft) 0090 0000 Load component Load 0000 +••• ••••• Window total 589 sqft 30846 Btuh •••••• :000••+ •• ••+ _ Wall total 1660 sqft 3811 Btuh 0 Door total 60 sqft 828 Btuh ;•';•; •• Ceiling total 2600 sqft 2401 Stuh latentir>ternal(a%) • • 0• •0 ••••+• Int.Gain(8%) Floor total 0 Btuh Infiltration 152 cfm 2516 Btuh Duotsc6%) 0' ;'; • • Internal gain 4320 Btuh • • Duct gain 2144 Btuh Sens.Ventilation 0 cfm 0 Btuh Blower Load 0 Btuh Windows(55%) Total sensible gain 46866 Btuh Latent gain(ducts) 1022 Btuh Doors(, Latent gain(infiltration) 6013 Btuh Wa11s(7%) Latent gain(ventilation) 0 Btuh ceilings('%) Latent gain(internal/occupants/other) 2500 Btuh Total latent gain 9535 Btuh TOTAL HEAT GAIN 56401 Btuh . EnergyGaugeOiz pASM&-,PEREZ,KILIDDJIAN AND ASS( 8th Edition PREPARED BY: 1300 N.W,84 AVE 10DATE: BORAL,FL EnergyGauge®/USRFZB v3.1 +� VII I N: TO AT, P:E. Av 15121 LsiW-in Creels:T;ane, am d Roustonr TX 7706&3831 I`EV. 2t1-444-911 , Fax. 28X4444!$.4 Small: vtotafQskcg�bbaT.tt$tt _ pate 1 ENGINEER'S EVALUATION REPORT#NU0413 FLS l!v 2 CATEGORY: Structural Components G SUB CATEGORY: Metal Connectors REPORT HOLDER: NuVue Industries Inc;: 1055 E.29"'Street,: Hialeah, FL.33013 www:nu-vueindustries.com nuvue@bellsouth.net Phone:305-694-0397 Fax: 305-694-0398 1.0 EVALUATION SCOPE: Compliance with 201.0 Florida Building Code-Building and Residential 2.0 PRODUCT.DESCRIPTION: :: loll Refer to tables. I through 21 of this report for Product name,size,size and number.of fasteners,:fastening details shown in the diagrams and the allowable loads. • • loll loll.. 3.0 STRUCTURAL SPECIFICATION : •• •• . . loll.. loll loll.. .loos. • 1. Steel shall conform to ASTM A6530 SS grade 333 min.yield 33 ksi,nan,tensile loll ;l o l l strength 45 ksi and min.gajvanized coating:of G 60 per ATM A653.'....' •... • 2. Allowable.loads and fasteners are based on NDS 2005. 00:00: •••• •loll' 3. Design loads are for S.Pine,specific gravity 0.55.Design loads for ofh'er s)ecies'••• ••••;• shall be adjusted per NDS 2005. '. • loll.. 4. Allowable uplift loads have been adjusted for load duration factor CIS of 1.6. o"••• Allowable i-J vloads`have:been.ad'usted for CD values of 1,0, l.:15�trid .25 .••• - . table 2.3.2 of NDS 2005..Design loads do not include 33%increase for steel and •• • concrete) 5. Concrete in Tie beams shall.'bee min.of.2500 psi: Concrete Masonry,'Grout and mortar in concrete masonry shall be min.of 1500 psi.Concrete masonry shall comply with ASTM:C90. 6. Combined load of Uplift,Ll and L2 shall satisfy the following:equation: Actual Uplift. + Actual Ll: + Actual L2 <=1.0 Allowable Uplift Allowable L1 Allowable. L2 i� 1 1 Page 2 U. INSTALLATION s Installation.shall be in accordance.with hrs report and the latest edition of Nu-Vue Industries Catalog.The information in this report supercedes any conflicting information in the catalog.. € 5.0 EVIDENCE SUBMITTED Test reports submitted by Product.testing Inc,(PT) Atec Associates Tuc(Atcc) and PSI Inc and signed and sealed calculations in conformance with FBC 2010 by Vip n N.Tolat,P;E, Product Test#/Test lab Date tested Tested NVTA/NVTAS 02-39381PT 8/6/02 NVTA/NVTAS 02-4073/PT l ll6/02 NVTAINVTAS 02-4074/PT 11/6/02 NVTA/NVTAS 02-4075/PT 11/6/02 NVTA/NVTAS 31,22456.0002/ATEC 7/6102 NVBH 24 02-4096/PT 12/3/02 NVUH 26 02-4095/PT 1/17/03 NVRT 03-4177/PT 2/3/03 NVRT 034202/PT 2119/03 NVRT 03/4270,4271/PT 3/27/03 NVTHWTHS O4-46981PT 15/04-::::- 4/• ...... t NVSNP3 03-4482/PT '••'9:15/01 .. .• NV358 03/4543/PT 00414Y19/0.19:0.0 " ....: NV458 034.590/PTT 'T/31/ 3 • NVHCUR 03-4625/PT 1/21/04"''. :0000. NVSTA/NVHTA, 04-4641,4642/PT =&3122/0i.... ..;..' NVJH24,26,25 03-4385,86,87/P3' ••••x/30143• ...... NVS0236 .03-4349,57,58/P'T 5/l3;1MV,3/20/03 •' NVTP4 034303,44/PT •4/21;5/1/0;...:. •••••• NVTP4H 03-4345,43/PT 50,5/5/03 . ... •••• NVHC43,43/2, 70-02-94-00381/ATEC 11/27/ 5.' AB5 05-5195,95A/PT 2115/08 AB7 05-5196,96A/PT 2/15/08 NVHC37 03697.000.1/A:TEC 11/27/96 IKE1 05-561.2/11T 3/20/06 IKE2. 06-5622/PT 5/1/06 NVTHJ26 04-4995/PT&138-96013-01/PST 1/31/05&217/89 NVTH728 04-4996/PT& 138-96013-05/PSI 1/31/05&12/2/89 y E Page 3 6.0 DESIGN:. 1 Maximum allowableloads:shall not exceed the allowable loads listed in,this report.Allowable loads are based on allowable.stress design per ND.S. 2. Capacity of wood members is not covered by this:report.Allowable loads shall not exceed the capacity of wood members.Capacity of wood members shall be checked by Engineer/Architect of record. 3.Wood members with which the connectors are.used must-be nominal dimension. lumber or approved structural composite.lumber. 7.0 CODITIONS OF USE: 1. NuVue Industries metal structural connectors described in this report comply with or are suitable alternative to what is specified in section 1.4 of this report. 2. Design loads must be less than the allowable loads shown in all the tables of this report. 3. The connectors must be manufactured,identified and installed in accordance: with this report and the manufacturer's instructions. 4. Products covered by this report are manufactured by NuVue:industries Inc in Hialeah,Florida under a quality control program with inspections by NANII Inc having State of Florida license#QUA.1789. 0000 0000 00.000 -• . . 14. TO Ir> ....•• •.:.. 0 0 0 0 • . Vipm N.Tolat,,P.E. .`J�Q.•''G ,. J, •,, 0 0 0 0.. • ,, ,• GF.N Sw•.•• �..5 0000 0000. 0000.. Florida P.E.#12847' c • 4/15/201300 •••• •••• ••�••• No.1284 :-ir: 0000. ' • •• •0 *see 0 •0000• vnt/nu0413 ; AT OF �' y •• �I�JCS• •� \ 10 •• �`r. ••• •0000• } 3 Page 4 TABLE Truss Anchors NVTA and. Riveted Truss Anchors with Seat NVTAS 14 G Straps, 20. G Seats 1" Perpendicular- to erpendicularto wail Length Product g £ode 0 16_ NVTA-16 NVTAS 212 18' NVTA-18 NVTAS 214 . 20 NVTA-20 NVTAS 216 H .. MIN 4" 22 NVTA-22 NVTAS 218 EMB. Parallel L1 to wall 24 NVTA-24 NVTAS 220 NVTAS 1" Concrete Tie Beam or Tie Beam formed 26 NVTA-26 NVTAS 222. 1" with concrete filled masonry 28 NVTA-28 NVTAS 224 30 NVTA-30 NVTAS 226 " 36 NVTA-36 NVTAS 232 " Q " 48 NVTA-48 NVTAS 244 1 H 0 MIN 0 4".. IAB. •: NV 17A •• Maximum Allowabie� Load lbs •••... Nolen"U1d {" ...... No; of NVTA.4VTAS .... Fasteners Uplift Uplift L1. Single L2 Single .. , , each strap Single. Double & Doubi & Double "'• •••• •• •. 10d Strap Straps Straps Straps ..:..' Na, of Maximum Allow. b dad t • 5 757 1514 250 500 Fasteners Uplift Uplift 1 Wigle L2 Single .' each .strap Sin le Double Qouble.& DouW 6: 805 1610 250 500 9 10d x 1.5 Strap Straps .Straps.. . %tdllf • ,.: 7 854 1708 250 500 ...... 5 1032 22,36 250, 600:0: • ' 8 902 *1804 250 .500 • 6 1127 1 2254 385 565 9 951 01902 250 500 7- 1136 2.272 520 630 10. 999 *1998 250 500 8 114444 *2288 520 630 11 1048 *2096 250.. 500 9 1153 *2306 520 630 12: 1096: *21922 250 500 13 1145 *2290 250 500 10 1161 *2322 520 630 11 1170 *2340 520 630 ? 14 1193 *2290 250 500 12 1178 *2356 520 630 *Note: For 8 or more nails per strap, use double truss for double straps. 13 1187 *237.4. 520 630 For all Loads Cp=1.6 5 • i Page 5 TABLE 2 TABLE 3 NVBH 24 BUTTERFLY HANGER NVUH 26 JOIST HANGER FAS7ENER ALLOWABLE. FASTENER' ALLOWABLE W =W SCHEDULE LOADS (tbs.) SCHEDULE LOADS (lbs.) :2o N a$ a= DOWNWARD 2 o� Q =•+ DOWNWARD WIND GRAVITY Wind o:. 0 0:(00 GRAVITY UPLIFT. ao aO LOADS Uplift Load n W LOADS LOAD x Coffi1.0 CO-1.6 _ -'$ Co=1.0 CO-1.6 j2xjNVBH24 18� 12 6 1113 364 2x6 NVUH26 14 20 10 2233 1213 Notes: Notes: 1. Values are based on 1 " header and Joist 1. Values are based,an 3 header thickness and thickness. 1. Joist thickness. x 2. Can only be used in Non—HVHZ. UPLIFT LOAD UPLIFT LOAD - g • ,. .••• 0*00 ...... 0 ' 0000•• 0000 0 0.000• DOWNWARD LOAD 000000 0 0 0000•• OOWNWARD'LOAL�•••' �••••� • 9. - 0000 66900 ••6•a• • •006 66 •• 00 ' 90.0 ••9*•• 0 • 2f. Voes: • • • ,6 .. _ �:..... e. - • � I R3r gao0 2b • 5i.b v lot 2 1Ir Iz 1 :. Page 6 TABLE 4 NVRT -- Flat and Twisted Rafter. Ties 1"x14 G, . N.VRT Wood to Wood " 164 Fasteners Maximum Uplift Load (lbs) Length Product Gauge TOTAL In . ' Flat Ties Twisted .Ties (i ). Codemem er• s s t 12 NVRT-12 14 6 3 588 588 8< 4 725 724 16 NVRT—96. 14 10 5 861 860 18 NVRT 18- .:: 14 12 5 998 996 14 7 1135- 1132 20 NVRI-26 14 NVRT Wood to Concrete tk 22 tvvRT-22 14 No. of 16d�*oils No. of " diameter Maximum 'Uplift 24 NVRT-24 14 -to Wood Framing Topcons to Concrete Load (lbs) 30 NVRT-30 14 3 3 588 a 36 NVRT.--36 14 4 4 722 5 4 856 48 NVRT-48 14 {. 5 991 . ^ Notes: 7 5 1125. 1. Specify "F" for Flat and "T" for. Twisted when Do not. 41.0000 ordering: _~ Use hoiW 6 0 ••• •.. .• s e 46d • N - sees• sees ' 2. fcatener values are based on a minimum • .thick woad members. O 1• e..•, " sees**e . Tapcons a e.e.• 3. ; Indicates no. of nails in each connected 1 " o • ' 'e • • wood member. " O �•�r•• •e•• Geese Q 1 �' Yl000 POGO 00:00' 4. ITW topcons shall be embedded Q.minimum of a 14 c ° 1 0 0 , 0� o. •••:•• 1 ".into concrete tislieam or Eiebeam formed. o •. • with concrete filled masonry: ITW,topcons shall o' ' • • • " :. '••• have.a'inky. edge distance of 2j" and minimum. NVRT Anchor , . staggered. spacing of 3/4" os.shown, Holes dio, T6" 0000 ••e : • s•. 0*see0 5. Use only in. Non—HVHZ. •• • UPLIFT 6. For Uplift foods Cpa1,6 1 • to e e e a s s LENGTH FLAT HALF HALF x Connected Connected to truss, to wap I 2�'.fain. edge distance LENGTH TVASTED lie Beath formed with concrete filled mosonary or concrete tie :loom 9 i t .. Page 7 TABLE 5 Truss Anchors NVTH % x14G Seat 18G H No-. of Maximum lipiift Loads (lbs)_ Maximum Lateral Loads (lbs Length Product g Code Fasteners Single Strap Double Straps Single Strap Double Strop (in) in each Strap on on. 12 NVTI h=16 .NVTHS 212 10d x 1.5" Single Truss Double Truss L1 I L2 L1 L2 1.4 NVT14-18 NVTHS 2141 5 1032 2064 560 525 1120 1050 16- NVTH-20 NVTHS. 216 6 1222 2444. .671 630 1342 1.260 18 NVTH-22 NVTHS 218 7 1275 . 2550: 783 735 1566 1470 20 NVTH-24 NVTHS 220 8 1329_ 2658 783 735 1.566 1470_ 22 NVTH-26 NVTHS 222 9 1383 . 2766 783 735 1566 1470 24 N.VTH-28 NVTHS 224 10 1:437 2874 783. X735 1566 1470 26 NVTH-30 NVTHS 226 11 1490 2986 783 735 1566 .1470 32 NVTH-36 NVTHS 232 12. 1544 3088 783 735 1566 1470 44 NVTH-48. NVTHS 24 13 1598 3196 783 735 1566 1470 C)=.1.6 for Uplift and Lateral loads. 1Y4 _14k tt 9999 • 9999 •••••• • 21�+' .. o slot 0.2wx Y Ei Doe* •9090• • j • • • •• • •0• X9999 H •9.9 o • I00 0000* N, 4MIN. 4•" Holes Dia. • • •••••• •••• • p . • EMB. EMB. • • • •• .. � • . 999.9. NVTHS �" 1Jgp .:...•• NVTH h1VTN,:NVT1TS ;....; 3 i i Double Strap Single Strap Double Truss: Q Single: Truss I Concrete Tie Beam Concrete Tie Beam or Tie Beam formed or Tie Beam formed with concrete filled with concrete filled masonry masonry Y . Page 8 TABLE 6 — SKEWED NAIL PLATE - Product. Steel Fastener.- 3FAllowable Loads Ibs Code Gauge Schedule •. { Each End Gravity V ift i Or' 'IV NVSNP3 18 (6)8d x.I 594 394 §�• 314"` F!eax For Uplift, -use two NVSNP3, one at top chord and1.one at bottom chord of the supporting' and supportedTrusses in:compliance. with, section. 2321:7 of the FBC. os ;CD=1.0-G.rovity CD=1.6—Uplift Su porting Tune. 0 13l;&bottati0 I1" 0 SY' 0 �P 0 'Xe 1Y� -97 fi �f4 &bottom chord Hole pattem is Hates ti. mirror Image of the W oppsite side NVSNP3 Installation 14 G Straps NV358/NV458 TABLE 7 _ NV358-2 Ply Seat TABLE 8 — NV458-3 Ply Seat Assembly 14G Strap Dimension Total No. Total No. Allowable Total No. Total No. Allowable Product. Product H of Fasteners of Fasteners Leads (Ibs) of. Fasteners of Fasteners Logd3'(bs) in 2 Strops in Seat in 2'Straps In Seat Code Code {inches) f0d x 3" 10d x 3" uplift a L2 10d x 3" 10d x J;' wift •i t t.2 • • 12 NVTHiB 12 8 8 2245 1961 1839 $ 8 000: •2245 21V$3, 2078 ••••i• —14 NVTH18 14 •••• 10 'a 2325 2206 208& 10 8 •2$25 3131. 2338. • r 16 NVTH2O 18 •••••�.: 14 e' 2808 2452 2298 12 130 •2808 est &397' • • 20 NVTH24 20' ••••• 14 8 3088- 2697 2528 14 B 3088 2857 • • 22. NVTH28. 22 •e••• 16 $ 3387 '2942 2755 16 8 • X3367. *Jr,,3117 .... •• 24 NVTH28 24 CDm1.,6 for Uplift, L1 & L2: °••••• • - 26 NVTH30 28` 1Y• i 0 i • • • -32 NVTH38, 32. y�. • ••••• • • • 44 NVTH48 44 • • ••• ••••'� 8, 4,b"%V458 0 • • G 21f2ir• tYs" tYa� 2: 0 13s- : p HZ�NV3!! 2 i+y aeet HY358 Sib:NY458 3 ply Seat NY43e a H Hous Dtais Side New • • 14(S NVTH air 4 • L2 ► sv,t o.Ofi x ew 1 nib. Holes. s Ota die:. 2V "-•+Cud y,. Concrete lie Be •:ts. 1T8 88am am formed :,• with Concrete flied 1' Mogwiry. - 214: ,rt. Holes:Dia %7 1 L4 180 Seat Detail 4. j { Page 9 TABLE�; HURRICANE CLIPS ProductDesai tion Gauge Fasteners tOd x tYi Allow bie ood (lbs)1 Code p ileada U' L2: M= HUMCNW qup WOO 1. is 6 8 lS28' 253 333 Ml1.4JR Mom CUP-.UTT 1$:.. 8 8:.. 525 2g,y+' 333 For Uplift, usa two clips.one.on each side to cdmply with,section 2321.7 of the FBC s Cp=1:6 for Uplift: Lt & :L2. r' Tip:elnre ��"• • • aP61r1' dwtl halo d1e-a 17A• NVHI�. NVHCR �. 2_,*„vim. a♦tram • Cross-Section • t� 0--- TABLE 10 TABLE 11 140 NViH.Straps NMA/NVHTA NVSTA-S1.n9le Strap NVHTA-Double Straps Assembly 14G Strap.Dimension Total No. Total No. Of Allowable Loads (lbs) Total No. Total No. of Allowable Loads (lbs) Product Product H of Fasteners Fasteners inF'c•*2'a00 Pal of Fasteners Fasteners:b1 f ca250D Psi Unless Noted 9" Code Code (inches) to Strap 20 GA.-Seat in two S s 20 GA. Seat . NVSTA-t2+1 10d x .U2 10d x il¢" U L2 10d x 1I 10d x OrUPM R a L2 WMTA-124 6 13118. 700 10".. to 8 1772 Za78 1080 1490 NVSTA-14N NY1Hi8 14 6 6 1428 . 760 1144. 12 B 9011{ 2338 1 {831 ••••:• NVHTkr14H Z G. 1548 82I' i239 14 8. 8 2598 ISO 1812 • MMTA 18CH NViH2O t8 8 .6 1684 887 1335 i8 8 OZ4 2856 MMW 1994 ••••i• NVSTA-20H Nyi m+ 20 a 8 1783 P.40 1130 1s 8 e2si8� 3N7 1$a¢ 2175 • • NNHTA-2M •••••• F "�A:� R m28 22 " C -t.6 for Uplift, Ll 8c L2. }�• •••••• ••••• • • I H' •• • 0090• tJVSTA-2411 _ NVHTA-24H NVIki28 24 *0000 ��•yy 9+� ••i••• N1�AITA--� UM30 26, � O ° rr •• °•�i a�,� •••••• t NySTA-32H Ny11i38 32 • �+"'13��{ ° •• NVHTA-32H • N HTA� NViH48 44 0 x, • • �r, •9••9• • • • • • •• 0000•• O • • j,� Hotae Ota ♦ • - swe View 0 20 GA.Seat '14G-NVIH w 1Y�" tY4h hYi". 20a sat H H • . fl 4 Min. 4•�' 91ot 0203.74 1` Co wrete,. UPLIFT. tnn •a ConcreteT PM {Bo 4At L2 Em6edmenA 1 NYHTA lei 1r" •/' 1 • 44H NYSTA 12EL 44H Retntoiced Conerete Retntaroed Comete tis..bean W. �— nils beam.Min.2 taro a<rsG�orced T* sten crarced a Li Caicrete.black:ira9 Li - f Page 10 TABLE 1-2 JOIST SUPPORTS 18-G.. NVJH JOIST SUPPORTS Allowable Load$ (Ibe) . Double Stngle _ Fastens$ Qvft Lowy 10ax tlptxC t•dd•ttxrz t Product .. Jots Head$r Haadac ° Code. YY: 10, H 6S S12° Size Size Jost$ x�ar x • NVJH24 1 3�.. 3 Zx4 2-2x4. 2x4 . '8-10d 8-1od x 17 d—ttltl:x ifs 744 744. 4930 2x8 2-2x6 24 wx8 2-2x6 .2x8 FIVJ1128 1: 3 2x8 2-2x6 2x8 10-10d ts-ia x W 6-toe x W1240 1240 821 24 2-2x8 2x8 NVJIi28 1 .8% 3 2x10 2-2x102x10 14-184 t4-/0e x. 7-tod x W 1738 1736 1079 2x12 2-2xl2 242 F U$C only in .non-HVHZ Singie Header 1-2X1 Oauble Hadar .: . . 1) • 0000 0000•°• t o • P:. H n . • �..�••° °• o • � • • •`- 0000 0000.• ° t NVJH 28 ds shown o• • : • •. • • .�•• NVJH 24 do 28 joist o •• •••° • • slmflar but with BS different holes °• ° °.•..° .•.•.• •...e° 0000 0000• W+ 0000.. ;. TABLE 13IF .. 0000 }' NVSO 236, 16 GAUGE, HEAVY DUTY •' i` FACE MOUNT JOIST HANGER Fosteners Ailowabia Loads (Lbs.) Joist Header fJtAY1TY U.11ft Size Size Header Joist P CS=1.0 C0=1.6 14-10d e-1od 1758 1108 2-2x8. 2x8-8 2-2xI0 14-16d sled 1875 1279 2-242 fi 8-1ed 808 1217 Header 2-2X Mtrdmum Y t 1�• 01 e o. 0 4 Q ° a • 3$(i 1!�• .bleu 1-2x Minimum. BOLT HOLES 1/2" DIA. NAIL HOLE 3/1W DIA. I i PQge 11 TABLE 14 TOP PLATE ANCHORS 1 N..VTP &: N.VTPH A Slze. Product Gauge Dimensions (in) Code A e 2x4/4x4NVTP4 20 31' g• 2x8/4x8 NVIPB 26 5 $" o 2xif/4x8 NVTP8 20 7 gc4/4x4 NVTP4N is stud ° 2x$/4x8 HViP6H 18 5r 6+ o o min. 2x4 e 2x$/4x8 NViPBH Is- 78I 8q q o °. g O • Total number of fasteners o ° 10dxIr ° 0 Pr odd ct MM Uplift Capacity (Ibs) ° ° 0 8 8 10 12 °. NViP4,6,8 828 1087 ': 1346 1608 NViP 4HAK811 938. 1207 1476 1745 - •••• Notes ••• sees ••••�° 1. One half of all specified fasteners shall be used on 1"� • • •• • .:i •; �� sees•• sees *sees* each side of the stud to achieve tabulated values. - • 2. C0=1.6 for Uplift.' ` , •e••oe • i••••i ••s• goes • • •goo sees ••e•• TABLE 15 18 Gouge NVHC 43 & NVHC 43/2 HURRICANE CLiP." •• ••.e ....0. •so••• . • FASTENERS DESIGN LOADS(LBS) • PRODUCT • • •DESCRIPi1ON i•••i• •°°••• CODE • • • • • HEADER JOIST uPUFT a L2 • • • ***so: NVHC 43 Hwrkme go tibio 9-10d 9-10d .687* 407 308 •••e NVHC 43/2 Nwilewe Clip- wtdex2 10-104_ 10-10d 917 547 432 'For Uplift, use two dips, one on each side to comply with.section.2321.7 of the FBC G:. Co=1.6 for Uplift, L1 & L2. Wt. 3Y4~ y„ i1 i 4 a a a ' M a r� 34a 2 Y4 I t I � •: 1-2XtTL�Nftda) UPLIFT UPLIFT 2= 3'Wide NWC .43/2 � NVHC 43 use:.2 des L2' NVHC43 L2 am an eod►aide Li Li a _ I 1 Page 12 1 , 18 Gouge.Angle_ Table .9 6.. Product Dimereione{tnolieaj FaMener Stiusdule. :: Afforable Loads{lbs) Cods W1 W2 L Header Jett F1 F2 A85 •1Xt" 23Ps 5 3--10dx17¢" 3-10dxl)r .311 599 AW 1)` 23(e 7 4-10dx W 4-10dxllr 392 794 Notes: NOU widen ongleF2 tag to Joist and SFrort� leg to Header. CD 1,6 for Ft &0 P: • F1 W2: W1. 0000 0000 0000•0 c 0 • • • 9 • ••• 0000 000000 4 O L • • L •6904• Q 0 • ••• 0•06 • • a F2 • • • - �• 0099 •04•• 6964 ..99 •..•. 0 AB_5 •• •• ...• . .0.000 Typical Instaito'1i6n'Ft: • 6• AB-7 • • • • 0••6•• �,.:,..:. _ •6.66• • • 4 • • ii • • • •9.04• l:. 18 Gauge NVHC '37 SWAY Crm�t`opc��ni •• • • ••• • • Table 17 NO Schedule ARowoble Design Loods(Dbs): Meoder Jotet Product Code Desaripiion or Plate or Stud UPS L1 l2 PIP - 18-8d or 12-8d or MC 37 SWay Clip. 16-1Ud 12—tOd' 710 560. 730 CO = 1.6 for uplift, Lt &• L2 v tjfe! Ec"''.. upufT f�+ ' IV UPLIFT' • . . �. Lt • • Lt 4` I 3 K . Page 13 jtUge NVfHJ Tmas Hip & Jack Hanger Table: 18 Ado.*s toads(ft S. Nan Schede Product nP crogy Itsom wp NN1 1'Od Jack Nd 1Od k •Code r low' 115% 125X. WIS 16d o b 'tCtCl C d toEot N ami 147E 2444 2444 240-, /6 4 3: y 2 3 5 W" 1931 = 3333 .3333 2fl 8 4 9:. 2 3 Nota: For 1-2x membom 1 Qdxl)" i tiffs can be used. 201; Stud Plate lies- Left e Riot a Table 1'9 r;: _c— 4tremk�mn(Meh6sj Featen°m4 • � • Pmdsot • d— �� __a Code W H L. Stud Plots •w 11.i..L7001. •••.i• IKE 1 Ir S, 3>g' 6-10d 1—�0� •�7 337 337 i•...i y Jock W2 IX' 6W 4r S-10d 7= 4J1 ob' • •� •..•• 1-2x CD 1.6 for uplift, L40 1&41 KOO • URff • • • 1> •.•.•• • . • N •• ,. I. ° °• ! ' NYIFW-28 as shop► •. DNIFU�26 s4talor -rf N/ i P9. • .T�. O(E—I03 L—.)T �-�,� . ' (won)' r ,�P ��° 03/18 L •�. e' Type H °° °• Timm MI W w x Hoodw 2—ZX -NI Wnw-26.s dma' WRMAA. Page 14 Doxp Scat Truss A,nclto[.11by are aeae to faterol midt ta�ea the add+b made of t4 9au�sled and me�eaa of�ymge akd.: Table 20 m"Mmy Oimenetmt Total.No.; Total: No. of Allowable Lac lbs UPM .Of Fstentbatefters in Product: H In oStra� 20 Seat F'o - �P� , _ - code ("C'Os) iOdx1XW t0dx1}1214361 L2 . MVSTA12 12- S. 61049 '' o •,� NYSlA16 16: 6 51144 • 7 B. 1239 �TA20 20 8 B1335 t �� 22 9 61136 y 1 NVSTA24. 24 CD 1.6 for uplift, L1 & L2 ` • • ••••• ,.ee.. • • • •• • • •• • • Holden Double Strap Riveted Trun Anchor. 7W me.dedpw of 14 gage ot�t •'•'•• pbl"to am Mad and upm f*m The sols as mode tl1M gage fed •••••• •••••• • • Table 21 •••• •••• ••••• . . . ...... .... ..... Assembly Dimension Total No. Total No. of Allowable Loads(Ibs • Product H of Fasteners Fasteners in ro = 2500psi (unless. othenrise noted) •••••• • • Code (Inches) in two Straps 20 GA. Seat ) tOdk1 ' 10dx1 : • : • ••••:• �ft F'c a�3M) LI L2 •000:0 NYHTAI2 12 p� • • • • • 1506 1766 1050 1450 •••• : • ••• :••••: NVHTA16 16 12 6 1695 1987 11181 1631 ••• : NVNTA20 20 14 6. 1883 2205 1312 1812. r.., NVHfA22P_116 _ 6 _ - •2071 2429 1444 1994 18 6 2259 2649 1515 2176. NVHTA24 24 CD 1•.6 for uplift. L1 & L2 • 1" UPUFr LZ x e ti r t i .�0 o • a BUILDING DEPARTMENT COMMENTS: Pro_i ect: REMODLE FOR: 1680 NE 104' STREET MIAMI SHORES, FL DATE 8-11-15 PAGES OR SHEETS COVERED BY THIS SEAL FROM 1-36 ; ... go*:: •"•:' *000 Goo* Alex Kondrat&Associates Inc • ...... .... ..... 10305 NW 41 Street#124 ' .. .. .... ...... Doral,Fl 33178 •••••• • PE 58086,CA 9717 (305)387-5770 0 • KON • No 5 86 �` --o * 1CC �� • TAT •• • R4OP. •G`�; • ®NAL 1� `� r r TABLE OF CONTENTS Pro_i ect: REMODLE FOR: 1680 NE 104' STREET MIAMI SHORES, FL DESCRIPTION ••• ••••••PAGE'#:• . . ...... .... ...... • DEVELOPMENT OF WIND LOADS PER ASCE 7-10.......................»...:........... 1-4. • ROOF DIAPHRAGM DESIGN...................................................., ::........,....• 5-13 • .... .... .... • DESIGN ROOF DRAG STRUT....................................................:�:: s....... ....14-1 .:..• • DESIGN ROOF JOIST FOR COMBINED LOADING.........................At.e o oo .......:. 18-27.0000 • DESIGN REINFORCED MASONRY............................................y:i.•i,..........• 28-34 •. • DESIGN WOOD JOIST @ FRONT ENTRY...................................... ....s:......isr•:•35-3;e••• 000. . ...... 000 . . Alex Kondrat&Associates Inc 10305 NW 41 Street#124 Doral,Fl 33178 PE 58086,CA 9717 (305)387-5770 KON N05 6 ••�• � STATE OF ALEX KONDRAT&ASSOCIATES,INC. 10305 NW 41 STREET PE 58086rCA 9717 SUITE 124.DORAL,FL 33178 1 of 36 Y MecaWind Pro v2 . 2 . 6 . 2 per ASCE 7-10 Developed by MECA Enterprises, Inc. Copyright www.mecaenterprises.com Date : 7/1/2015 Project No. : CA# 9717 Company Name : Alex Kondrat s Associates, Inc Designed By : AK PE#58086 Address : 10305 NW 41 STREET, SUITE 208 Description City : DORAL Customer Name : State : Florida Proj Location : File Location: C:\Projects\Pascual Perez Kiliddjian\1680 NE 104 Street\CALCS\1680.wnd Directional Procedure Simplified Diaphragm Building (Ch 27 Part 2) Basic Wind Speed(V) = 175.00 mph Structural Category - iI Exposure Category - C Natural Frequency = N/A Flexible Structure - No Importance Factor = 1.00 Rd Directional Factor - 0.85 Alpha = 9.50 Zg - 900.00 ft At = 0.11 Bt - 1.00 Am = 0.15 BM 0.65 Cc = 0.20 1 - 500.00 ft ' Epsilon = 0.20 Zmin 15.00 ft Slope of Roof = 3.002106 12 Slope of Roof(Theta) = 14.05 Deg h: Mean Roof Ht = 12.23 ft Type of Roof = HIPPED RHt: Ridge Ht = 14.02 ft Eht: Eave Height = 10.45 ft OR: Roof Overhang at Eave= 2.50 ft Overhead Type = OR w/ soffit Bldg Length Along Ridge = 78.00 ft Bldg width Across Ridge= 23.50 ft Length of Hipped Ridge = 54.50 ft Roof Slope on Hip End = 14.05 Deg Gust Factor Calculations Gust Factor Category I Rigid Structures - Simplified Method Gustl: For Rigid Structures (Nat. Freq.>1 Hz) use 0.85 - 0.85 •sees• • • 0000 0000•• Gust Factor Category II Rigid Structures - Complete Analysis �••0 i • •• •� Zm: 0.6*Ht - 15.00•got ... 0000•' •• lzm: CC*(33/Zm)^0.167 - 0.23 • 0000 I=: 1*(Zm/33)^Epsilon - 427.06•A*0" 0 00000•0 • Q: (1/(1+0.63*((B+Ht)/Lzm)^0.63))^0.5 - 0,94 .•.• •.•. . • Gust2: 0.925*((1+1.7*1zm*3.4*Q)/(1+1.7*3.4*lzm)) - 0.89 000000 s0•••* 00.00 Gust Factor Summary 000000 0000 •00000 Not a Flexible Structure use the Lessor of Gustl or Gust2 = 0.85 •• •• ••0• 000000 • 0000•• • • Table 26.11-1 Internal Pressure Coefficients for Buildings GCpi • • • • • •• • 0000•• GCPi Internal Pressure Coefficient ® +/-0.18 0000•• Topographic Adjustment 0000 •• ••. 0••••� 0.33*z = 1.00 •• • Kzt (0.33*z): Topographic factor at elevation 0.33*z - 1.00 Vtopo: Adjust V per Para 27.5.2: V * [Kzt(0.33*z))^0.5 m 175.00 mph MIKMS Diaphragm Building Wind Pressures per Ch 27 Pt 2 All pressures shown are based upon ASD Design, with a Load Factor of .6 1680 NE 104 STREET MIAMI SHORES,FL ALEX KONDRAT&ASSOCIATES,INC. 10305 NW 41 STREET 13E 58086,CA 9717 SUITE 124.DORAL,FL 33178 2 of 36 so*na 27:6.2 for "et w4t ftd filum lei &e Me 27.6.2 Mean mot ht vm Premm YAW Sm T VA-3 n Po ' aati(1�n r • • _ � • • sees sees•• q (� � •.1st • i sees •• �✓ ! • sees 000000 � 1 �� r Besse• es•• eei000 YAW- • •• • • • s0s0s• Hipped Roof • .. . • ... :1 1ot as P, Wimt T P" MWSRS Pressures for Wind Normal to 78 ft mall (Normal to Ridge) 1680 NE 104 STREET MIAMI SHORES,FL ALEX KONORAT&ASSOCIATES,INC. 10305 NW 41 STREET 'PE 58086,CA 9717 SUITE 124.DORAL,FL 33178 3 of 36 ' WALL PRESSURES PER TABLE 27.6-1 L/B: Bldg Dim in Wind Dir / Bldg Dim Normal to Wind Dir - 0.30 h: Height to top of Windward Wall - 10.45 ft ph: Net Pressure at top of wall (windward + leeward) - 38.70 psf p0: Net Pressure at bottom of wall (windward + leeward) 38.70 psf ps: Side wall pressure acting away from wall - .54 * ph - -20.90 psf pl: Leeward wall pressure acting away from wall - .38 * ph = -14.71 psf pwh: Windward wall press @ top acting toward wall - ph-pl 23.99 psf pw0: Windward wall press @ bot acting toward wall - p0-pl - 23.99. psf ROOF PRESSURES PER TABLE 27.6-2 h: Mean Roof Height - 12.233 ft Lambda: Exposure Adjustment Factor - 1.000 Slope: Roof Slope - 14.05 Deg Zone Load Casel Load Case2 psf psf -------- ---------- 1 -35.30 5.17 2 -24.34 -7.20 3 -36.05 .00 4 -32.18 .00 5 -26..37 .00 Note: A value of 10' indicates that the zone/load case is not applicable. ROOF OVERHANG LOADS (FIGURE 27.6-3): •••• LOAD CASE 1: • • Povhl: Overhang -26.48 'psf• •••• •••• • d g pressure for zone 1 - Povh3: Overhang pressure for zone 3 27,0186psi• • •• • LOAD CASE 2: ••�:•• •••• •••••• Povhl: Overhang pressure for zone 1 3.18V psf Overhang pressure for zone 3 - �• � •••• •••••• •••• •••• ••••• Total Base Reaction Summary ••••••• •••• ••�••� Description rX gy Fs bft Ma Rip Kip Kip R-ft Ike i i R-ft • • ----------------------------------------------------------------------1--�--i----iiiii• •••••• Normal to Ridge Walls+Roof +GCpi .0 28.9 66.0 147.2 • .O •0.0 • • Normal to Ridge Walls Only +GCpi .0 31.5 .0 164.8 a..": ••Q•• ��•��� Normal to Ridge Walls+Roof -GCpi .0 34.6 2.8 122.6 .0 • .D • Normal to Ridge Walls Only -GCpi .0 31.5 .0 164.8 .0 �.0 • Normal to Ridge Walls+Roof MIN .0 .0 .0 .0 :0 .0 Along Ridge Walls+Roof +GCpi 7.7 0.0 64.2 -0.0 -86.9 0.0 Along Ridge Walls Only +GCpi 8.3 .0 .0 .0 -43.2 .0 Along Ridge Walls+Roof -GCpi 8.9 .0 0.3 .0 53.4 .0 Along Ridge Walls Only -GCpi 8.3 .0 .0 .0 -43.2 .0 Along Ridge Walls+Roof MIN .0 .0 .0 .0 .0 .0 Notes Applying to MWFRS Reactions: Note (1) Per Fig 27.4-1, Note 9, Use greater of Shear calculated with or without roof. Note (2) X- Along Building ridge, Y = Normal to Building Ridge, Z = Vertical Note (3) MIN - Minimum pressures on Walls - 9.6 psf and Roof = 4.8 psf Note (4) MIN area is the area of the surface onto a vertical plane normal to wind. Note (5) Total Roof Area (incl OH Top) - 2476.39 sq. ft Note (6) LC - Load Case (Some pressures can be zero, ref ASCE 7-10 Ch 27 Pt 2) Wind Pressure on Components and Cladding (Ch 30 Part 1) 1680 NE 104 STREET MIAMI SHORES,FL ALEX KONDRAT&ASSOCIATES,INC. 10305 NW 91 STREET 'PE 58086,CA 9717 SUITE 124.DORAL,FL 33178 4 of 36 i al : Roof shown 1 2 a ll sem": , MR Mod 7,C0e-2 I� All pressures shown are based upon ASD Design, with a Load Factor of .6 Width of Pressure Coefficient Zone "a" = = 3.00 ft Description Width Span Area Zone Mas Mia Mas P Min P ft ft ft42 GCp GCp psf Pet ------------------------------------------------------------------------------- ROOF 2.00 25.00 208.3 1 0.30 -0.80 16.29 -33.26 ROOF 2.00 25.00 208.3 2 0.30 -1.20 16.29 -46.84 0000•• ROOF 2.00 25.00 208.3 3 0.30 -1.20 16.2 -�e•84 0000 00400* MASONRY 1.00 8.00 21.3 4 0.94 -1.04 38.0 •o-41.47 • •• • MASONRY 1.00 8.00 21.3 5 0.94 -1.28 38.0$ ; $$y68 0•i••• •• ••i• OPENING 2.00 5.00 10.0 4 1.00 -1.10 40.05 - 3.45 OPENING 2.00 5.00 10.0 5 1.00 -1.40 40.07"L33.063 0 �00••� OPENING 3.00 4.00 12.0 4 0.99 -1.09 39.58 ••4A.97 •••• • • OPENING 3.00 4.00 12.0 5 0.99 -1.37 39.51% ?•168 000000 0000• OPENING 3.00 5.00 15.0 4 0.97 -1.07 39.00 - 2.39 • • OPENING 3.00 5.00 15.0 5 0.97 -1.34 39.0010ftlf.�2 :000 09000 OPENING 4.00 4.00 16.0 4 0.96 -1.06 38.83m•-43.22 •••• 000000 OPENING 4.00 4.00 16.0 5 0.96 -1.33 38.83••]%10 .8 • 0• OPENING 3.00 6.00 18.0 4 0.95 -1.05• 38.52• -41.62 • OPENING 3.00 6.00 18.0 5 0.95 -1.31 . 38.520 -50.57 ° 0 000000 OPENING 4.00 5.00 20.0 4 0.95 -1.05 38.25• -4k 64 0••••• • • OPENING 4.00 5.00 20.0 5 0.95 -1.29 38.250•,90.p2 0 •o• 000009 OPENING 3.00 7.00 21.0 4 0.94 -1.04 38.12 -41.51 • • • OPENING 3.00 7.00 21.0 5 0.94 -1.29 38.12 -49.77 00 0 OPENING 3.00 8.00 24.0 4 0.93 -1.03 37.77 -41.17 OPENING 3.00 8.00 24.0 5 0.93 -1.27 37.77 -49.07 OPENING 5.00 5.00 25.0 4 0.93 -1.03 37.67 -41.06 OPENING 5.00 5.00 25.0 5 0.93 -1.26 37.67 -48.86 OPENING 3.00 9.00 27.0 4 0.92 -1.02 37.47 -40.86 OPENING 3.00 9.00 27.0 5 0.92 -1.25 37.47 -48.46 OPENING 5.00 6.00 30.0 4 0.92 -1.02 . 37.19 -40.59 OPENING 5.00 6.00 30.0 5 0.92 -1.23 37.19 -47.91 MASONRY 4.00 12.00 48.0 4 0.88 -0.98 35.97 -39.36 MASONRY 4.00 12.00 48.0 5 0.88 -1.16 35.97 -45.46 ROOF 2.00 25.00 208.3 2H 0.30 -2.20 10.18 -74.67 Khcc:Comp, b Clad. Table 6-3 Case 1 0.85 Qhcc:.00256*V^2*Khcc*Kht*Kd = 33.94 psf 1680 NE 104 STREET MIAMI SHORES,FL ALEX KONDRAT&ASSOCIATES,INC. 10305 NW 41 STREET 'PE 58086,CA 9717 SUITE 124.DORAL,FL 33178 5 of 36 'a Ic GAJ If,.t 2+. 3 4-p S'f; `4 � 3 Co czp = 3 cQ. 7 P S t Y- . .... .. ... Lh • • • ••••• •••• •••••• • n0F * �� ••••• • • • •••• •••• ••••• t`, • • ••••• •••• ••••• f 4') 00*0:0 M •*••• w • l/ e/ // /l 1680 NE 104 STREET MIAMI SHORES,FL . . ••• . . •.• - .•• .. .. • • . .• • • • . • • • • . - . • ••• • • • • .•- m m • • .' . . •• . . ••• • . s •• . • ••. 000 0 00 I ! ( 1 I ! t 1 = •• • • • a• ••• •• .. I OD MY" • :: p.a.M v A - - - - - - - - - 9 LL. Cho LI 1 t—.6 1 1 1 1 1 ! 1 - — — to C-4 � .i'_.... — _ .� _.>. .j ! 1 ! i ! ! �1 1 I ! ( I I I I 1 4 1 I I '", — —.—. .;." `' /•'� � C)~ i — _ i- _ r I ! I ! 1 7�1 t •!""".! I .i I I 1 t I ! 1 1 '1 I �K _ _ _ - D. J T' -}•!— — ! 7— I ! I ! I -F•t oor — — — — — � — — — — — .'_1 ..t ..i —1` 1 t"" •r� Z � ,..> - - — — — — STucR00Ftj FRAMMPLAN 0 w �U Zm Yo w . • •• • • ••• Z3 ,> j .• • •• •• ••000• • . • m CO) • • • • • • • • • • • ••• • • •• • • ••• • • • • • • • o o •• (V9 00 0 0 0 :0. :00 -0: i row Y41&,7 (� 1-I i I I t 1 I�r;;fi• • • • • • ••• •• 0167 {;- - -- - - - - - - ii Y7) = � W f - - - - - --- - - ` M .3 J j ._ - - - - -�� I I !._L._ ! .i..i -! tL I' - - -•_ - - I t i i ! I ! ! ! I i t i i i l 1 l l 1 1 1 f j,�t - - �- V co O� y I I I { I I t t I I I 11 t l �! 11 S { i t,,.e,i� �• � d'O ,� .is .... - _ -.- i t I ! I I I i i 1 1 I �•'Y - - :t � i i t S I 1 IAN � �i r..iaa ' 1 I I { i i � t ' I { ( ( t ! •�- - - -�� - C3W (� �t=.am = -.� I ! S 1 I I •+ t 1 { t 1 I '. I I { { I ! { 1 I ! I -.' =«` •1 "�'�'- - - - - - - - 1 ! I i ! t I 11 I i ( 1 I ! I 11 { I �a t S\��i I � � 1 t i l T Z — — , — — "—' V(61 4),8W.ROOF FRAMM PLAN 0 LLI Y OZ W O $t'a . . ... . . . ... .. .. . . . .. .. . . . . . . . . . . . . . ••• • . . . ... m V) co . . . . . . . .. . . . . . . . . . . . .. IN 0 ,00 'o 0 r 0 ! �d -i I F ! h ---------------- ---- --- -- - --- -- 1 n ----7------- r - - — — — — — Ju-M ` F 4 71•'ISD•2 UJ - - - - - - - - - - Zrw PON � i ? ------------------ --- t - -- - -- - -----�---- �---- - . I !!W{ i 1 t t —�• Q ' C ) L5 W el Zm w Z coo ALEX KONDRAT&ASSOCIATES,INC. 10305 NW 41 STREET PE 58086,CA 9717 SUITE 124.DORAL,FL 33178 9 of 36 vto - ,- zZtow- ' �o /z��/Z Vi /,0aj3 f- 174-9VQ) �.T Y' 7 C � A' /�� � 0000'A-c.c oma• = 14-o 0/rr-> S 9, 3 0000 0000.. .. . . 0 0 • o 0000.. 0000 .0000. • . 0000.. 000.. 0 0000 0000 . 0 , 0 000000 0000. 0000.. �. .r:" 00,00 V3 .00.00 . 0 0 L7,13)- 174-9 -� 8737 g9� 00 0 V. 3) = �', '9� ` �o = 1(,x.93► /► Z A 1680 NE 104 STREET MIAMI SHORES,FL .� 6.1 A *rcne) ALEX KONDRAT&ASSOCIATES,INC. 10305 NW 41 STREET PE 58086,CA 9717 SUITE 124.DORAL,FL 33178 10 of 36 S(of /a) -4-- p SFr(2-3, V(4-) 7 4 -3 (4p 34-7 23 S , = 2.?0 /ter -7-,>All ' � �o , assets . . • y ' "*660 00 • • • •• •• sass sass•• A • e • • • sass•• • • •0000• • • 0 • 14-f e� t 1 1680 NE 104 STREET MIAMI SHORES,FL A'r_EX KONDRAT&ASSOCIATES,INC. 10305 NW 41 STREET PE 58086,CA 9717 SUITE 124.DORAL,FL 33178 11 of 36 i . V ; 11-36 ZZ = 8-7.7 #�f?'' (-S) I ro • • x/23 s �. •....• •....• • ...... .... ..... • s • • VA, •s • V(-7) 4v+o 4-4-+Ir--r o (23.4r, V 3 + } /(Z7 7 14-o #/r-r /f7- (o 1680 NE 104 STREET MIAMI SHORES,FL ALEX KONORAT&ASSOCIATES,INC. 10305 NW 41 STREET PE 58086,CA 9717 SUITE 124.DORAL,FL 33178 12 of 36 - � = ���- ����r (174-�� -E- Z3•S�z) -f- Z-66' < �Z �(� 7 �``�-��� Z•�s (.76 3.51, V(5) 3 56 } Com 8� Soso • _ 06.9•6 VA i z .... .... . . ^ s•o•S• •••• so••o 02 06P -t- ?¢'7 = .. .. .... . . . . ...... 2ciS 3 l P 1680 NE 104 STREET MIAMI SHORES,FL ALEX KONDRAT&ASSOCIATES,INC. 10305 NW 41 STREET PE 58086,CA 9717 SUITE 124.DORAL,FL 33178 13 of 36 La 4no V5 I+ ell 0000 0000.. 0000 0000.. 0000.. 0000.. 0000 0000 . . Je4- � 0000 0000 0000. 0000.. 0000 0000. � � 0000 0000 0000.. .0000. . . . . 0000.. • .. 0000 vest •o ,, fie,cco A r14 c. y e-+/4pcil 1680 NE 104 STREET MIAMI SHORES,FL ALEX KONDRAT&ASSOCIATES,INC.. 10305 NW 41 STREET -PE 58086,CA 9717 SUITE 124.DORAL,FL 33178 14 of 36 f 2.3 X • SE,e EMERCALUDESIGN•OF • STEEC BEAM TU VARRY••:••- LA'IMAL WIND MAD ••••• ALUNG•THE VQM(AXIS.••••:• •••••• • • • • • • •••••• as 0 1680 NE 104 STREET MIAMI SHORES,FL ALEX KONDRAT&ASSOCIATES,INC. 10305 NW 41 STREET -PE 58086,CA 9717 SUITE 124.DORAL,FL 33178 15 of.36 At • • •••• •••••• .... .... ..... ...... al���` . .. . . ... . . 7C 7-,*e- 6 ft L7-J > Ok Asp 11" 2!// .= 33 0 0 �c(--n ,Aae 4% 1 0�1$4 SISS► M�I�ORES,FL6®r ��►,/�.Q' %�9� ��'�j3�Z ALEX KONDRAT&ASSOCIATES,INC. 10305 NW 41 STREET SPE 58086,CA 9717 SUITE 124.DORAL,FL 33178 16 of 36 P640W.12 AUG 2015,2:MW IN�R a Description: W8x15 BEAM WILATERAL LOAD FROM DRAG STRUT a S Calculations per AISC 360-10, IBC 2012,ASCE 7-10 Load Combination Set:ASCE 7-10 Analysis Method: Allowable Strength Design Fy:Steel Yield: 36.0 ksi • Beam Bracing: Beam is Fully Braced against lateral-torsional buckling E:Modulus: 29,000.0 ksi Bending Axis: Minor Axis Bending Load Combination ASCE 7-10 wt1.eat Span=15.50 it Span-15.50 R wexls MIS WO Service loads entered.Load Factors VII be apAjeAfgf calcuIVpos.•0 Beam self weight calculated and added to loading • • • r Load(s)for Span Number 1 • • • ...... .... ...... Point Load W=1.940 k Q 10 it(STRUT LOAD) • • Maximum Bending Stress Ratio 0.240. 1 Maximum Shear Stress Ratio- ..•. .. Section used for his span •x.032 :4•••• P W8x15 Section used for this span ...... .OMx15 ••�•• Me:Applied 1.149 k-ft Va:Applied .•..' so:* 1.158 N•••• Mn/Omega:Allowable 4.796 k ft Vn/Omega:Allowable ...... .36.379 k •0 Load Combination +D+0.60W+H Load Combination ' o�D+0.re0W+H ••••!• Location of maximum on span 1.073ft Location of maximum on span ;""x.000 f6 Location Span#where maximum occurs Span#1 Span#where maximum occurs •• 0 $pan#1 Maximum Deflection • • Max Downward Transient Deflection 0.413 in Ratio= 450 Max Upward Transient Deflection -0.133 in Ratio= 1,401 Max Downward Total Deflection 0.331 in Ratio= 562 Max Upward Total Deflection -0.046 in Ratio= 4060 ��l�tyl �,�t S��s� �>l�il'Load Com�ln�ali` - Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span# M V Mmax+ Mmax- Ma-Max Mny Mny/Omega Cb Rm Va Max Vny Vny/Omega +D+H Dsgn.L= 15.50 It 1 0.095 0.004 0.26 -0.45 0.45 8.01 4.80 1.00 1.00 0.15 54.57 36.38 Dsgn.L= 15.50 ft 2 0.095 0.004 0.26 -0.45 0.45 8.01 4.80 1.00 1.00 0.15 54.57 36.38 +D+L+H Dsgn.L= 15.50 It 1 0.095 0.004 0.26 -0.45 0.45 8.01 4.80 1.00 1.00 0.15 54.57 36.38 Dsgn.L= 15.50 It 2 0.095 0.004 0.26 -0.45 0.45 8.01 4.80 1.00 1.00 0.15 54.57 36.38 +D+Lr+H Dsgn.L= 15.50 It 1 0.095 0.004 0.26 -0.45 0.45 8.01 4.80 1.00 1.00 0.15 54.57 36.38 Dsgn.L= 15.50 It 2 0.095 0.004 0.26 -0.45 0.45 8.01 4.80 1.00 1.00 0.15 54.57 36.38 +D+S+H Dsgn.L= 15.50 It 1 0.095 0.004 0.26 -0.45 0.45 8.01 4.80 1.00 1.00 0.15 54.57 36.38 Dsgn.L= 15.50 ft 2 0.095 0.004 0.26 -0.45 0.45 8.01 4.80 1.00 1.00 0.15 54.57 36.38 +D+0.750Lr+0.750L+H Dsgn.L= 15.50 ft 1 0.095 0.004 0.26 -0.45 0.45 8.01 4.80 1.00 1.00 0.15 54.57 36.38 Dsgn.L= 15.50 ft 2 0.095 0.004 0.26 -0.45 0.45 8.01 4.80 1.00 1.00 0.15 54.57 36.38 •+D+0.750L+0.750S+H Dsgn.L= 15.50 ft 1 0.095 0.004 0.26 -0.45 0.45 8.01 4.80 1.00 1.00 0.15 54.57 36.38 Dsgn.L= 15.50 It 2 0.095 0.004 0.26 -0.45 0.45 8.01 4.80 1.00 1.00 0.15 54.57 36.38 +D+0.60W+H Dsgn.L= 15.50 It 1 0.240 0.032 1.15 -0.74 1.15 8.01 4.80 1.00 1.00 1.16 54.57 36.38 Dsgn.L= 15.50 It 2 0.155 0.005 0.16 -0.74 0.74 8.01 4.80 1.00 1.00 0.17 54.57 36.38 +D+0.70E+H Dsgn,L= 15.50 It 1 0.095 0.004 0.26 -0.45 0.45 8.01 4.80 1.00 1.00 0.15 54.57 36.38 1680 NE 104 STREET MIAMI SHORES,FL ALEX KONDRAT&ASSOCIATES,INC. 10305 NW 41 STREET PE 58086,CA 9717 SUITE 124.DORAL,FL 33178 17 of 36 Prmted:12 AUG 2015,22541 ME Iffiff- CLEW -`0 KW-06006846 NDRAT&ASSOCIATES INFO .. .. Description: W8x15 BEAM WILATERAL LOAD FROM DRAG STRUT Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span# M V Mmax+ Mmax- Me-Max Mnx MnxlOmega Cb Rm Va Max Vnx Vn)dOmega Dsgn.L= 15.50 ft 2 0.095 0.004 0.26 -0.45 0.45 8.01 4.80 1.00 1.00 0.15 54.57 36.38 +D+0.750Lr+0.750L+0.450W+H Dsgn.L= 15.50 It 1 0.184 0.024 0.88 -0.67 0.88 8.01 4.80 1.00 1.00 0.89 54.57 36.38 Dsgn.L= 15.50 It 2 0.140 0.004 0.18 -0.67 0.67 8.01 4.80 1.00 1.00 0.16 54.57 36.38 +D+0.750L+0.750S+0.450W+H Dsgn.L= 15.50 It 1 0.184 0.024 0.88 -0.67 0.88 8.01 4.80 1.00 1.00 0.89 54.57 36.38 Dsgn.L= 15.50 It 2 0.140 0.004 0.18 -0.67 0.67 8.01 4.80 1.00 1.00 0.16 54.57 36.38 +D+0.750L+0.750S+0.5250E+H Dsgn.L= 15.50 ft 1 0.095 0.004 0.26 -0.45 0.45 8.01 4.80 1.00 1.00 0.15 54.57 36.38 Dsgn.L= 15.50,ft 2 0.095 0.004 0.26 -0.45 0.45 8.01 4.80 1.00 1.00 0.15 54.57 36.38 +0.60D+0.60W+0.60H Dsgn.L= 15.50 ft 1 0.232 0.031 1.11 -0.56 1.11 8.01 4.80 1.00 1.00 1.12 54.57 36.38 Dsgn.L= 15.50 It 2 0.117 0.003 0.06 -0.56 0.56 8.01 4.80 1.00 1.00 0.11 54.57 36.38 +0.60D+0.70E+0.60H Dsgn.L= 15.50 It 1 0.057 0.002 0.15 -0.27 0.27 8.01 4.80 1.00 1.00 0.09 54.57 36.38 Dsgn.L= 15.50 ft 2 0.057 0.002 0.15 -0.27 0.27 8.01 4.80 1.00 1.00 0.09 54.57 36.38 - Load Combination Span Max%"Dell Location in Span Load Combination Max'+"Del Location in Span W Only 1 0.4132 6.081 0.0000 0.000 2 0.0000 6.081 W Only -0.1327..... 6.558 t I C Qkls � a s x Support talion:Far left is#1 • Vela KIPS••••• _ •••• • Load Combination Support 1 Support 2 Support 3 Overall MAXimum 1.784 0.405 0.088 Overall MINimum 0.053 0.176 -0.031 •••••• +D+H 0.088 0.293 0.088 •••• •.•• • • +D+L+H 0.088 0.293 0.088 ••••.• �••••� ••••• +D+Lr+H 0.088 0.293 0.088 *fro*** •.•• •.i•• +D+S+H 0.088 0.293 0.088 ..•.. •.:• ..•... +D+0.750Lr+0.750L+H 0.088 0.293 0.088 • +D+0.750L+0.750S+H 0.088 0.293 0.088 :• •• +D+0.60W+H 1.158 0.405 0.069 •••••• . +D+0.70E+H 0.088 0.293 0.088 �' • i••..i +D+0.750Lr+0.750L+0.450W+H 0.891 0.377 0.074 •• • •• • • • +D+0.750L+0.7508+0.450W+H 0.891 0.377 0.074 •• • +D+0.750L+0.750S+0.5250E+H 0.088 0.293 0.088 +0.60D+0.60W+0.60H 1.123 0.288 0.034 +0.60D+0.70E+0.60H 0.053 0.176 0.053 D Only 0.088 0.293 0.088 Lr Only L Only S Only W Only 1.784 0.187 -0.031 E Only H Only 1680 NE 104 STREET MIAMI SHORES,FL ALEX KONDRAT&ASSOCIATES,INC. 10305 NW 41 STREET PE 58086,CA 9717 SUITE 124.DORAL,FL 33178 18 of 36 Calculations for Reactions of Roof Joist Uplift&Gravity ical 23'-6"span with Shear load V(j) Roof Net Uplift Pressures ASCE 7-10 Zone 1 23.28 PSF Zone 2 36.84 PSF Zone 3 38.84 PSF Zone OH 64.87 PSF Roof Gravity Loads Dead 25 PSF Live 20 PSF Total D+L 45 PSF IMPUT Distance for a 3.00 Ft Slope 3 :12 JOIST SPAN 23.50 Ft Horizontal span Over hang 2.50 Ft Joist spacing 1.33 Ft RESULTS •••. Joist angle(theta) 14.04 DEG Tan-l(slope) • •.... ••.... Joist height 2.94 Ft Slope x span/2 •• • • •• • Joist Length 24.22 Ft Square Rt((span/2)"'2 x(heighr•2))x 2 ••• •• •:••• see*:. Average uplift pressure •••••• • :Goo*: 9 P P 30.05 PSF (Pressure Zone 1 +pure Zone 2u2 Reactions Uplift each and 699 LB (ZOH x OH x Spacing)+(Average pressure x%qp9 'd2)x sem' .•...• Reactions Gravity each end 875 LB (Total D+L x OH x Spacing)+(Total D+L x(L .x spacing3.•• •.:••• •. •• .•.• ....•. ••••.• • ee (2)USP HGAM10 ANGLES ONE EA SIDE OF TRUSS W/(4)WS15 WOOD SCREWS • • • :*064: TO TRUSS AND(4)1/4"DIAM X 1-314"TITEN CONCRETE SCREWS(FL#11473) 0 •• • ;•.••; - ALLOWABLE UPLIFT= 1700 LBS •• • •• • • • PARALLEL F1 = 2010 LBS • PERPENDICULAR F2= 2210 LBS CTHECK COMBINED LOADING FROM DIAPHRAGM SHEAR CALCULATIONS VL1 = 65.78 LBS/FT 87.487 LBS (SHEAR LOAD x TRUSS SPACING) VL2= OUT OF PLANE WALL SUCTION=WALL PRESSURE(PSF)x WALL HEI6HT/2(FT)x 1'-4-(JOIST SPACING) VI-2= 38.7 8.5 218.75 LBS (PSF) (FT) UPLIFT VVL1 V.� <1.0 UNITY EQUATION ALLOW UPLIFT L1 L2 (+) (+) (+) 0 0A1 0.04 0.20 X89 OK 1680 NE 104 STREET MIAMI SHORES,FL ALEX KONDRAT&ASSOCIATES,INC. 10305 NW 41 STREET PE 58086,CA 9717 SUITE 124.DORAL,FL 33178 19 of 36 Calculations for Reactions of Roof Joist Uplift&Gravity tftvolcal 22'-0"span with Shear load V(2) Roof Net Uplift Pressures ASCE 7-10 Zone 1 23.26 PSF Zone 2 38.84 PSF Zone 3 38.84 PSF Zone OH 84.67 PSF Roof Gravity Loads Dead 25 PSF Live 20 PSF Total D+L 49 PSF IMPUT Distance for a 3.00 Ft -Slope 3 :12 JOIST SPAN 22.00 Ft Horizontal span Over hang 2.50 Ft Joist spacing 1.33 Ft RESULTS Joist angle(theta) 14.04 DEG Tan-1(slope) Gee*9• •Joist height 2.75 Ft Slope x span/2 '••' : • •• • Joist Length 22.68 Ft Square Rt((span/2)"2 X(height"2))x 2 ••• •• '•i••' 000009 Average uplift pressure 30.05 PSF (Pressure Zone 1 +Pressure Zone 2)/2 000000 ' ;•••• Reactions Uplift each end 888 LB (ZOH x OH x Sparing)+(Average pressure x 4 Llr?g*r2)x spa* • Reactions G each end •••• ••• •• •Gravity each 828 LB (Total D+L x OH x Sparing)+(Total D+L x(Ler Vh/21x spadnq) 00• • • 60 •••••• • • • (2)USP HGAM10 ANGLES ONE EA SIDE OF TRUSS W/(4)WS15 WOOD SCREWS ' ' ' 000 0% TO TRUSS AND(4)1/4"DIAM X 1-3/4"TITEN CONCRETE SCREWS(FL#11473) • • : • • • ALLOWABLE UPLIFT= 1700 LBS '••' i • ••• PARALLEL F1 = 2010 LBS PERPENDICULAR F2= 2210 LBS CHECK COMBINED LOADING FROM DIAPHRAGM SHEAR CALCULATIONS VL1 = 164.5 LBS/FT 218.79 LBS (SHEAR LOAD x TRUSS SPACING) VI-2= OUT OF PLANE WALL SUCTION=WALL PRESSURE(PSF)x WALL HEIGHT/2(FT)x 1'-4"(JOIST SPACING) VI-2= 38.7 8.5 218.75 LBS (PSF) (FT) UPLIFT VL1 Vim, UNITY EQUATION ALLOW UPLIFT L1 L2 (+) (+) (+) 0 0.39 0.11 0.20 OK 1680 NE 104 STREET MIAMI SHORES,FL ALEX KONDRAT&ASSOCIATES,INC. 10305 NW 41 STREET PE 58086,CA 9717 SUITE 124.DORAL,FL 33178 20 of 36 Calculations for Reactions of Roof Joist Uplift&Gravity typical 23'-6" with Shear load Y(3) Roof Net Uplift Pressures ASCE 7-10 Zone 1 23.28 PSF Zone 2 38.84 PSF Zone 3 36.84 PSF Zone OH 64.67 PSF Roof Gravity Loads Dead 23 PSF Live 20 PSF Total D+L 46 PSF IMPUT Distance for a 3.00 Ft Slope 3 :12 JOIST SPAN 23.50 Ft Horizontal span Over hang 2.50 Ft Joist spacing 1.33 Ft RESULTS •••• Joist angle(theta) 14.04 DEG Tan-1(slope) Joist height 2.94 Ft Slope x span/2 °••• + • •• •° Joist Length 24.22 Ft Square Rt((span/2r2 x(height-2))x 2 ••+••• +• ••• •'••°' Average uplift pressure 30.05 PSF (Pressure Zone 1 +Pressure Zone 2Y2 ° Reactions Uplift each end 699 LB (ZOH x OH x Spacing)+(Average pressure x(1°e'ngt�i/2)x spa. . In- • ° • Reactions Gravity each end 875 LB (Total D+L x OH x Spacing)+(Total D+L x(Ler �th/21 x spacing) • ••.•• • • • (2)USP HGAM10 ANGLES ONE EA SIDE OF TRUSS W/(4)WS15 WOOD SCREWS : • : • . .•.•:• TO TRUSS AND(4)1/4"DIAM X 1-3/4'TITEN CONCRETE SCREWS(FL#11473) • + ••••• • • ALLOWABLE UPLIFT= 1700 LBS °••° i • ••• s°°•+ PARALLEL F1= 2010 LBS "• • PERPENDICULAR F2= 2210 LBS CHECK COMBINED LOADING FROM DIAPHRAGM SHEAR CALCULATIONS VL1 = 164.5 LBS/FT 218.79 LBS (SHEAR LOAD x TRUSS SPACING) VL2= OUT OF PLANE WALL SUCTION=WALL PRESSURE(PSF)x WALL HEIGHT/2(FT)x 1'-4"(JOIST SPACING) VI-2= 38.7 8.5 218.75 LBS (PSF) (FT) UPLIFT VL1 VI-2 1.0 UNITY EQUATION ALLOW UPLIFT 1-1 L2 (+) (+) (+) 0 0.41 0.11 0.20 OK 1680 NE 104 STREET MIAMI SHORES,FL ALEX KOND'RAT 8 ASSOCIATES,INC. 10305 NW 41 STREET PE 58086,CA 9717 SUITE 124.DORAL,FL 33178 21 of 36 Calculations for Reactions of Roof Joist Uplift 8 Gravity typical 11'-6"span with Shear load V(4) Roof Net Uplift Pressures ASCE 7-10 Zone 1 23.28 PSF Zone 2 38.84 PSF Zone 3 36.84 PSF Zone OH 84.87 PSF Roof Gravity Loads Dead 25 PSF Live 20 PSF Total D+L 45 PSF IMPUT Distance for a 3.00 Ft Slope 3 :12 JOIST SPAN 11.50 Ft Horizontal span Overhang 2.50 Ft Hoist spacing 1.33 Ft RESULTS •••• Joist angle(theta) 14.04 DEG Tan-1(slope) . • `•.••' •.••• Joist height 1.44 Ft Slope x span/2 •••• • •• • Joist Length 11.85 Ft Square Rt((span/2)"2 x(height"2))x 2 ••+•.• .+•• •••••• Average uplift pressure 30.05 PSF (Pressure Zone 1 +Pressure Zone 2)12 ' •" i•••+: Reactions Uplift each end 452 LB (ZOH x OH x Spacing)+(Average pressure x(1` • )x spavin$)`• • Reactions Gravity each end 504 LB (Total D+L x OH x Spacing)+(Total D+L x( n••+• spadng t••• .•••• •• •• •••• •••••• • (2)USP HGAM10 ANGLES ONE EA SIDE OF TRUSS W/(4)WS15 WOOD SCREWS : • : • • •••• • TO TRUSS AND(4)1/4"DIAM X 1-3/4"TITEN CONCRETE SCREWS(FL#11473) • • ' • • ALLOWABLE UPLIFT= 1700 LBS •• • • •.• • • PARALLEL F1= 2010 LBS •' • PERPENDICULAR F2= 2210 LBS CHECK COMBINED LOADING FROM DIAPHRAGM SHEAR CALCULATIONS VL1= 270 LBS/FT 359.1 LBS (SHEAR LOAD x TRUSS SPACING) VL2= OUT OF PLANE WALL SUCTION=WALL PRESSURE(PSF)x WALL HEIGHT/2(FT)x 1'-4"(JOIST SPACING) VI-2= 38.7 8.5 218.75 LBS (PSF) (FT) UPLIFT VVl , %&a <1.0 UNITY EQUATION ALLOW UPLIFT L1 L2 (+) (+) (+) 0 0.27 0.18 0.20 OK 1680 NE 104 STREET MIAMI SHORES,FL • ALEX KONDRAT&ASSOCIATES,INC. 10305 NW 41 STREET PE 58086,CA 9717 SUITE 124.DORAL,FL 33178 22 of 36 Calculations for Reactions of Roof Joist Uplift&Gravity typical 11'-6"span with Shear load V(5) Roof Net Uplift Pressures ASCE 7-10 Zone 1 23.28 PSF • Zone 2 36.84 PSF Zone 3 36.84 PSF Zone OH 64.67 PSF Roof Gravity Loads Dead 23 PSF Live 20 PSF Total D+L 45 PSF IMPUT Distance for a 3.00 Ft Slope 3 :12 JOIST SPAN 11.50 Ft Horizontal span Over hang 2.50 Ft Joist spacing 1.33 Ft SULTS •••• Joist angle(theta) 14.04 DEG Tan-1(slope) • • •••• •••••• Joist height 1.44 Ft Slope x span/2 •• • • •• • Joist Length 11.85 Ft Square Rt((span/2)"2 x(height"2))x 2 ••• •• •+•• •••••• Average uplift pressure 30.05 PSF (Pressure Zone 1 +Pressure Zone 2Y2 •••••• • • • Reactions Uplift each and 452 LB (ZOH x OH x Spacing)+(Average aG •••• •q•• • • p pressure x(tom)x spSGipg1 • Reactions Gravity each end 504 LB (Total D+L x OH x Spacing)+(Total D+L x(LepW214 spacing).••• 69:66,9 • • 00000 •••• •••••• • (2)USP HGAM10 ANGLES ONE EA SIDE OF TRUSS W/(4)WS15 WOOD SCREWS • • • • '•'••' TO TRUSS AND(4)1/4"DIAM X 1-3/4"TITEN CONCRETE SCREWS(FL#11473) • • •••••• • • ALLOWABLE UPLIFT= 1700 LBS •. • • • • • PARALLEL F1= 2010 LBS PERPENDICULAR F2= 2210 LBS CHECK COMBINED LOADING FROM DIAPHRAGM SHEAR CALCULATIONS VL1= 88 LBS/FT 117.04 LBS (SHEAR LOAD x TRUSS SPACING) VI-2= OUT OF PLANE WALL SUCTION=WALL PRESSURE(PSF)x WALL HEIGHT/2(FT)x 1'4"(JOIST SPACING) VI-2= 38.7 8.5 218.75 LBS (PSF) (FT) UPLIFT VL1 VVL2 1.0 UNITY EQUATION ALLOW UPLIFT L1 L2 (+) (+) (+) 0 0.27 0.06 0.20 ®OK 1680 NE 104 STREET MIAMI SHORES,FL ALEX KONbRAT&ASSOCIATES,INC. 10305 NW 41 STREET PE 58088,CA 9717 SUITE 124.DORAL,FL 33178 23 of 36 Calculations for Reactions of Roof Joist Uplift&Gravity ical 11'-8"span with Shear load V(S) Roof Net Uplift Pressures ASCE 7-10 Zone 1 23.28 PSF Zone 2 36.84 PSF Zone 3 38.84 PSF Zone OH 64.67 PSF Roof Gravity Loads Dead 29 PSF Live 20 PSF Total D+L 49 PSF IMPUT Distance for a 3.00 Ft Slope 3 :12 JOIST SPAN 11.50 Ft Horizontal span Over hang 2.90 Ft Joist spacing 1.33 Ft .••. • • Goes •••••• RESULTS •• e *00 ' Joist angle(theta) 14.04 DEG Tan-1(slope) 0000" 0000 0000" • Joist height 1.44 Ft Slope x span/2 0009000*00 ' • • Joist Length 11.85 Ft Square Rt((span/2)*2 x(height"'2))x 2 • • • • •... ..•• ..... Average uplift pressure 30.05 PSF (Pressure Zone 1+Pressure Zone 2y2 0000 00:000 Reactions Uplift each end 482 LB (ZOH x OH x Spacing)+(Average pressure x 4IsIngift)x spjag) 0000:0 Reactions Gravity each end 504 LB (Total e D+L x OH x Spacing)+(Total D+L is{LVM>x spacing)* • o • • • • (2)USP HGAM10 ANGLES ONE EA SIDE OF TRUSS W/(4)WS15 WOOD SCREWS so ' •' :': ' • •e G TO TRUSS AND(4)114"DIAM X 1-3/4"TITEN CONCRETE SCREWS(FL#11473) ALLOWABLE UPLIFT= 1700 LBS PARALLEL F1 = 2010 LBS PERPENDICULAR F2= 2210 LBS CHECK COMBINED LOADING FROM DIAPHRAGM SHEAR CALCULATIONS VL1= 100 LBS/FT 133 LBS (SHEAR LOAD x TRUSS SPACING) Vu= OUT OF PLANE WALL SUCTION=WALL PRESSURE(PSF)x WALL HEIGHT/2(FT)x 1'4"(JOIST SPACING) VI-2= 38.7 8.5 218.75 LBS (PSF) (FT) UPLIFT V 1 VI-2 <1.0 UNITY EQUATION ALLOW UPLIFT L1 L2 (+) (+) (+) 0 0.27 0.07 0.20 ®OK 1680 NE 104 STREET MIAMI SHORES,FL ALEX KONDRAT&ASSOCIATES,INC. 10305 NW 41 STREET PE 58086,CA 9717 SUITE 124.DORAL,FL 33178 24 of 36 Calculations for Reactions of Roof Joist Uplift&Gravit tt"YNOPIcal 23'-6"span Wth Shear load V Roof Net Uplift Pressures ASCE 7-10 Zone 1 23.28 PSF Zone 2 38.84 PSF Zone 3 36.84 PSF Zone OH 84.67 PSF Roof Gravity Loads Dead 25 PSF Live 20 PSF Total D+L 49 PSF IMPUT Distance for a 3.00 Ft Slope 3 :12 JOIST SPAN 23.50 Ft Horizontal span Over hang 2.50 Ft Poist spacing 1.33 Ft .... RESULTS �.•� : . •. •� Joist angle(theta) 14.04 DEG Tan-1(slope) •••••• "" """ Joist height 2.94 Ft Slope x span/2 ...... Joist Length 24.22 Ft Square Rt((span/2p'2 x(height"2))x 2 •"' • ."". • • Average uplift pressure 30.05 PSF (Pressure Zone 1 +Pure Zone 2y2 Reactions Uplift each end 699 LB (ZOH x OH x Spacing)+(Average pressure x(,l~)x spa V) •••••• Reactions Gravity each end 878 LB (Total D+L x OH x Spacing)+(Total D+L x(Langth do spacing)• • • •••... • • (2)USP HGAM10 ANGLES ONE EA SIDE OF TRUSS W/(4)WS15 WOOD SCREWS '• ' .' ;': • TO TRUSS AND(4)1/4"DIAM X 1-3/4"TITEN CONCRETE SCREWS(FL#11473) ALLOWABLE UPLIFT= 1700 LBS PARALLEL F1= 2010 LBS PERPENDICULAR F2= 2210 LBS CHECK COMBINED LOADING FROM DIAPHRAGM SHEAR CALCULATIONS VL1 = 113 LBS/FT 150.29 LBS (SHEAR LOAD x TRUSS SPACING) VI-2= OUT OF PLANE WALL SUCTION=WALL PRESSURE(PSF)x WALL HEIGHT/2(FT)x 1'-4"(JOIST SPACING) VI-2= 38.7 8.5 218.75 LBS (PSF) (FT) PU LIFT VI-1 VL2 1.0 UNITY EQUATION ALLOW UPLIFT L1 L2 (+) (+) (+) 0 0.41 0.07 0.20 ®OK 1680 NE 104 STREET MIAMI SHORES,FL ALEX KONDRAT&ASSOCIATES,INC. 10305 NW 41 STREET PE 58086,CA 9717 SUITE 124.DORAL,FL 33178 25 of 36 Calculations for Reactions of Roof Joist Uplift&Gravity ical 23'-6"span with Shear load V(S) Roof Net Uplift Pressures ASCE 7-10 Zone 1 23.26 PSF Zone 2 30.84 PSF Zone 3 38.84 PSF Zone OH 64.67 PSF Roof Gravity Loads Dead 25 PSF Live 20 PSF Total D+L 45 PSF IMPUT Distance for a 3,00 Ft Slope 3 :12 JOIST SPAN 23.50 Ft Horizontal span Over hang 6.00 Ft Joist spacing 1.33 Ft Soso RESULTS • Joist angle(theta) 14.04 DEG Tart-1(slope) • • • .•SSSS •... •...•• Joist height 2.94 Ft Slope x span/2 ••"" ' :SSSS: Joist length 24.22 Ft Square Rt((span/2)-2 x(height-2))x 2 . • • • •••• Average uplift pressure 30.05 PSF (Pressure Zone 1+Pressure Zone 2Y2 Reactions Uplift each end 1000 LB (ZOH x OH x Spadng)+(Average pressure x(j.0figtb/2)x spading) 6606:4 Reactions Gravity each end 1084 LB (Total D+L x OH x Spacing)+(Total D+L x(LengtW)x spacing) • • (2)USP HGAM10 ANGLES ONE EA SIDE OF TRUSS W/(4)WS15 WOOD SCREWS •• • .' ' • TO TRUSS AND(4)1/4"DIAM X 1-3/4•TITEN CONCRETE SCREWS(FL#11473) •• • 'ALLOWABLE UPLIFT= 1700 LBS PARALLEL F1= 2010 LBS PERPENDICULAR F2= 2210 LBS CHECK COMBINED LOADING FROM DIAPHRAGM SHEAR CALCULATIONS VL1= 113 LBS/FT 150.29 LBS (SHEAR LOAD x TRUSS SPACING) VI-2= OUT OF PLANE WALL SUCTION=WALL PRESSURE(PSF)x WALL HEIGHT/2(FT)x 1'4"(JOIST SPACING) VL2= 38.7 8.5 218.75 LBS (PSF) (FT) PL FT VVL1 VVL <1.0 UNITY EQUATION ALLOW UPLIFT L1 L2 (+) (+) (+) 0 0.59 0.07 0.20 ! OK 1680 NE 104 STREET MIAMI SHORES,FL ALEX KONDRAT 8 ASSOCIATES,INC. 10305 NW 41 STREET PE 58086,CA 9717 SUITE 124.DORAL,FL 33178 26 of 36 •' 11'-5" ':y�5h�?io8d. 9 hoof N .UpNft Pressue$ Zorti$1 �3.ZE. PSF , 36; Zon@ 3 Zone O 8 IP! PSF: Rif Gcavky Loada . Dltad ` � PSF.. , Live.. }'ZQ. PSF Total D+t .�OI>�T SPAN ` 115k Ft �Horizn�.tal apart ItBurt 2:501 : Ft ..; ..•• •. •••• •• .Ct angle.(theta). 4.04 DEQ Tan-1(slope) Jdlst hei 1F ..•..• ...• .....• :44. t Slope x spati/2 ..•:.. • • ,tatstLengt 11.85 Ft: Squar@ Rt{(span/2)'M2 x(heigttt"2))x 2 •••••• •••••• • • AYerag.@uplift pressure 30.05 PSF... (P'ressure Zone 1+Pressure Zone 20 •••• •••• •• •• Upll& 452 LH (ZOH.X OH X Spacing)+(Av •••••• •••• ••••• I� ;OraVlt each erd :: . 9@ pie X(i )X ) •••••• 8tt4 L� (Fobd D+L x OH x Spacing)+(Total D+L x(Lep j spacing). .• t . (2)USP HGAMA ANGLES ONE EA SIDE OF TRUSS W/(4)WS15 WOOD SCREWS •..• : . ..• •••• TO TRUSS AND(4)1/4'DIANX 1-3/4"TITEN CONCRETE SCREWS(FL#11473) • • •• • ALLOWABLE UPLIFT= 1700 LBS PARALLEL F1= 2010 LBS PERPENDICULAR F2= 2210 LBS dkE£K COMM i'LOADINt3 FaOM DIAPHRAGM SHEAR C LrAJLATIONS VL1= 128 LBS/F1' 167.58 LBS (SHEAR LOAD x TRUSS SPACING) VI-2= OUT OF PLANE WALL SUCTION=WALL PRESSURE(PSF)x WALL HEIGHT/2(FT)x 1'4"(JOIST SPACING) 1/L2= 38.7 9.5 244.49 LBS (PSF) (FT) VLI jjt-Q UNITY EQUATION ALLOW UPLIFT L1° L2: (+) .(+) (+). 0 0.27 0.08. 0.22 ®OK 1680 NE 104 STREET MIAMI SHORES,FL ALEX KONDRAT&ASSOCIATES,INC. 10305 NW 41 STREET PE 58086,CA 9717 SUITE 124.DORAL,FL 33178 27 of 36 Calculations for Reactions of Roof Joist Uplift&Gra typical 23'-6"span with Shear load V 10 Roof Net Uplift Pressures ASCE 7-10 Zone 1 23.26 PSF Zone 2 38.84 PSF Zone 3 38.84 PSF Zone OH 64.67 PSF Roof Gravity Loads Dead 25 PSF Live 20 PSF TOtalD+L 45 PSF IMPUT Distance for a 3.00 Ft Slope 3 :12 JOIST SPAN 23.50 Ft Horizontal span Over hang 2.50 Ft Joistspacing 1.33 Ft see* . • ..•. .•...• RESULTS • • Joist angle(theta) 14.04 DEG Tan-1(slope) Joist height 2.94 Ft Slope x span/2 see*** ' :.•..: Joist Length 24.22 Ft Square Rt((span/2)"2 x(height"2))x 2 . . • • Average uplift pressure 30.05 PSF (Pressure Zone 1 +Pressure Zone 2u2 • Reactions Uplift each end 699 L18 (ZOH x OH x Spacing)+(Average pressure x(,Ag4-:2)x spaCjv) •••••• Reactions Gravity each end 873 LB (Total D+L x OH x Spacing)+(Total D+L•x(LejVI1h do spacing)• • . • . • ...••. • • • • •••••• (2)USP HGAM10 ANGLES ONE EA SIDE OF TRUSS W/(4)WS15 WOOD SCREWS 00 :0: • TO TRUSS AND(4)1/4"DIAM X 1-3/4"TITEN CONCRETE SCREWS(FL#11473) *0 ALLOWABLE UPLIFT= 1700 LBS PARALLEL F1 = 2010 LBS PERPENDICULAR F2= 2210 LBS CHECK COMBINED LOADING FROM DIAPHRAGM SHEAR CALCULATIONS VL1 = 121 LBS/FT 160.93 LBS (SHEAR LOAD x TRUSS SPACING} VI-2= OUT OF PLANE WALL SUCTION=WALL PRESSURE(PSF)x WALL HEIGHT/2(FT)x 1'-4"(JOIST SPACING) V1-2= 38.7 9.5 244.49 LBS (PSF) (FT) UPLIFT VL1 VL2 <1.0 UNITY EQUATION ALLOW UPLIFT L1 L2 (+) (+) (+) 0 0.41 0.08 0.22 ®OK 1680 NE 104 STREET MIAMI SHORES,FL ALEX KONdRAT&ASSOCIATES,INC. 10305 NW 41 STREET PE 58086,CA 9717 SUITE 124.DORAL,FL 33178 28 of 36 Printed:I I AUG 2014,642PM Description: MASONRY WALL 8.6 HEIGHT Calculations per ACI 530-11, IBC 2012,CBC 2013,ASCE 7-10 Load Combinations Used:ASCE 7-10 Calculations per ACI 530.11,IBC 2012,CBC 2013,ASCE 7-10 Construction Type:Grouted Hollow Concrete Masonry Fm = 1.50 ksi Nom.Wali Thickness 8 in Temp Diff across thickness = deg F Fy-Yield = 60.0 ksi Actual Thickness 7.625 in Min Allow Out-of-plane Deft Ratio= 0 Fr-Rupture = 61.0 psi Rebar V distance 3.750 in Minimum Vertical Steel% - 0.0020 Em=I'm' = 900.0 Lower Level Rebar... Max%of p bal. = 0.006756 Bar Size # 5 Grout Density - 140 pcf Bar Spacing 48 in Block Weight Normal Weight Wall Weight = 55.0 psi Wall is grouted at rebar cells only Ona Wal[Dim111trl _•.._._ ... -- -- --- A Clear Height - 8.50 ft i sees •• B Parapet height = 0.0 ft B • Wall Support Condition Top&Bottom Pinned ••• •• • A • H; —Vertical Uniform Loads.,. (Applied per foot of Strip Width) DL:Dead Lr:Roof Live Lf:Floor Live S:Snow W:Wind Ledger Load Eccentricity 0.0 in 0.0 0.0 0.0 0.0 0.0 kNt Concentric Load 0.2930 0.2350 0.0 0.0 0.0 klft 3 e Full area WIND bad 45.50 psf Wall Weight Seismic Load Input Method: Direct entry of Lateral Wall Weight Fp 1.0 = 25.0 psf Seismic Wall Lateral Load 25.0 psf 1680 NE 104 STREET MIAMI SHORES,FL ALEX KONDRAT&ASSOCIATES,INC. 10305 NW 41 STREET .PE 58086,CA 9717 SUITE 124.DORAL,FL 33178 29 of 36 Prit*t 11 AUG M&&-WM 041.W KW-06006846 a a: . DeScripft; MASONRY WALL 8.5 HEIGHT Results reported for"Strip Width"of 12.0 In Governing Load Combination... Actual Values... Allowable Values... PASS Moment Capacity Check Maximum Bending Stress Ratio = 0.2889 _ +0.90D+W+0.90H Max Mu 0.4105 k-ft Phi'Mn 1.423 k-ft PASS Service Deflection Check Actual Dell.Ratio U 8,550 Allowable Dell.Ratio 360 W Only Max.Deflection 0.01193 in PASS Axial Load Check Max Pu/Ag 18.601 p:4 Max.Allow.Dell. 0.2833 in +1.20D+0.50Lr+0.50L+W+1.60H Location 4.108 it 0.2'fm 300.0 psi PASS Reinforcing Limit Check Controlling As,'bd 0.001667 Aslbd006756 rho bal 0.006756 PASS Minimum Moment Check Mkxaddng 0.5739 k-ft Minimum Phi Mn 1.443 k-ft +1.40D+1.60H Maximum Reactions... for Load Combination.... Top Horizontal W Only 0.1934 k Base Horizontal W Only 0.1934 It Vertical Reaction +D+Lr+H 0.9955 k Results reported for"Strip Width"a 12 in. Axial Load Moment Values .0060 Load Combination Pu 0.2*fm`b't Mcr Mu Phi Phi Mn As; ARatio ••�•� ***see k k k-ft k-ft k-ft InA2 •• • • •• • 0.000 0.000 0.00 0.00 0.00 0.00 0.0009';'b."M •11.11M see**: 0.000 0.000 0.00 0.00 0.00 0.00 0.000'•'•+b'b000 0.1000 :*so** 0.000 0.000 0.00 0.00 0.00 0.00 0.00&6 0 0$a0 •• *00*00 • • 0.000 0.000 0.00 0.00 0.00 0.00 0.0000:::*0.2= Q. ••i••• +1.20D+1.60Lr+0.50W+1.60H at 3.97 to 4.25 1.027 16.560 0.44 0.21 0.90 1.57 0.078..6.p.1W17 ..Q.Q066 ••••.• 0.000 0.000 0.00 0.00 0.00 0.00 0.000....Dow •0.9000 6 0 +1.20D+1.608+0.50W+1.60H at 3.97 to 4.25 0.651 16.560 0.44 0.21 0.90 1.47 0.078: •0. 017 . 0.0068 ••••:• +1.2OD40.50Lr40.50L+W+1.60H at 3.97 to 4. 0.768 16.580 0.44 0.41 0.90 1.00 0.078- 69.0017 • 0.0068 6 +1.20D+0.50L-+0.50S+W+1.60H at 3.97 to 4.2 0.651 16.560 0.44 0.41 0.90 1.47 0.078 •• 0.8017 ;!O.p f • ' +1.20D+0.50L+0.20S+E+1.60H at 3.97 to 4.2 0.651 16.560 0.44 0.23 0.90 1.47 0.078 0.0017 'Q0068 +0.90D+W+0.90H at 3.97 to 4.25 0.488 16.560 0.44 0.41 0.90 1.43 0.078 0.0017 0.0068 +0.90D+E40.90H at 3.97 to 4.25 0.488 16.560 0.44 0.23 0.90 1.43 0.078 0.0017 0.0068 Results reported for"Strip Width"=12 in. Axial Load Moment Values Stiffness Deflections Load Combination Pu Mc r Mactual I gross I cracked I effective Deflection Defl.Ratio k k-ft k-ft In-14 in^4 in"4 in 0.000 0.00 0.00 0.00 0.00 0.000 0.000' 0.0 0.000 0.00 000 0.00 0.00 0.000 0.000 0.0 0.000 0.00 0.00 0.00 0.00 0.000 0.000 0.0 0.000 0.00 0.00 0.00 0.00 0.000 0.000 0.0 0.000 0.00 0.00 0.00 0.00 0.000 0.000 0.0 0.000 0.00 0.00 0.00 0.00 0.000 0.000 0.0 +D+0.60W+H at 3.97 to 4.25 0.542 0.44 0.25 331.10 19.33 331.100 0.007 14,233.1 +D+0.70E+H at 3.97 to 4.25 0.542 0.44 0.16 331.10 19.33 331.100 0.005 22,203.6 +D+0.750Lr+0.750L+0.450W+H at 3.97 to 4.2 0.719 0.44 0.18 331.10 19.87 331.100 0.005 18,009.6 +0+0.750L40.750S+0.450W+H at 3.97 to 4.25 0.542 0.44 0.18 331.10 19.33 331.100 0.005 18,977.4 +D+0.75OL+0.750S+0.5250E+H at 3.97 to 4.2 0.542 0.44 0.12 331.10 19.33 331AW 0.003 29,604.8 +0.600+0.6OW40.60H at 3.97 to 4.25 0.325 0.44 0.25 331.10 18.67 331.100 0.007 14,240.1 +0.60D+0.70E+0.60H at 3.97 to 4.25 0.325 0.44 0.16 331.10 18.67 331.100 0.005 22,214.6 0.000 0.00 0.00 0.00 0.00 0.000 0.000 0.0 0.000 0.00 0.00 0.00 0.00 0.0m 0.000 0.0 0.000 0.00 0.00 0.00 0.00 0.000 0.000 0.0 1680 NE 104 STREET MIAMI SHORES,FL ALEX KONDRAT&ASSOCIATES,INC. 10305 NW 41 STREET PE 58086,CA 9717 SUITE 124.DORAL,FL 33178 30 of 36 POft 11 AUG 20%SAM I kits r 0 00 r. ASSOCIATES pescApt)on: MASONRY WALL 8.5'HEIGHT PAWAa w,� r � Results reported for"Strip Width"a 12 In. Axial Load Moment Values Stiffness Deflections Load Combination Pu Mor Madual I gross I cracked I effective Deflection Deft.Ratio k Wt k-ft in"4 W4 in"4 in 0.000 0.00 0.00 0.00 0.00 0.000 0.000 0.0 W Only at 4.25 Io 4.53 0.000 0.44 0.41 331.10 17.65 331.100 0.012 8,550.5 E Only at 4.25 to 4.53 0.000 0.44 0.23 331.10 17.65 331.100 0.007 15,561.8 0.000 0.00 0.00 0.00 0.00 0.000 0.000 0.0 Results reported for"Strip Width"m 12 In. Load Combination Base Horizontal Top Horizontal Vertical @ Wall Base +D+H 0.0 k 0.00 k 0.761 k +D+L+H 0.0 k 0.00 k 0.761 k +D+Lr+H 0.0 k 0.00 k 0.996 k +D+S+H 0.0 k 0.00 k 0.761 k +0+0.750Lr+0.750L+H 0.0 k 0.00 k 0.937 k +D+0.750L+0.750S+H 0.0 k 0.00 k • :4761 k ,**"." +D+0.60W+H 0.1 k 0.12 k '••" i • •4761 k •0 +D+0.70E+H 0.1 k 0.07 k 000:00 `0.761 k +D+0.750Lr+0.750L+0.450W+H 0.1 k 0.09 k 669666 0.937 k i••••i +D+0.750L+0.750S+0.450W+H 0.1 k 0.09 k0:000.••• ....67161 k ••••• 0000 +D+0.750L+0.750S+0.5250E+H 0.1 k 0.06 k •,•••• •JWAO k ••i•• +0.6013-460W+0.601-1 0.1 k 0.12 k 0 40.456 k +0.60D+0.70E+0.60H 0.1 k 0.07 k ;": : 1.456 k • DOnly 0.0 k 0.00 k �0 "0901 k Lr Only 0.0 k 0.00 k G2W k �••••� L Only 0.0 k 0.00 k �'•0.000 k S Ony+ 0.0 k 0.00 k 0.000 k W Only 0.2 k 0.19 k 0.000 k E Only 0.1 k 0.11 k 0.000 k H Only 0.0 k 0.00 k 0.000 k 1680 NE 104 STREET MIAMI SHORES,FL ALEX KONDRAT&ASSOCIATES,INC. 10305 NW 41 STREET PE 58086,CA 9717 SUITE 124.DORAL,FL 33178 31 of 36 Printed;11 AUG 2015,6.43PM Sm MIN Description: MASONRY WALL 9.S HEIGHT GARAGE Calculations per ACI 530-11, IBC 2012, CBC 2013,ASCE 7-10 Load Combinations Used:ASCE 7-10 _ Calculations per ACI 530-11,IBC 2012,CBC 2013,ASCE 7-10 Construction Type:Grouted Hollow Concrete Masonry Fm = 1.50 ksi Nom.Wall Thickness 8 in Temp Diff across thickness - deg F Fy-Yield - 60.0 ksi Actual Thickness 7.625 in Min Allow Clut-of-plane Dell Ratio= 0 Fr-Rupture = 61.0 psi Rebar*d'distance 3.750 in Minimum Vertical Steel% = 0.0020 Em=fm' = 900.0 Lower level Rebar... Max%of p bal. = 0.006794 Bar Size # 5 Grout Density = 140 pcf Bar Spacing 32.0 in Block Weight Normal Weight Wall Weight = 58.0 psf Wall is grouted at rebar cells only C 11rNE11Yt1 wadi D1i»1�fr A Clear Height = 9.50 It B Parapet height = 0.0 It B "'• Wall Support Condition Top&Bottom Pinned A •� . Vertical Uniform Loads— (Applied per toot of Strip Width) DL:Dead Lr:Rod Liv U:Floor Live S:Snow W:Wi Ledger Load Eccentricity 0.0 in 0.0 0.0 0.0 0.0 0.0 k/it Concentric Load 0.2930 0.2350 0.0 0.0 0.0 k/ft Lateiral,LpM!g�- ��r..f4'.s.=..v..s.,� Full area WIND load 45.50 psf Wall Weight Seismic Load Input Me#W: Direct entry of Lateral Wall Weight Fp 1.0 = 25.0 Psi Seismic Wall Lateral Load 25.0 psf 1680 NE 104 STREET MIAMI SHORES,FL ALEX KONDRAT 8 ASSOCIATES,INC. 10305 NW 41 STREET PE 58086,CA 9717 SUITE 124.DORAL,FL 33178 32 of 36 Primo 11 AUG 2015,6-41" Description: MASONRY WALL 9.5 HEIGHT GARAGE Results reported for"Strip VAdth"of 12.0 in Governing Load Combination... Actual Values... Allowable Values... PASS Moment Capacity Check Maximum Bending Stress Ratio = 0.2522 +0.90D+W+0.90H Max Mu 0.5135 k-ft Phi•Mn 2.036 k-ft - PASS Service Deflection Check Actual Dd.Ratio U 3,225 Allowable Dd.Ratio 360 W Only Max.Deflection 0.03535 in PASS Axial Load Check Max Pu 1 Ag 18.371 psi Max.Allow.Defl. 0.3167 In +1.20D+0.50Lr+0.50L+W+1.60H Location 4.592 It 0.2'I'm 300.0 psi PASS Reinforcing Limit Check Controlling Asrod 0.00250 AsW006794 rho bal 0.006794 PASS Minimum Moment Check Mcracking 0.5935 k-ft Minimum Phi Mn 2.120 k-ft +1.40D+1.60H Maximum Reactions... for Load CombineHon.... Top Horizontal W Only 0.2161 It Base Horizontal W Only 0.2161 k VertIcal Reaction +D+Lr+H 1.079 k Results reported for"Strip VWdth"w 12 in Axial Load Moment Values 0•b•�: Load Combination Pu 0.2"fm'b`t Mcr Mu Phi Phi Mn As • As Ratio • bal "":' k k k 1S k-ft _.._In^2 ' ' : _+� . ._ _ • 0.000 0.000 0.00 0.00 0.00 0.00 0.000000:018000 •0.M. 000000 0.000 0.000 0.00 0.00 0.00 0.00 0.OW 0 0 0 00'.0000 0.0000 :0096: 0.000 0.000 0.00 0.00 0.00 0.00 0.000 6•"'0'AQ00 •b • • 0.000 0.000 0.00 0.00 0.00 0.00 0.000 60600 0 900_:a 06:000 •6666 6�671�616 •996• +1.20D+1.60Lr+0.50W+1.60H at 4.43 to 4075 1.080 17.640 0.48 0.28 0.� 218 0.116 0 0.025 0. 68 90 99 60 0996:0 0.0� 0.000 0.� 0.00• 0.00 0.00 0.000 0 0 0�Oi0�0 0. +1.20D+1.60S40.50W+1.60H at 4.43 to 4.75 0.7% 17.640 0.46 026 0.90 208 0.116 ; t1.0p 6 0.008 699666 +1.20D+0.50Lr+0.50L+W+1.60H at 4.43 to 4. 0.822 17.640 0.46 0.51 0.90 211 0.116 . 0X25 :D.1 4 9 0 +1.20D+0.50L+0.50S+W+1.60H at 4.43 to 4.7 0.704 17.640 0.46 0.51. 0.90 2.08 0.116 '0 0 b.065 0.0068• :9096: +1.20D40.50L40.20S+E+1.60H at 4.43 to 4.7 0.704 17.640 0.46 0.28 0.90 2.08 0.116 0.0025 69.6068• • +0.900+W+0.90H at 4.43 to 4.75 0.528 17.640 0.46 0.51 0.90 204 0.116 0.0025 0.0068 +0 90D+E+0.90H at 4.43 to 4.75 0.528 17.640 0.46 0.28. 0.90 204 0.116 0.0025 0.0068 �1 Results reported for"Stip Width"=12 In Axial Load Moment Values Swnew Deflections Load Combination Pu Mc r Mactual I gross I cracked i effective Deflection Deft.Ratio k Wt Wt �InA4 InA4 InA4 in _ 0.000 0.00 0.00 0.00 0.00 0.000 0.000~� 0.0 ` 0.000 0.00 0.00 0.00 0.00 0.000 0.000 0.0 0.000 0.00 0.00 0.00 0.00 0.000 0.000 0.0 0.000 0.00 0.00 0.00 0.00 0.000 0.000 0.0 0.000 0.00 0.00 0.00 0.00 0.000 0.000 0.0 0.000 0.00 0.00 0.00 0.00 0.000 0.000 0.0 +D+0.60W+H at 4.43 to 4.75 0.587 0.46 0.31 34240 26.17 342.400 0.011 10,538.9 +D+0.70E+H at 4.43 to 4.75 0.587 0.48 0.20 342.40 26.17 342400 0.007 16,440.6 4D40.750Lr40.750L+0.450W+H at 4.43 to 4.7 0.763 0.46 0.23 34240 26.65 342.400 0.008 14,044.8 +D+0.750L+0.750S40.450W+H at 4.43 to 4.75 0.587 0.46 0.23 342.40 26.17 342.400 0.008 14,051.8 +D40.750L40.750S40.5250E+H at 4.43 to 4.7 0.587 0.46 0.15 34240 28.17 342.400 0.005 21,920.9 -40.60D+0.60W40.60H at 4.43 to 4.75 0.352 0.46 0.31 34240 25.52 342.400 0.011 10,545.7 40.60D+0.70E40.60H at 4.43 to 4.75 0.352 0.46 0.20 342.40 25.52 342400 0.007 16,451.3 0.000 0.00 0.00 0.00 0.00 0.000 0.000 0.0 0.000 0.00 0.00 0.00 0.00 0.000 0.000 0.0 0.000 0.00 0.00 0.00 0.00 0.000 0.000 0.0 1680 NE 104 STREET MIAMI SHORES,FL ALEX KONORAT&ASSOCIATES,INC. 10305 NW 41 STREET PE 58086,CA 9717 SUITE 124.DORAL,FL 33178 33 of 36 ftbit 11 AUG 2015,UM `P Desdption: MASONRY WALL 9.5'HEIGHT GARAGE rim ;Il'� �. Results reported for"Strip Wldth"a 12 In. Axial Load Moment Values Stiffness Deflections Load Combination Pu Mcr Mactual 1 gross I cracked I effective Deflection Dell.Ratio k k-ft k-ft in^4 in"4 inA4 in 0.000 0.00 0.00 0.00 0.00 0.000 0.000 0.0 W Only at 4.75 to 5.07 0.000 0.46 0.51 342.40 24.55 36.917 0.035 3,225.0 E Only at 4.75 to 5.07 0.000 0.46 0.28 342.40 24.55 342.400 0.010 11,527.1 0.000 0.00 0.00 0.00 0.00 0.000 0.000 0.0 m,. Results re " ported for Strip Width , 12 In. Load Combination Base Horizontal Top Horizontal Vertical(d3 Wall Base +D+H 0.0 k 0.00 k 0.844 k +D+L+H 0.0 k 0.00 k 0.844 k +D+Lr+H 0.0 k 0.00 k 1.079 k +D+S+H 0.0 k 0.00 k 0.844 k +D+0.750Lr+0.750L+H 0.0 k 0.00 k 1.020 k - +0+0.7501.+0.7508+11 0.0 k 0.00 k •••1644 k +D+0.60W+H 0.1 k 0.13 k • ••• ••*.0844 k •••••• • +D+0.70E+H 0.1 k 0.08 k •••••• `•i@0 44 k ••••i• +D+0.750Lr+0.750L+0.450W+H 0.1 k 0.10 k •••i•• 01.020 k • • +D+0.750L+0.750S+0.450W+H 0.1 k 0.10 k •••••• •••1.844 k • • +0+0.750L+0.750S+0.5250E+H 0.1 k 0.06 k •••• ••j� k ••••• •••••• • ••••• -4600+0.60W+0.601-1 0.1 k 0.13 k •••••• ••.0.506 k •••••• • -460+0.70E+0.601-1 0.1 k 0.08 k •• • 0.506 k •• DOnly 0.0 k 0.00 k • • i••0. k •••••e Lr Only 0.0 k 0.00 k •••••� •• k �.�••; LOnly 0.0 k 0.00 k •.•6.00.0 k S Only 0.0 k 0.00 k 0.000 k W Only 0.2 k 0.22 k 0.000 k E Only 0.1 k 0.12 k 0.000 k H Onix 0.0 k 0.00 k 0.000 k 1680 NE 104 STREET MIAMI SHORES,FL ALEX KONDRAT&ASSOCIATES,INC. 10305 NW 41 STREET • PE 58086,CA 9717 SUITE 124.DORAL,FL 33178 34 of 36 IST FL MASONRY WALL ACI 530-08 MASONRY DESIGN ------------------------- Fs = 24.00 KSI Fv = 38.73 PSI F'm = 1500.00 PSI Es = 29000.00 KSI Em = 1350.00 PSI n = 21.48 Es/Em Fb = 500.00 PSI Fa = 346.22 PSI r = 2.63 IN OUT OF PLANE BENDING FOR MASONRY WALLS ��•• ------------------------------------ -- • • • • HEIGHT = 8.50 •••:•• • • • REINFORCEMENT (2 #5) = 0.61 int •"••• .•�••• • • B = 36.00 in '�•• ••�� •��•• D = 3.83 in •�••�• •�•• ••,•• •• •• •••• •••••• rho = 0.0044 • rho*n = 0.0952 0 • • ••'••• k = 0.35 • • • ' • j = 0.88 •• • •• 009 . • AXIAL LOAD/FT 1.50 KIPS (DEAD+LIVE) AREA OF MASONRY = 205.00 int WIND LOAD = 270.00 PLF MOMENT = 29.26 kip-in fb - 358.18 psi fa = 7.32 psi fs= 14.20 KSI fa/Fa + fb/Fb = 0.74 < 1.0 O.K 1680 NE 104 STREET MIAMI SHORES,FL ALEX KONDRAT&ASSOCIATES,INC. 10305 NW 41 STREET PE 58086,CA 9717 SUITE 124.DORAL,FL 33178 35 of 36 NdnW:12 AUG 2015,2:05AM Description: (2)24 OVERHANG( FRONT ENTRY t /f��.11 sty -"' CIK xE"$3 .`9N Calculations per NDS 2012, IBC 2012,CBC 2013,ASCE 7-10 Load Combination Set:ASCE 7-10 . Material Properties Analysis Method: Allowable Stress Design Fb-Tension 1000 psi E:Modulus of Elasticity Load Combination ASCE 7-10 Fb-Compr 1000 psi Ebend-xx 1400 ksi Fc-Pril 1400 psi Eminbend-xx 510 ksi Wood Species :Southern Pine-2013 Addendum Fc-Perp 565 psi Wood Grade :No.2: 2"-4" Thick:5"-6"Wide Fv 175 psi Ft 600 psi Density 34.32pcf Beam Bracing : Beam is Fully Braced against lateral-torsion buckling 1)(0.02511-0.03) 1)(0.025)Lr(0.03 i t I •i," • • boob •o••*• 2-2x6 •• 2_ a •• • I *boos* ••+• ••••i• i Span=11.750 ft •stiWi6.0 ft • • • l ease •bo• • • boob •b•• •••�b�� A •ICQ . .,. Service loads entered.Load FactQr+s•4i be apply:ar calculations••• • Load for Span Number 1 *sees* • • Uniform Load: D=0.0250, Lr=0.030, Tributary Width=1.0 ft • : . . •+••:• Load for Span Number 2 s ••••• • • Uniform Load: D=0.0250, Lr=0.030, Tributary Width=1.0 If ••o• ; . ••b :•.•• Maximum Bending Stress Ratio = 0.62a 1 Maximum Shear Stress Ratio = 0.160 : 1 Section used for this span 2-2x6 Section used for this span 2-2x6 fb:Actual 785.45 psi fv:Actual = 35.07 psi FB:Allowable 1,250.00 psi Fv:Allowable = 218.75 psi Load Combination +D+Lr+H Load Combination +D+Lr+H Location of maximum on span = 11.750ft Location of maximum on span = 11.356 ft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 Maximum Deflection Max Downward Transient Deflection 0.159 in Ratio= 904 Max Upward Transient Deflection 0.000 in Ratio= 0<360 Max Downward Total Deflection 0.292 in Ratio= 492 Max Upward Total Deflection 0.000 in Ratio= 0<240 Load Combination Max Stress Ratios Moment Values Shear Values Segment Length Span# M V C d C FN Cl Cr Cm C t CL M Ib Fb V fir F'v +D+H 0.00 0.00 0.00 0.00 Length=11.750 It 1 0.397 0.101 0.90 1.000 1.00 1.00 1.00 1.00 1.00 0.45 357.02 900.00 0.18 15.94 157.50 Length=6.0 It 2 0.397 0.101 0.90 1.000 1.00 1.00 1.00 1.00 1.00 0.45 357.02 900.00 0.14 15.94 157.50 +D+L+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=11.750 ft 1 0.357 0.091 1.00 1.000 1.00 1.00 1.00 1.00 1.00 0.45 357.02 1000.00 0.18 15.94 175.00 Length=6.0 It 2 0.357 0.091 1.00 1.000 1.00 1.00 1.00 1.00 1.00 0.45 357.02 1000.00 0.14 15.94 175.00 +D+Lr+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=11.750 it 1 0.628 0.160 1.25 1.000 1.00 1.00 1.00 1.00 1.00 0.99 785.45 1250.00 0.39 35.07 218.75 Length=6.0 It 2 0.628 0.160 1.25 1.000 1.00 1.00 1.00 1.00 1.00 0.99 785.45 1250.00 0.31 35.07 218.75 1680 NE 104 STREET MIAMI SHORES,FL ALEX KONDRAT&ASSOCIATES,INC. 10305 NW 41 STREET • PE 58086,CA 9717 SUITE 124.DORAL,FL 33178 36 of 36 Pdrrted:12 AUG 2015.2•05AW1 mg " ypzg N �� Description: (2)2x6 OVERHANG Q FRONT ENTRY Load Combination Max Stress Ratios Moment Values Shear Values Segment Length Span# M V C d C FN C I Cr C m C t CL M Po Pb V N F'y +D+S+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=11.750 ft 1 0.310 0.079 1.15 1.000 1.00 1.00 1.00 1.00 1.00 0.45 357.02 1150.00 0.18 15.94 201.25 Length=6.0 ft 2 0.310 0.079 1.15 1.000 1.00 1.00 1.00 1.00 1.00 0.45 357.02 1150.00 0.14 15.94 201.25 +D+0.750Lr+0.750L+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=11.750 ft 1 0.543 0.138 1.25 1.000 1.00 1.00 1.00 1.00 1.00 0.86 678.35 1250.00 0.33 30.28 218.75 Length=6.0 ft 2 0.543 0.138 1.25 1.000 1.00 1.00 1.00 1.00 1.00 0.85 678.35 1250.00 0.26 30.28 218.75 +D+0.750L+0.750S+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=11.750 ft 1 0.310 0.079 1.15 1.000 1.00 1.00 1.00 1.00 1.00 0.45 357.02 1150.00 0.18 15.94 201.25 Length=6.0 ft 2 0.310 0.079 1.15 1.000 1.00 1.00 1.00 1.00 1.00 0.45 357.02 1150.00 0.14 15.94 201.25 +0+0.60W+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=11.750 ft 1 0.223 0.057 1.60 1.000 1.00 1.00 1.00 1.00 1.00 0.45 357.02 1600.00 0.18 15.94 280.00 Length=6.0 ft 2 0.223 0.057 1.60 1.000 1.00 1.00 1.00 1.00 1.00 0.45 357.02 1600.00 0.14 15.94 280.00 +D+0.70E+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=11.750 It 1 0.223 0.057 1.60 1.000 1.00 1.00 1.00 1.00 1.00 0.45 357.02 1600.00 0.18 15.94 280.00 Length=6.0 It 2 0.223 0.057 1.60 1.000 1.00 1.00 1.00 1.00 1.00 0.45 357.02 1600.00 0.14 15.94 280.00 +D+0.750Lr+0.750L+0.450W+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=11.750 ft 1 0.424 0.108 1.60 1.000 1.00 1.00 1.00 1.00 1.00 0.86 678.35 1600.00 Q.0 0�BQ.28 280.00 Length=6.0 ft 2 0.424 0.108 1.60 1.000 1.00 1.00 1.00 1.00 1.00 0.85 678.35 •1600 0 a a•'4 .28 1m"6• +D+0.750L+0.750S+0.450W+H 1.000 1.00 1.00 1.00 1.00 1.00 ••t.OQ 400 *00-00 0.06 Length=11.750 ft 1 0.223 0.057 1.60 1.000 1.00 1.00 1.00 1.00 1.00 0.45 357.02 •1t3PD tt V j9.94 2906:• Length=6.0 It 2 0.223 0.057 1.60 1.000 1.00 1.00 1.00 1.00 1.00 0.45 357.02 18• 00 0.14 15.94 430.00 +D+0.750L+0.750S+0.5250E+H 1.000 1.00 1.00 1.00 1.00 1.00 .00 0.00 0.00 -a1o•; Length=11.750 ft 1 0.223 0.057 1.60 1.000 1.00 1.00 1.00 1.00 1.00 0.45 357.02 (61V 15h94 2 Length=6.0 ft 2 0.223 0.057 1.60 1.000 1.00 1.00 1.00 1.00 1.00 0.45 357.02 fb�t.60 0.1'4'*?5.94 �8�$W•• +0.60D+0.60W+0.60H 1.000 1.00 1.00 1.00 1.00 1.00 ••;!! 0.00;'•000 •fl�!1 Length=11.750 ft 1 0.134 0.034 1.60 1.000 1.00 1.00 1.00 1.00 1.00 0.27 21421 •W6.00 0!M•• 9.56 2%6.11? • Length=6.0 It 2 0.134 0.034 1.60 1.000 1.00 1.00 1.00 1.00 1 00.00 0.27 214.21 •1A00. 0.08 • 9.56 280. • +0.60D+0.70E+0.60H 1.000 1.00 1.00 1.00 1.00 1.00 i 8.00: 000 40.00 •9.fi(►09 Length=11.750 ft 1 0.134 0.034 1.60 1.000 1.00 1.00 1.00 1.00 1.00 0.27 214.21 01600.Qp 021 21110.00 Length=6.0 It 2 0.134 0.034 160 1000 100 1.00 1.00 1.00 1.00 0.27 214.21 -TF..00; 0.0j •.9�6 �•; �� t ` • • • Load Combination Span Max."-"Deft Location in Span Load Combination Max.'+•Defl Location in Span +D+Lr+H 1 0.1606 4.923 0.0000 0.000 +D+Lr+H 2 0.2919 6.000 0.0000 0.000 I� bti " K Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Support 3 Overall MA)amum 0.239 0.737 Overall MINimum 0.065 0.201 +D+H 0.109 0.335 +D+L+H 0.109 0.335 +D+Lr+H 0.239 0.737 +D+S+H 0.109 0.335 +D+0.750Lr+0.750L+H 0.206 0.637 +D+0.750L+0.750S+H 0.109 0.335 +D+0.60W+H 0.109 0.335 +D+0.70E+H 0.109 0.335 +D+0.750Lr+0.750L+0.450W+H 0.206 0.637 +0+0.750L+0.750S+0.450W+H 0.109 0.335 +D+0.750L+0.750S+0.5250E+H 0.109 0.335 +0.60D+0.60W+0.60H 0.065 0.201 +0.60D+0.70E+0.60H 0.065 0.201 D Only 0.109 0.335 Lr Only 0.130 0.402 L Only S Only W Only E Only H Only 1680 NE 104 STREET MIAMI SHORES,FL i R 1 000 •• •• • • • •• •• • • • • ••• • M • ••• • • • ••• • • • • • • • •• • • • • • • • •• • ••• ••• • BUILDING DEPARTMENT COI�f �T�[' ; ::' •:• 1 N. . . . . . • • • • 0 0 000 99 w � Project: REMODLE FOR: 1680 NE 104TH STREET MIAMI SHORES, FL DATE 7-1-15 PAGES OR SHEETS COVERED BY THIS SEAL FROM 1-17 Alex Kondrat&Associates Inc 10305 NW 41 Street#124 Doral,Fl 33178 PE 58086,CA 9717 (305)387-5770 \`ttttiil►1����� r . . ... . . . ... .. .. . . . .. .. . . . . . . . . .. . . . . . . ... ... . .. . . . .. ... .. 00 -:6: . TABLE OF CONTE-Nro ..• Proiect: REMODLE FOR: 1680 NE 104TH STREET MIAMI SHORES, FL DESCRIPTION PAGE# • DEVELOPMENT OF WIND LOADS PER ASCE 7-10........................................ 1-7 • DESIGN ROOF TRUSS REACTION................................................................... 8-9 • DESIGN&ANALYSIS OF WOOD BEAMS/RAFTER...................................... 10-16 • DESIGN&ANALYSIS ROOF COLLAR TRUSS........................................... 17 Alex Kondrat&Associates Inc 10305 NW 41 Street#124 Doral,FI 33178 PE 58086,CA 9717 (305)387-5770 cT.• �oSB ,. W F J�z ®• ..FL•'�1��,-`tel`') sslo ��l1lI �11 �I/�I l:a ' 1 of •• •i• ••• •• •• ••• • • .•• li • • • ••• • • ••• ••• ••• ••• • • •• • • • •• • • • • • • •• • • • • • • • MecaWind Pro v2 . 2 . 6 . 1 pdr kSC2-•7:i0 •'• ••• Developed by MECA Enterprises, Inc. Copyright www.mecaenterpEises.com Date 6/30/2015 Project No. CAS 4'117: ••• �•• �•• ••• Company Name Alex Kondrat a Associates, Inc Designed By AK �16#5806(b • • • • •• • Address 10305 NW 41 STREET, SUITE 209 Description • • • • • •• • • b City DORAL Customer Name • ••• •• • • • • • • • • • State Florida Proj Location •• • • • • File Location: \\ALEX-HP\Projects\Pascual Perez Kiliddjian\1680 NE 104 Street\CALCS\1680.wnd Input Parameters: Directional Procedure All Heights Building (Ch 27 Part 1) 1 Basic Wind Speed(V) 175.00 mph Structural Category = II Exposure Category = C Natural Frequency = N/A Flexible Structure = No Importance Factor 1.00 Kd Directional Factor = 0.85 Alpha 9.50 Zg = 900.00 ft At = 0.11 Bt = 1.00 Am = 0.15 Bm 0.65 Cc = 0.20 1 = 500.00 ft • Epsilon 0.20 Zmin = 15.00 ft Slope of Roof = 2.846316 12 Slope of Roof(Theta) = 13.34 Deg h: Mean Roof Ht = 12.14 ft Type of Roof = HIPPED RHt: Ridge Ht = 13.83 ft Eht: Eave Height = 10.45 ft OH: Roof Overhang at Eave= 2.50 ft Overhead Type = OH w/ soffit Bldg Length Along Ridge - 78.00 ft Bldg Width Across Ridge= 23.50 ft Length of Hipped Ridge = 54.50 ft Roof Slope on Hip End = 13.34 Deg Gust Factor Calculations Gust Factor Category I Rigid Structures - Simplified Method Gustl: For Rigid Structures (Nat. Freq.>l Hz) use 0.85 = 0.85 Gust Factor Category II Rigid Structures - Complete Analysis Zm: 0.6*Ht - 15.00 ft lzm:.,, .Cc*(33/Zm)^0.167 = 0.23 Lzm:, .24'(Zm/3J)^Epsilon = 427.06 ft Q: ""'(1/(1+0.63*((B+Ht)/Lzm)^0.63))^0.5 0,94 Gust2: 0.925*((1+1.7*lzm*3.4*Q)/(1+1.7*3.4*lzm)) = 0.89 Gust Factor Summary Not a Flexible Structure use the Lessor of Gustl or Gust2 = 0.85 Table 26.11-1 Internal Pressure Coefficients for Buildings, GCpi GCPi : Internal Pressure Coefficient - +/-0.18 Wind Pressurs Main Wind Force Resisting System (MFRS) - Ref Figure 27.4-1 Kh: 2.01*(Ht/Zg)^(2/Alpha) - 0.85 Kht: Topographic Factor (Figure 6-4) = 1.00 Qh: .00256*(V)^2*I*Kh*Kht*Kd = 33.94 psf Cpww: Windward Wall Cp(Ref Fig 6-6) = 0.80 Roof Area = 2468.89 ft^2 Reduction Factor based on Roof Area - 0.80 MFRS-Wall Pressures for Wind Normal to 78 ft Wall (Normal to Ridge) All pressures shown are based upon ASD Design, with a Load Factor of .6 Wall CP Pressure Pressure +GCpi (Psf) -GCPi (Psf) --------------- ------ ----------- ----------- Leeward Wall -0.50 -20.53 -8.32 Side walls -0.70 -26.30 -14.09 Wall Slav Kz Kzt Cp qz Press Press Total ft psf +GCpi -GCPi +/-Gcpi ------------------------------------------------------------------- Windward 10.45 0.85 1.00 0.80 33.94 16.97 29.19 37.51 Windward 0.45 0.85 1.00 0.80 33.94 16.97 29.19 37.51 Roof Location CP Pressure Pressure +GCpi(Psf)-GCpi(Psf) --------------------------------------------------------------------------- Windward - Min Cp -0.78 -28.61 -16.39 Windward - Max Cp -0.18 -11.30 0.92 Leeward Norm to Ridge -0.50 -20.53 -8.32 1 1 •• •• • • • •• •• • • • • • • • • • • • - L- . . . . . . . .. . . . . . . . . . . .. Hipped End (.00 to 6.07 ft) •®• -0.80 • 2:.719 rii.07.• Hipped End (6.07 to 12.14 ft) -1.04 -36.05 -23.83 Hipped End (12.14 to 24.28 ft) -0.36 -16.56 -4.34 Overhang Bottom Side (Windward only) 0.80 23.08 23.0• 8 •• • • • •• ••• • Normal to Ridge - Base Reactions - Walls+Rcof +GCpi • • • • • • • • Description press Area 8S[ gp ..*F; • • • •• ••NB psf ft-2 Rip Rip Kip K-ft K-ft K-ft ------------------------------------------------------------------------------------- Leeward Wall -20.53 815 .00 16.74 .00 87.5 .0 .0 _ Side Wall -26.30 246 -6.46 .00 .00 .0 33.8 .0 Side Wall -26.30 246 6.46 .00 .00 .0 -33.8 .0 Windward Wall 16.97 780 .00 13.24 .00 72.1 .0 .0 Windward Wall 16.97 35 .00 0.60 .00 0.1 .0 .0 Roof Windward -28.61 800 .00 -5.28 22.27 65.2 .0 .0 Roof Leeward -20.53 800 .00 3.79 15.99 -46.8 .0 .0 Roof Windward -28.61 207 .00 -1.37 5.76 60.2 .0 .0 Roof Leeward -20.53 207 .00 0.98 4.13 -43.2 .0 .0 Roof End (0 to h/2) -29.29 14 0.09 .00 0.39 4.2 14.8 -1.0 Roof End (0 to h/2) -29.29 14 -0.09 .00 0.39 4.2 -14.8 1.0 Roof End (h/2 to h) -36.05 46 0.39 -o.00 1.62 8.4 53.4 -2.0 Roof End (h/2 to h) -36.05 46 -0.39 .00 1.62 8.4 -53.4 2.0 Roof End (h/2 to h) -36.05 16 0.13 .00 0.55 2.8 20.6 -0.7 Roof End (h/2 to h) -36.05 16 -0.13 .00 0.55 2.8 -20.6 0.7 Roof End (h to 2h) -16.56 26 0.10 -0.00 0.42 0.4 12.9 -0.1 Roof End (h to 2h) -16.56 26 -0.10 .00 0.42 0.4 -12.9 0.1 Roof End (h to 2h) -16.56 5 0.02 .00 0.09 0.1 3.3 -0.0 Roof End (h to 2h) -16.56 5 -0.02 .00 0.09 0.1 -3.3 0.0 Roof End (h to 2h) -16.56 78 0.30 0.00 1.26 -6.3 41.3 1.5 Roof End (h to 2h) -16.56 78 -0.30 .00 1.26 -6.3 -41.3 -1.5 Roof End (h to 2h) -16.56 26 0.10 .00 0.42 -2.1 15.7 0.5 • Roof End (h to 2h) -16.56 26 -0.10 .00 0.42 -2.1 -15.7 -0.5 Roof End (>2h) -6.82 8 0.01 .00 0.06 -0.6 2.1 0.2 Roof End (>2h) -6.82 8 -0.01 .00 0.06 -0.6 -2.1 -0.2 OH Bot Windward 23.08 195 .00 .00 4.50 58.5 .0 .0 Roof End (0 to h/2) -29.29 7 0.04 .00 0.19 1.7 6.6 -0.4 Roof End (0 to h/2) -29.29 7 -0.04 .00 0.19 1.7 -6.6 0.4 Roof End (>2h) -6.82 2 0.00 .00 0.01 .-0.1 0.4 0.0 Roof End (>2h) -6.82 2 -0.00 .00 0.01 -0.1 -0.4 -0.0 ------------------------------------------------------------------------------------- Total .00 4785 -0.00 28.69 62.65 270.6 -0.0 0.0 Normal to Ridge - Base Reactions - Walls Only +GCpi Description press Area Fx FY Fx Ma My Mz psf ft^2 Kip Kip Kip K-ft R-ft K-ft ------------------------------------------------------------------------------------- Leeward Wall -20.53 815 .00 16.74 .00 87.5 .0 .0 Side Wall -26.30 246 -6.46 .00 .00 .0 33.8 .0 Side Wall -26.30 246 6.46 .00 .00 .0 -33.8 .0 Windward Wall 16.97 780 .00 13.24 .00 72.1 .0 .0 Windward Wall 16.97 35 .00 0.60 .00 0.1 .0 .0 ------------------------------------------------------------------------------------- Total .00 2121 .00 30.57 .00 159.7 .0 .0 Normal to Ridge - Base Reactions - Walls+Roof -GCpi Description press Area Fx FY Fa Ns MY Ms psf ft^2 Kip Kip Kip K-ft K-ft K-ft ------- --------------------------------------------------------- ------ ---- ---------- ' Leeward-Wall -8.32 815 .00 6.78 .00 35.4 .0 .0 Side Wall -14.09 246 -3.46 .00 .00 .0 18.1 .0 Side Wall -14.09 246 3.46 .00 .00 .0 -18.1 .0 Windward Wail 29.19 780 .00 22.77 .00 124.1 .0 .0 Windward Wall 29.19 35 .00 1.02 .00 0.2 .0 .0 Roof Windward 0.92 800 .00 0.17 -0.71 -2.1 .0 .0 Roof Leeward -8.32 800 .00 1.54 6.47 -18.9 .0 .0 Roof Windward 0.92 207 .00 0.04 -0.18 -1.9 .0 .0 Roof Leeward -8.32 207 .00 0.40 1.67 -17.5 .0 .0 Roof End (0 to h/2) -17.07 14 0.05 .00 0.23 2.4 8.6 -0.6 Roof End (0 to h/2) -17.07 14 -0.05 .00 0.23 2.4 -8.6 0.6 Roof End (h/2 to h) -23.83 46 0.25 -0.00 1.07 5.5 35.3 -1.3 Roof End (h/2 to h) -23.83 46 -0.25 .00 1.07 5.5 -35.3 1.3 Roof End (h/2 to h) -23.83 16 0.09 .00 0.36 1.9 13.6 -0.4 Roof End (h/2 to h) -23.83 16 -0.09 .00 0.36 1.9 -13.6 0.4 Roof End (h to 2h) -4.34 26 0.03. -0.00 0.11 0.1 3.4 -0.0 :0.0: •• •• • • • •••• • • • • • • :0.0:• • • • • ••• • • • • ••• ..y • ••• • • •• J/(j, • • • 000 • • •• • • • • • • • • • • ••• Roof End (h to 2h) -4.34 26 -0.03 !98 : 0.11 •••OLo -3•a• 0•6.0 Roof End (h to 2h) -4.34 5 0.01 .00 0.02 0.0 0.9 -0.0 Roof End (h to 2h) -4.34 5 -0.01 .00 0.02 0.0 -0.9 0.0 Roof End (h to 2h) -4.34 78 0.08 0.00 0.33 -1.7 10.8 0.4 Roof End (h to 2h) -4.34 78 -0.08 :OQ•• 1.31 ••it-OP sh008•••- 0.4 Roof End (h to 2h) -4.34 26 0.03 O(a'• 4.t • s0.5 • •-A.l • 0.1 Roof End (h to 2h) -4.34 26 -0.03 .00 • O► 1 • •0 15• 4-4.1 6-0.1 Roof End (>2h) 5.40 8 -0.01 .0%••-t l ••00 i X o7•••-0.1 Roof End (>2h) 5.40 8 0.01 .00 -0.04 0.5 1.7 0.1 OH Sot Windward 23.08 195 .00 .00 4.50 58.5 .0 .0 Roof End (0 to h/2) -17.07 7 0.03 .00 0.11 1.0 3.8 -0.2 Roof End (0 to h/2) -17.07 7 -0.03 .00 0.11 1.0 -3.8 0.2 Roof End (>2h) 5.40 2 -0.00 .00 -0.01 0.1 -0.3 -0.0 Roof End (>2h) 5.40 2 0.00 .00 -0.01 0.1 0.3 0.0 ------------------------------------------------------------------------------------- Total .00 4785 -0.00 32.72 16.33 196.5 -0.0 0.0 • Normal to Ridge - Base Reactions - Walls Only -GCpi Description Press Area Fx Fy Fz Mx My Mz • psf ft^2 Kip Kip Kip R-ft A-ft R-ft ------------------------------------------------------------------------------------- Leeward Wall -8.32 815 .00 6.78 .00 35.4 .0 .0 Side Wall -14.09 246 -3.46 .00 .00 .0 18.1 .0 Side Wall -14.09 246 3.46 .00 .00 .0 -18.1 p Windward Wall 29.19 780 .00 22.77 .00 124.1 .0 .0 Windward Wall 29.19 35 .00 1.02 .00 0.2 .0 .0 ------------------------------------------------------------------------------------- Total .00 2121 .00 30.57 .00 159.7 .0 .0 Normal to Ridge - Base Reactions - Walls+Roof MIN Description Press Area* Fx ry Fz M: My Mz psf ft^2 Kip Kip Kip K-ft R-ft K-ft ------------------------------------------------------------------------------------- Windward Wall 9.60 780 .00 7.49 .00 40.8 .0 .0 Windward Wall 9.60 35 .00 0.34 .00 0.1 .0 .0 Roof Windward 4.80 185 .00 0.89 .00 11.0 .0 .0 Roof Leeward 4.80 185 .00 0.89 .00 11.0 .0 .0 Roof Windward 4.80 48 .00 0.23 .00 2.5 .0 .0 Roof Leeward 4.80 48 .00 0.23 .00 2.5 .0 .0 Roof End (0 to h/2) 4.80 0 .00 .00 .00 .0 .0 .0 Roof End (0 to h/2) 4.80 0 .00 .00 .00 .0 .0 .0 Roof End (h/2 to h) 4.80 0 .00 0.00 .00 0.0 .0 -0.0 Roof End (h/2 to h) 4.80 0 .00 0.00 .00 0.0 .0 0.0 Roof End (h/2 to h) 4.80 0 .00 .00 .00 .0 .0 .0 Roof End (h/2 to h) 4.80 0 .00 .00 .00 .0 .0 .0 Roof End (h to 2h) 4.80 0 .00 0.00 .00 0.0 .0 -0.0 Roof End (h to 2h) 4.80 0 .00 0.00 .00 0.0 .0 0.0 Roof End (h to 2h) 4.80 0 .00 .00 .00 .0 .0 .0 Roof End (h to 2h) 4.80 0 .00 .00 .00 .0 .0 .0 Roof End (h to 2h) 4.80 0 .00 0.00 .00 0.0 .0 -0.0 Roof End (h to 2h) 4.80 0 .00 0.00 .00 0.0 .0 0.0 Roof End (h to 2h) 4.80 0 .00 .00 .00 .0 .0 .0 Roof End (h to 2h) 4.80 0 .00 .00 .00 .0 .0 .0 Roof End (>2h) 4.80 0 .00 .00 .00 .0 .0 .0 Roof End (>2h) 4.80 0 .00 .00 .00 .0 .0 .0 Roof End (0 to h/2) 4.80 0 .00 0.00 .00 0.0 .0 -0.0 Roof End (0 to h/2) 4.80 0 .00 0.00 .00 0.0 .0 0.0 Roof End (>2h) 4.80 0 .00 0.00 .00 0.0 .0 -0.0 Roof End (>2h) 4.80 0 .00 0.00 .00 0.0 .0 0.0 ------------------------------------------------------------------------------------- Total .00 1280 .00 10.06 .00 67.9 .0 .0 Notes - Normal to Ridge Note (1) Per Fig 27.4-1 Note 7, Since Theta > 10 Deg base calcs on Mean Ht Note (2) Wall & Roof Pressures - Qh*(G*Cp - GCPi) Note (3) +GCpi = Positive Internal Bldg Press, -GCPi = Negative Internal Bldg Press Note (4) Total Pressure - Leeward Press + Windward Press (For + or - GCPi) Note (5) Hipped ends considered as parallel to ridge for all theta. Note (6) Ref Fig 27.4-1, Normal to Ridge (Theta>=10), Theta= 13.3 Deg, h/1= 0.16 Note (7) Overhang bottom based upon windward wall Cp and GCpi = 0. Note (8) X= Along Building ridge, Y - Normal to Building Ridge, Z = Vertical Note (9) MIN = Minimum pressures on Walls = 9.6 psf and Roof - 4.8 psf Note (10) Area* = Area of the surface projected onto a vertical plane normal to wind. MWFRS-Wall Pressures for Wind Normal to 23.5 ft wall (Along Ridge) 0 Soo .. • . • . . . . . •...... . ... •.. . . . . . . . .. . . . . . . . . . . .• All pressures shown are based upon ASD Design, wiN•d load FaAq, ol..6 •i• ••• Wall CO Pressure Pressure +GCPi (Per) -GCPi•�Psl) • . •• ••• •• --------------- ------ ----------- Leeward Wall -0.23 -12.86 -0.04 ••• • • • • •• • Side Walls -0.70 -26.30 -14.00 • • • • •• • so Wall Elev Kz Kzt Cp qz Press Press Total ft Pet +Gcpi -GCPi +/-GCPi i Windward 13.83 0.85 1.00 0.80 33.94 16.91 29.19 29.83 a Windward 10.45 0.85 1.00 0.80 33.94 16.91 29.19 29.83 Windward 0.45 0.85 1.00 0.80 33.94 16.97 29.19 29.83 Roof - Dist from Windward Edge Cp Pressure Pressure +GCpi(psf)-GCPi(paf) ---------------------------------------------------------------- Roof: 0.0 ft to 6.1 ft -0.90 -32.07 -19.86 Roof: 6.1 ft to 12.1 ft -0.90 -32.07 -19.86 Roof: 12.1 ft to 24.3 ft -0.50 -20.53 -8.32 Roof: 24.3 ft to 83.0 ft -0.30 -14.76 -2.55 Along Ridge - Base Reactions - Walla+Roof +GCpi Description Press Area Fx FY Fm Mx My Mz Pat ftA2 Kip Kip Kip K-ft K-ft K-ft ------------------------------------------------------------------------------------- Leeward Wall -12.86 246 3.16 .00 .00 .0 -16.5 .0 Side Wall -26.30 815 .00 21.44 .00 112.0 .0 .0 Side Wall -26.30 815 .00 -21.44 .00 -112.0 .0 .0 Windward Wall 16.97 235 3.99 .00 .00 .0 -21.7 .0 Windward Wall 16.97 11 0.18 .00 .00 .0 -0.0 .0 Roof (0 to h/2) -32.07 73 -0.54 .00 2.28 .0 -78.7 .0 Roof (0 to h/2) -32.07 14 .00 -0.10 0.43 4.5 -16.3 -3.9 Roof (0 to h/2) -32.07 14 .00 0.10 0.43 -4.5 -16.3 3.9 Roof (0 to h/2) -32.07 67 -0.49 .00 2.08 .0 -78.6 .0 Roof (h/2 to h) -32.07 64 -0.48 .00 2.00 .0 -58.9 .0 Roof (h/2 to h) -32.07 46 -0.00 -0.34 1.45 8.2 -46.8 -11.1 Roof (h/2 to h) -32.07 46 .00 0.34 1.45 -8.2 -46.8 11.1 Roof (h/2 to h) -32.07 16 .00 -0.12 0.49 5.1 -15.8 -3.7 Roof (h/2 to h) -32.07 16 .00 0.12 0.49 -5.1 -15.8 3.7 Roof (h to 2h) -20.53 26 -0.00 -0.12 0.52 1.8 -14.7 -3.5 Roof (h to 2h) -20.53 26 .00 0.12 0.52 -1.8 -14.7 3.5 Roof (h to 2h) -20.53 5 .00 -0.03 0.11 1.1 -3.1 -0.7 Roof (h to 2h) -20.53 5 .00 0.03 0.11 -1.1 -3.1 0.7 Roof (h to 2h) -20.53 121 .00 -0.57 2.42 7.1 -53.8 -12.8 Roof (h to 2h) -20.53 121 .00 0.57 2.42 -7.1 -53.8 12.8 Roof (h to 2h) -20.53 26 .00 -0.12 0.51 5.4 -11.4 -2.7 Roof (h to 2h) -20.53 26 .00 0.12 0.51 -5.4 -11.4 2.7 Roof (>2h) -14.76 537 .00 -1.83 7.71 22.6 38.7 9.2 Roof (>2h) -14.76 537 .00 1.83 7.71 -22.6 38.7 -9.2 Roof (>2h) -14.76 114 .00 -0.39 1.64 17.2 8.2 2.0 Roof (>2h) -14.76 114 .00 0.39 1.64 -17.2 8.2 -2.0 Roof (>2h) -14.76 80 0.00' -0.27 1.15 6.9 38.0 9.0 Roof (>2h) -14.76 80 .00 0.27 1.15 -6.9 38.0 -9.0 Roof (>2h) -14.76 30 .00 -0.10 0.43 4.5 14.4 3.4 Roof (>2h) -14.76 30 .00 0.10 0.43 -4.5 14.4 -3.4 Roof (>2h) -14.76 67 0.23 .00 0.96 .0 36.2 .0 Roof (0 to h/2) -32.07 7 .00 -0.05 0.20 1.6 -7.5 -1.8 Roof (0 to h/2) -32.07 7 .00 0.05 0.20 -1.6 -7.5 1.8 Roof (h to 2h) -20.53 5 -0.02 .00 0.09 .0 -2.3 .0 Roof (>2h) -14.76 142 0.48 .00 2.04 .0 65.7 .0 Roof (>2h) -14.76 3 .00 -0.01 0.05 0.5 1.8 0.4 Roof (>2h) -14.76 3 .00 0.01 0.05 -0.5 1.8 -0.4 ------------------------------------------------------------------------------------- Total .00 4589 6.50 0.00 43.69 -0.0 -291.6 0.0 Along Ridge - Base Reactions - Walls Only +GCpi Description Press Area Fx FY Fz Mx My Mz Pet ftA2 Kip Kip Kip K-ft K-ft R-ft ------------------------------------------------------------------------------------- Leeward Wall -12.86 246 3.16 .00 .00 .0 -16.5 .0 Side Wall -26.30 815 .00 21.44 .00 112.0 .0 .0 Side Wall -26.30 815 .00 -21.44 .00 -112.0 .0 .0 .. .. . . . .. .. . . . . . . . . . . . . . ... . . . . ... • ••• • • • ••• • • • • • • • •• • • • • • • • • • • •• Windward Wall 16.97 235 3.99 .00 ••• A• -21•:• ••••0 Windward Wall 16.97 11 0.18 .00 .00 .0 -0.0 .0 ------------------------------------------------------------------------------------- Total .00 2121 7.33 .00 .00 .0 -38.3 .0 •• • • • •• ••• •• Along Ridge - Base Reactions - Walls+Roof -GCpi • ••• • • • • •• • Description press Area Fx Ty •• g$ • *X • • w• •• psf ft^2 Rip Kip Kip K-ft K-ft K-ft ------------------------------------------------------------------------------------- Leeward Wall -0.64 246 0.16 .00 .00 .0 -0.8 .0 - Side Wall -14.09 815 .00 11.48 .00 60.0 .0 .0 Side Wall -14.09 815 .00 -11.48 .00 -60.0 .0 .0 Windward Wall 29.19 235 6.86 .00 .00 .0 -37.4 .0 Windward Wall 29.19 11 0.31 .00 .00 .0 -0.1 .0 „ Roof (0 to h/2) -19.86 73 -0.34 .00 1.41 .0 -48.7 .0 ' Roof (0 to h/2) -19.86 14 .00 -0.06 0.27 2.8 -10.1 -2.4 Roof (0 to h/2) -19.86 14 .00 0.06 0.27 -2.8 -10.1 2.4 Roof (0 to h/2) -19.86 67 -0.31 .00 1.29 .0 -48.7 .0 Roof (h/2 to h) -19.86 64 -0.29 .00 1.24 .0 -36.5 .0 Roof (h/2 to h) -19.86 46 -0.00 -0.21 0.90 5.1 -29.0 -6.9 Roof (h/2 to h) -19.86 46 .00 0.21 0.90 -5.1 -29.0 6.9 Roof (h/2 to h) -19.86 16 .00 -0.07 0.30 3.1 -9.8 -2.3 Roof (h/2 to h) -19.86 16 .00 0.07 0.30 -3.1 -9.8 2.3 Roof (h to 2h) -8.32 26 -0.00 -0.05 0.21 0.7 -6.0 -1.4 Roof (h to 2h) -8.32 26 .00 0.05 0.21 -0.7 -6.0 1.4 Roof (h to 2h) -8.32 5 .00 -0.01 0.04 0.5 -1.2 -0.3 Roof (h to 2h) -8.32 5 .00 0.01 0.04 -0.5 -1.2 0.3 Roof (h to 2h) -8.32 121 .00 -0.23 0.98 2.9 -21.8 -5.2 Roof (h to 2h) -8.32 121 .00 0.23 0.98 -2.9 -21.8 5.2 Roof (h to 2h) -8.32 26 .00 -0.05 0.21 2.2 -4.6 -1.1 Roof (h to 2h) -8.32 26 .00 0.05 0.21 -2.2 -4.6 1.1 Roof (>2h) -2.55 537 .00 -0.32 1.33 3.9 6.7 1.6 Roof (>2h) -2.55 537 .00 0.32 1.33 -3.9 6.7 -1.6 Roof (>2h) -2.55 114 .00 -0.07 0.28 3.0 1.4 0.3 Roof (>2h) -2.55 114 .00 0.07 0.28 -3.0 1.4 -0.3 Roof (>2h) -2.55 80 0.00 -0.05 0.20 1.2 6.5 1.6 Roof (>2h) -2.55 80 .00 0.05 0.20 -1.2 6.5 -1.6 Roof (>2h) -2.55 30 .00 -0.02 0.07 0.8 2.5 0.6 Roof (>2h) -2.55 30 .00 0.02 0.07 -0.8 2.5 -0.6 Roof (>2h) -2.55 67 0.04 .00 0.17 .0 6.2 .0 Roof (0 to h/2) -19.86 7 .00 -0.03 0.13 1.0 -4.6 -1.1 Roof (0 to h/2) -19.86 7 .00 0.03 0.13 -1.0 -4.6 1.1 Roof (h to 2h) -8.32 5 -0.01 .00 0.04 .0 -0.9 .0 Roof (>2h) -2.55 142 0.08 .00 0.35 .0 11.3 .0 Roof (>2h) -2.55 3 .00 -0.00 0.01 0.1 0.3 0.1 Roof (>2h) -2.55 3 .00 0.00 0.01 -0.1 0.3 -0.1 ------------------------------------------------------------------------------------- Total .00 4589 6.50 0.00 14.35 -0.0 -294.8 0.0 Along Ridge - Base Reactions - Walls Only -OCpi Description press Area Fs FY Fz Ms My M$ psf ft^2 Kip Kip Kip R-ft K-ft K-ft ------------------------------------------------------------------------------------- Leeward Wall -0.64 246 0.16 .00 .00 .0 -0.8 .0 Side Wall -14.09 815 .00 11.48 .00 60.0 .0 .0 Side Wall -14.09 815 .00 -11.48 .00 -60.0 .0 .0 Windward Wall 29.19 235 6.86 .00 .00 .0 -37.4 .0 Windward Wall 29.19 11 0.31 .00 .00 .0 -0.1 .0 ------------------------------------------------------------------------------------- Total .00 2121 7.33 .00 .00 .0 -38.3 .0 Along Ridge - Base Reactions - Walls+Roof MIN Description press Area* FX FY Fz Ma My Mz psf ft^2 Kip Kip Kip K-ft K-ft K-ft ------------------------------------------------------------------------------------- Windward Wall 9.60 235 2.26 .00 .00 .0 -12.3 .0 Windward Wall 9.60 11 0.10 .00 .00 .0 -0.0 .0 Roof (0 to h/2) 4.80 17 0.08 .00 .00 .0 -0.9 .0 Roof (0 to h/2) 4.80 0 .00 .00 .00 .0 .0 .0 Roof (0 to h/2) 4.80 0 .00 .00 .00 .0 .0 .0 Roof (0 to h/2) 4.80 15 0.07 .00 .00 .0 -0.8 .0 Roof (h/2 to h) 4.80 15 0.07 .00 .00 .0 -0.9 .0 Roof (h/2 to h) 4.80 0 0.00 .00 .00 .0 -0.0 -0.0 Roof (h/2 to h) 4.80 0 0.00 .00 .00 .0 -0.0 0.0 .. % .. ... . . . . ... p ... . . . ... . . .. . . . . .. . . . . . . . *0 . . . . . Roof (h/2 to h) 4.80 0 .00 •.04 •• .00 • • $ •Q • •,p Roof (4/2 to h) 4.80. .. 0 .00 !00 .00 • s . J. • .0 Roof (h to 2h) 4.80 0 0.00 .00 .00 .0 -0.0 -0.0 Roof (h to 2h) 4.80 0 0.00 .00 .00 .0 -0.0 0.0 Roof (h to 2h) 4.86 0 .00 .0000 0,010 . ♦o ...,p .. ,0 Roof (h to 2h) 4.80 0 .00 .06. :•40 :0; :• .0•• .0 Roof (h to 2h) 4.80 0 .00 .00 • ..W . . .A . .0 • .0 Roof (h to 2h) 4.80 0 .00 . •00 • 0.(!0 ••• :0: %W000• 0 Roof (h to 2h) 4.80 0 .00 ,0� ,0.0 .0 .0 .0 Roof (h to 2h) 4.80 0 .00 .00 .00 .0 .0 .0 Roof (>2h) 4.80 0 .00 .00 .00 .0 .0 .0 Roof (>2h) 4.80 0 .00 .00 .00 .0 .0 .0 Roof (>2h) 4.80 0 .00 .00 .00 .0 .0 .0 • Roof (>2h) 4.80 0 .00 .00 .00 .0 .0 .0 Roof (>2h) 4.80 0 .00 .00 .00 ,0 .0 .0 Roof (>2h) 4.80 0 .00 .00 .00 .0 .0 .0 Roof (>2h) 4.80 0 .00 .00 .00 .0 .0 .0 Roof (>2h) 4.80 0 .00 .00 .00 .0 .0 .0 Roof (>2h) 4.80 15 0.07 .00 .00 .0 -0.8 .0 Roof (0 to h/2) 4.80 0 0,00 .00 .00 .0 -0.0 -0.0 Roof (0 to h/2) 4.80 0 0.00 .00 .00 .0 -0.0 0.0 Roof (h to 2h) 4.80 1 0.01 .00 .00 .0 -0.1 .0 Roof (>2h) 4.80 33 0.16 .00 .00 .0 -1.9 .0 Roof (>2h) 4.80 0 0.00 .00 .00 .0 -0.0 -0.0 Rood (>2h) 4.80 0 0.00 .00 .00 .0 -0.0 0.0 --------------------------------------------------------------------------------- Total .00 342 2.82 .00 .00 .0 -17.7 .0 NotA® - Along Ridge Nota (1) Ref Fig 27.4-1, Parallel to Ridge (All), h/1= 0.16 Note (2) X= Along Building ridge, Y Normal to Building Ridge, Z = Vertical Note (3) MIN = Minimum pressures on Walls - 9.6 psf and Roof = 4.8 psf Note (4) Area* = Area of the surface projected onto a vertical plane normal to wind. Total Base Reaction Summary Description Fs Fy Fs NX My Ms Rip Kip Rip K-ft R-ft R-ft ----------------------------------_---------------_-------------------------------__-- Normal to Ridge Walls+Roof +GCpi -0.0 28.7 62.6 270.6 -0.0 0.0 Normal to Ridge Walls Only +GCpi .0 30.6 .0 159.7 .0 .0 Normal to Ridge Walls+Roof -GCpi -0.0 32.7 16.3 196.5 -0.0 0.0 Normal to Ridge Walls Only -GCpi .0 30.6 .0 159.7 .0 .0 Normal to Ridge Walls+Roof MIN .0 10.1 .0 67.9 .0 .0 Along Ridge Walls+Roof +GCpi 6.5 0.0 43.7 -0.0 -291.6 0.0 Along Ridge Walls Only +GCpi 7.3 .0 .0 .0 -38.3 .0 Along Ridge Walls+Roof -GCpi 6.5 0.0 14.3 -0.0 -294.8 0.0 Along Ridge Walls Only -GCpi 7.3 .0 .0 .0 -38.3 .0 Along Ridge Walls+Roof MIN 2.8 .0 .0 .0 -17.7 .0 Notes Applying to MWBRS Reactions; Note (1) Per Fig 27.4-1, Note 9, Use greater of Shear calculated with or without roof. Note (2) X= Along Building ridge, Y - Normal to Building Ridge, Z = Vertical Note (3) MIN = Minimum pressures on Walls ® 9.6 psf and Roof = 4.8 psf Note (4) MIN area is the area of the surface onto a vertical plane normal to wind. Note (5) Total Roof Area (incl OB Top) = 2468.89 sq. ft Wind Pressure on Components and Cladding (Ch 30 Part 1) All pressures shown are based upon ASD Design, with a Load Factor of .6 Width of Pressure Coefficient Zone -a- = = 3.00 ft Description Width Span Area Zone Max Min Max P Min P ft ft ft^2 Gap GCp psf psf ------------------------------------------------------------------------------- ROOF 2.00 25.00 208.3 1 0.30 -0.80 16.29 -33.26 ROOF 2.00 25.00 208.3 2 0.30 -1.20 16.29 -46.84 ROOF 2.00 25.00 208.3 3 0.30 -1.20 16.29 -46.84 MASONRY 4.00 8.50 34.0 4 0.91 -1.01 36.81 -40.26 MASONRY 4.00 8.50 34.0 5 0.91 -1.21 36.87 -47.26 OPENING 2.00 5.00 10.0 4 1.00 -1.10 40.05 -43.45 OPENING 2.00 5.00 10.0 5 1.00 -1.40 40.05 -53.63 OPENING 3.00 4.00 12.0 4 0.99 -1.09 39.58 -42.97 OPENING 3.00 4.00 12.0 5 0.99 -1.37 39.58 -52.68 OPENING 3.00 5.00 15.0 4 0.97 -1.07 39.00 -42.39 OPENING 3.00 5.00 15.0 5 0.97 -1.34 39.00 -51.52 OPENING 4.00 4.00 16.0 4 0.96 -1.06 38.83 -42.22 . . . . . . . . . . . . . . . . . .. . . . . . . . . . . .. OPENING 4.00 4.00 16.0 5•••0.56 -1.33.•3$.W -U:7.8 •.• OPENING 3.00 6.00 18.0 4 0.95 -1.05 38.52 -41.92 OPENING 3.00 6.00 18.0 5 0.95 -1.31 38.52 -50.57 OPENING 4.00 5.00 20.0 4 0.95 -1.05 38.25 -41.64 OPENING 4.00 5.00 20.0 5 {f.95•-1.2 • 3 !1 :-%t.V* OPENING 3.00 7.00 21.0 4 •a.94*-.1:0 .3 .1 "1.51a OPENING 3.00 7.00 21.0 5 0.040-14t29 •380.9 o-49.77 • OPENING 3.00 8.00 24.0 4 •0.93 1,03••3t 7: :Qi.].7.• OPENING 3.00 8.00 24.0 5 0.93 -1.27 37.77 -49.07 OPENING 5.00 5.00 25.0 4 0.93 -1.03 37.67 -41.06 OPENING 5.00 5.00 25.0 5 0.93 -1.26 37.67 -48.86 OPENING 3.00 9.00 27.0 4 0.92 -1.02 37.47 -40.86 OPENING 3.00 9.00 27.0 5 0.92 -1.25 37.47 -48.46 OPENING 5.00 6.00 30.0 4 0.92 -1.02 37.19 -40.59 OPENING 5.00 6.00 30.0 5 0.92 -1.23 37.19 -47.91 MASONRY 4.00 12.00 48.0 4 0.88 -0.98 35.97 -39.36 MASONRY 4.00 12.00 48.0 5 0.88 -1.16 35.97 -45.46 ROOF 2.00 25.00 208.3 2H 0.30 -2.20 10.18 -74.67 Khcc:Comp. a Clad. Table 6-3 Case 1 = 0.85 Qhcc:.00256*V^2*Khcc*Kht*Kd = 33.94 psf . . . . . . . . . . . . • . . • . . ... . . . . *00 ••. • ••. • • • • • • • •• • • • • • . • • • • .• ROOF TRUSS REACTIONS ' ' ' '0.' ' Uplift .. . . . .. ••. .. INPUT DATA: ASCE 7-05 C&C ' . ... . . . . .. . Roof Net Pressures Zonw 1 23.26 PSF .. . . . . . ... .. Zone 2 36.84 PSF Zone 3 36.84 PSF O.H. 64.67 PSF L russ Span Span 23.50 FtOverhang O.H. 2.50 Ft istance for a a 3 Ft Truss load distribution zone zone zone zone zone OH 2&3 1 2&3 1 2&3 OH Truss spacing 2 FT Reactions uplift ea.end 1033 LB 164.67 36.84 23.26 36.84 23.26 J 36.84 1 64.7 2.5 3 5.75 6 5.75 3 2.5 Truss span 23.5 Ft Gravity INPUT DATA: Roof design loads Dead 25 PSF Live 20 PSF Total 45 PSF Truss Span Span 23.5 Ft Truss load distribution Over hang O.H. 2.5 Ft OH Total gravityload OH Truss spacing 2 FT Reactions gravity ea.end 1283 LB 45 45 45 2.5 Truss span 23.5 Ft 2.5 Uplift Reactions Truss R1 1033 LBS Gravity Reactions Truss R1 1283 LBS • •• •• • Alex Kondrat&Asscoiates, Inc. JOB: ; ' ... . P.E. No. 58086, C.A. No.9717 ' • • ••• • • • • ••• 10305 NW 41 Street Suite 124 Doral, Florida 33178 CALCULATED BY: Tel: 305 387-5770 Fax: 305 387-5769 DATE: - 7 . . . . . . . •• . . . . . . . . . . .. :00 00 .. . . . .. ... .. . ... . . . . .. . 0�,s�6li ALEX KONDRAT&ASSOC Project Ti;e:• • • • • • 10305 NW ST,SUITE 124 Engineer: .:. : : .:. Project ID: DORAL,FL 33178 Project Descr: /� PE#58086 Title Block'selection. .'. ": .'. see .: :•• Title Block Line 6 • • • • • : •• • : •••Printed•30 AM 2015.&26PM • s 'FrY. CcUIMA-i1 2016 E- 1ENERCALCf1fi808 Wood:Bea1ic,#: KW-06006846 Licensee ALEX KONDRAT&ASSOCIATES INCm SNE S, ,BOiId:6.151:19,V616: ,19 Description: 2x8 WOOD TRELLIS :00 000 COMMENCES.:. ••• •• • Calculations per NDS 2012,IBC 2012,CBC 2013,ASCE 7-10 •• • ••• •• Load Combination Set:ASCE 7-10 Material Properties Analysis Method: Allowable Stress Design Fb-Tension 975.0 psi E:Modulus of Elasticity " Load Combination ASCE 7-10 Flo-Compr 975.0 psi Ebend-xx 1,600.Oksi Fc-Prll 1,450.0 psi Eminbend-xx 580.0 ksi . - Wood Species :Southern Pine Fc-Perp 565.0 psi Wood Grade :No.2: 2"-4" Thick: 12"Wide Fv 175.0 psi R 550.0 psi Density 35.440pcf Beam Bracing : Beam is Fully Braced against lateral-torsion buckling i o.010 ,'£ 'pry s.sF �` s .z`s w'a ., � _r Y 4_.�xr r r$, 4 dj : '•'°"i'" eu t T- x 3" ''. 1,x,e,`'- ry h. -r. {r.,tt ted i i if 2x8 Span=20.0 ft l I I Applied Loads: Service loads entered.Load Factors will be applied for calculations. Beam self weight calculated and added to loads Loads on all spans... Uniform Load on ALL spans: D=0.010 klft Maximum Bending Stress Ratio 0.66Q 1 Maximum Shear Stress Ratio = 0.105:1 i Section used for this span 2x8 Section used for this span yrg fb:Actual = 578.81 psi fv:Actual = 16.46 psi 1 FB:Allowable 877.50psi Fv:Allowable = 157.50 psi Load Combination +D+H Load Combination +D+H j Location of maximum on span = 10.000ft Location of maximum on span = 0.000 It Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 Maximum Deflection (• Max Downward Transient Deflection 0.000 in Ratio= 0<360 Max Upward Transient Deflection 0.000 in Ratio= 0<360 Max Downward Total Deflection 0.602 in Ratio= 398 Max Upward Total Deflection 0.000 in Ratio= 0<180 a I _... __. _..... _............ - -- _...___ __.... .. ._...__......_. _...: Maximum Forces&Stresses.for Load Combinations Load Combinallm Max Stress Rath Moment Values Shear Values Segment Length Span# M V C d C FN C i C r Cm C t CL M Ib Fb V fv F'v -15+H 0.00 0.00 0.00 0.00 Length=20.0 it 1 0.660 0.105 0.90 1.000 1.00 1.00 1.00 1.00 1.00 0.63 578.81 877.50 0.12 16.46 157.50 +0+L+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=20.0 it 1 0.594 0.094 1.00 1.000 1.00 1.00 1.00 1.00 1.00 0.63 578.81 975.00 0.12 16.46 175.00 +D+I.r+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=20.0 it 1 0.475 0.075 1.25 1.000 1.00 1.00 1.00 1.00 1.00 0.63 578.81 1218.75 0.12 16.46 218.75 +p+S+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=20.0 it 1 0.516 0.082 1.15 1.000 1.00 1.00 1.00 1.00 1.00 0.63 578.81 1121.25 0.12 16.46 20125 +0+0.750Lr+0.750L+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=20.0 it 1 0.475 0.075 1.25 1.000 1.00 1.00 1.00 1.00 1.00 0.63 578.81 1218.75 0.12 16.46 218.75 .. .. . . . .. .. . ALEX KONDRAT&ASSOC Project Tie:• � � �•� � • � 10305 NW ST,SUITE 124 En ineed : .:. : .:. Project ID: DORAL,FL 33178 Project Descr. PE#58086 rife Block'selection. ••• ••: .•. ••• .: ;•• Title Block Une 6 • • • • • • • •• • • e • •Rintek 30 Jtff12015.5-2VpM • •F �LIU A-1� TACM NERGAEC146M.ee EN CINC.432015,BidH6.4rx1.49,(Ver6.15.4.19: Description: 2x8 WOOD TRELLIS •• • • • •• ••• •• Load Combination Max Stress Rates •. ;';M"" ;• •• Shear Values Segment Length Span# M V C d C IN C I Cr cm C t cc.0 • • • ••l"ab ••• V hr Fv +D40.750L40.750S+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=20.0 It 1 0.516 0.082 1.15 1.400 1.00 1.00 1.00 1.00 1.00 0.63 578.81 1121.25 0.12 16.46 201.25 +D+0.60W+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=20.0 It 1 0.371 0.059 1.60 1.000 1.00 1.00 1.00 1.00 1.00 0.63 578.81 1560.00 0.12 16.46 280.00 +D40.70E+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=20.0 It 1 0.371 0.059 1.60 1.000 1.00 1.00 1.00 1.00 1.00 0.63 578.81 1560.00 0.12 16.46 280.00 +D40.750Lr+0.750L+0.450W+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=20.0 it 1 0.371 0.059 1.60 1.000 1.00 1.00 1.00 1.00 1.00 0.63 578.81 1560.00 0.12 16.46 280.00 +D40.750L40.750S+0.450W+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=20.0 It 1 0.371 0.059 1.60 1.000 1.00 1.00 1.00 1.00 1.00 0.63 578.81 1560.00 0.12 16.46 280.00 +D40.750L40.750S+0.5250E+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=20.0 it 1 0.371 0.059 1.60 1.000 1.00 1.00 1.00 1.00 1.00 0.63 578.81 1560.00 0.12 16.46 280.00 40.60D460W40.601-1 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=20.0 ft 1 0.223 0.035 1.60 1.000 1.00 1.00 1.00 1.00 1.00 0.38 347.28 1560.00 0.07 9.88 280.00 40.60040.70E+0.60H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=20.01t 1 0.223 0.035 1.60 1.000 1.00 1.00 1.00 1.00 1.00 0.38 347.28 1560.00 0.07 9.88 280.00 Overall Maximum Detflectio_nw Load Combination Span Max.'=Dell Location in Span Load Combination Max.'+Deft Location in Span D Only 1 0.6023 10.073 0.0000 0.000 Vertical R@BGtidr4+ Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall m 0.127 0,127 Overall MINimum 0.076 0.076 +D+H 0.127 0.127 +D+L4H 0.127 0.127 +D+Lr4H 0.127 0.127 +D+S+H 0.127 0.127 +D40.750Lr40.750L+H 0.127 0.127 +040.7501.+0.750S+H 0.127 0.127 +D40.60W+H 0.127 0.127 +D40.70E+H 0.127 0.127 +D+0.750Lr+0.750L40.450W+H 0.127 0.127 +D+0.750L40.750S+0.450W+H 0.127 0.127 +D+0.750L40.750S+0.5250E+H 0.127 0.127 +0.60D+0.60W40.60H 0.076 0.076 +0.60D+0.70E+0.60H 0.076 0.076 D Only 0.127 0.127 Lr Only L Only S Only W Only E Only H Only . . ... . . ... % .. % .. . . . . . . . . . - ALEX KONDRAT&ASSOC Project Time: ••• • ' • 10305 NW ST,SUITE 124 Engineers • • Project ID: DORAL,FL 33178 Project Descr: PE#58086. Title Block'selection. ••• ••i 000 ••• •i i•• Title Block Line 6 • i •• • i •• • i •••Printed:1 JUL 2016,314PM Wood.Beam KW-06006846, Licensee:ALEX KONDRAT&ASSOCIATES INC �• � v' �ltfl-11 , $� C$IENERCALC11880.ec& . , J`: .. ;' ,: ENERCAtC;INCr:1�3.2165,B,uHd:$.15.1:19,Ver:6.15.i.19 Description: 202 WOOD BEAM{ -Zf 15.0 CODE REFERENCES. ••• • •• • Calculations per NDS 2012, IBC 2012,CBC 2013,ASCE 7-10 Load Combination Set:ASCE 7-10 Material Properties _ Analysis Method: Allowable Stress Design Fb-Tension 975.0 psi E:Modulus of Elasif* Load Combination ASCE 7-10 Fb-Compr 975.0 psi Ebend-xx 1,600.0 kst Fc-Pril 1,450.0 psi Eminbend-xx 580.0 ksi Wood Species :Southern Pine Fc-Perp 565.0 psi • Wood Grade :No.2: 2"-4" Thick: 12"Wide Fv 175.0 psi R 550.0 psi Density 35.440pd Beam Bracing : Beam is Fully Braced against lateral-torsion buckling I 0.010 j #kiq� -�' r,.rnlxs d� -,��M 'an � ^. ss �' t,x -'vim. ,' `�E.2 tp dE fit` .",�', ` f: ,r ,, s. ,-' ,r ,�' 'r, '5#k i y r'r-�"&�' 'fit' 4 h�ME-,d 'SPIN�_ ¢ ��. irs' , . 12 �v Fes!{ P�' ..xu.:Yc, r .� ttr "' 3r zf"� �, rt5 da. +. Y, i 2212 i j Span=23.50 ft i Applied Loads;. Service loads entered.Load Factors will be applied for calculations. Beam self weight calculated and added to loads Logs on all spans... Uniform Load on ALL spans: D=0.010 k1ft DESIGN SIJMMi4RY_ _ _ ___ _ _ • Maximum Bending Stress Ratio = 0.4221 Maximum Shear Stress Ratio = 0.087: 1 Section used for this span 2X12 Section used for this span 2x12 fb:Actual = 370.54psi fv:Actual = 13.70 psi FB:Allowable = 877.50psi Fv:Allowable 157.50 psi I Load Combination +D+H Load Combination +D+H Location of maximum on span = 11.750ft Location of maximum on span = 0.000fl i Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 j Maximum Deflection Max Downward Transient Deflection 0.000 in Ratio= 0<360 i Max Upward Transient Deflection 0.000 in Ratio= 0<360 i Max Downward Total Deflection 0.343 in Rio= 822 Max Upward Total Deflection 0.000 in Ratio= 0<180 i Maximum Forces&.Stresses for Load Combinationsn. Load Combination Max Stns Ratios Moment Values Shear Values Segment Length Span# M V C d C FN C i Cr Cm C t CL M fb Pb V fv Pv +D+H 0.00 0.00 0.00 0.00 Length=23.50 it 1 0.422 0.087 0.90 1.000 1.00 1.00 1.00 1.00 1.00 0.98 370.54 877.50 0.15 13.70 157.50 +D+L+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=23.50 it 1 0.380 0.078 1.00 1.000 1.00 1.00 1.00 1.00 1.00 0.98 370.54 975.00 0.15 13,70 175.00 +D+Lr+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=23.50 ft 1 0.304 0.063 1.25 1.000 1.00 1.00 1.00 1.00 1.00 0.98 370.54 1218.75 0.15 13.70 218.75 +D+S+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=23.50 It 1 0.330 0.068 1.15 1.000 1.00 1.00 1.00 1.00 1.00 0.98 370.54 1121.25 0.15 13.70 201.25 +0+0.750Lr+0.750L+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=23.50 it 1 0.304 0.063 1.25 1.000 1,00 1.00 1.00 1.00 1.00 0.98 370.54 1218.75 0.15 13.70 218.75 ALEX KONDRAT&ASSOC Project Ti:e: .10305 NW ST,SUITE 124 Engineers o - Proiect ID: DORAL,FL 33178 Project Acr. 0 0*4 13 PE#58086 Title Block'selection. 0• 00: •0• 00 : •00 Title Block Line 0 0 0 0 0 ne 6 Prwded;I JUL 2015.3:14PM Wood -OF 7. :�,. ,.;R*Y^CUA-MQW WWENEACAL010i 1:...0• .:.Ot.... 1.19 lic. KW-06006846� Licensee:ALEX KONDRAT&ASSOCIATES INC Description 202 WOOD BEAM 000 0 00 000 000 Load Combination Max Strew Ratios 0 0 0 M;ne;t Values :. • Shear Values Segment Length Span# M v Cd C IN CI Cr Cm C C fb • 9 Fb 0 VN Fv a ..JL +D+0.750L40.750S+H 1.000 1.00 1.00 1.00 1,00 1.00 OAS 0.00 0.00 0.00 Length=23.50 ft 1 0.330 0.068 1.15 1.000 1.00 1.00 1.00 1,00 1.00 0,98 370.54 1121.25 0.15 13.70 201.25 +D.+0.60W+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0,00 0.00 Length=23.50 It 1 0.238 0.049 1.60 1.000 1.00 1.00 1.00 1.00 1.00 0.98 370.54 1560.00 0.15 13.70 280.00 +D+0.70E+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=23.50 It 1 0,238 0.049 1.60 1.000 1.00 1.00 1.00 1.00 1.00 0.98 370.54 1560.00 0.15 13.70 280.00 +D40.750Lr-+0.750L40A50W+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=23.50 it 1 0.238 0.049 1.60 1.000 1.00 1.00 1.00 1.00 1.00 0.98 370.54 1560.00 0.15 13.70 280.00 +D.+0.750L+0.750S40.450W+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=23.50 ft 1 0.238 0.049 1.60 1.000 1.00 1.00 1.00 1.00 1.00 0.98 370.54 1560.00 0.15 13.70 280.00 +D+0.750L+0.750S.+0.5250E.+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=23.50 It 1 0.238 0.049 1.60 1.000 1.00 1.00 1.00 1.00 1.00 0.98 370.54 1560.00 0.15 13.70 280.00 .+0.600+0.60W+0.60H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=23.50 it 1 0.143 0.029 1.60 1.000 1.00 1.00 1.00 1.00 1.00 0.59 222.32 1560.00 0.09 8.22 280.00 +0.60D.+0.70E.+0.60H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=23.50 ft 1 0.143 0.029 1.60 1.000 1.00 1.00 1.00 1.00 1.00 0.59 222.32 1560.00 0.09 8.22 280.00 Overall klailmuin Deflections Load Combination Span Max. Deff Location In Span Load Combination Max."4°Defi Location In Span D Only 1 0.3430 11.836 0.0000 0.000 Vertical Reactions'+ Support notation Far left is#1 Values In KIPS Load Combination Support I Support 2 Overall MA)Gmurn 0J66 0.16-6 Overall MINImurn 0.100 0.100 40+H 0.166 0.166 +D+L+H 0,166 0.166 +D+Lr+H 0.166 0.166 +13+841 0.166 0.166 4D40.750Lr40.7501.41 0.166 0.166 4047501.40.75084H 0.166 0.166 +0+0.60W+H 0.166 0.166 4040.70E+H 0.166 0.166 40+0.750Lr40.750L40.450W+H 0.166 0.166 40+0.750L40.750S40.450W+H 0.166 0.166 +D40.750L40.750S40.5260E+H 0.166 0.166 40.60D40.60W+0.60H 0.100 0.100 40.60040.70E40.60H 0.100 0.100 D Only 0.166 0.166 Lr Only -L OnlIr, S Only W Only E Only H Only . . ... . . • ••• • ALEX KONDRAT&ASSOC Project Tie:• : :.: : • 10305 NW ST,SUITE 124 Engineet • : : • • Protect ID: • DORAL,FL 33178 Project Descr: PE#58086 Title Block"selection. • •'• ' ' ' �' Title Block Line 6 • • • • •• .. • Rimed 30.51N2Q15.5.31PM Wood-Beam .�'s .. .Fl•i�*!AIPASCUR-18+I�C1tLCS4ENERCALC116�.ec8 ENERi'nLQ ING 2015,8uim.Aml.19a a.1s.1.19 iLic.#:� KW-06006F46, Licensee:ALEX KONDRAT&ASSOCIATES INC Description: 2-2x12 WOOD BEAM CODE REFERENCES: 41 • Calculations per NDS 2012,IBC 2012,CBC 2013,ASCE 7-10 .. : . . . ... .. Load Combination Set:ASCE 7-10 Material Properties Analysis Method: Allowable Stress Design Fb-Tension 975.0 psi E:Modulus of ElesScity Load Combination ASCE?-10 Fb-Compr 975.0 psi Ebend-xx 1,600.Oksi Fc-Prii 1,450.0 psi Eminbend-xx 580.0 ksi Wood Species :Southern Pine Fc-Perp 565.0 psi Wood Grade :No.2: 2"-4" Thick: 12"Wide Fv 175.0 psi Ft 550.0 psi Density 35,440 pcf Beam Bracing : Beam is Fully Braced against lateral-torsion buckling i 0.50 .!3t T N �' 1{t�X. Ykl. t __ ✓ G,.. �t€:.. i.��e�+ "�.ry �N�V,r�SBJ" e ;E-3..Ry;� �� M1n�a �„4 .-Zk.ze} yc"� 'c � E b"i`5"r�.VY, yy��.'�'� l'(h K��yy,,"Cl 2-202 2-2x12 2-2(12 I Span=8.0 ft Span=9.20 ft Span=3.580 ft Applied Loads.. Service loads entered.Load Factors will be applied for calculations. Beam self weight calculated and added to loads Loads on all spans... Uniform Load on ALL spans: D=0.50 ktft DESIGN SUMMARY WOMAN ;Maximum Bending Stress Ratio = 0.8421 Maximum Shear Stress Ratio = 0.586:1 i Section used for this span 2.2x12 Section used for this span 2.2X112 } fb:Actual 738.94psi fv:Actual = 92.27 psi FB:Allowable 877.50 St Fv:Allowable I = P = 157.50 psi Load Combination +D+H Load Combination +p+H Location of maximum on span = 8.000ft Location of maximum on span = 7.126 ft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 Maximum Deflection Max Downward Transient Deflection 0.000 in Ratio= 0<360 Max Upward Transient Deflection 0.000 in Ratio= 0<360 Max Downward Total Deflection 0.037 in Ratio= 2615 Max Upward Total Deflection -0.000 in Ratio= 340126 Maximum Forces&Stresses for Load Combinations Load Combination Max Stress Ratios Moment Values Shear Values Segment Length Span# M V C d C FN C I Cr Cm C t CL M fb Pb V fv Pv +O+H 0.00 0.00 0.00 0.00 Length=8.0 it 1 0.842 0.588 0.90 1.000 1.00 1.00 1.00 1.00 1.00 3.90 738.94 877.50 2.08 92.27 157.50 Length=9.20 it 2 0.842 0.586 0.90 1.000 1.00 1.00 1.00 1.00 1.00 3.90 738.94 877.50 1.94 92.27 157.50 Length=3.580 ft 3 0.704 0.586 0.90 1.000 1.00 1.00 1.00 1.00 1.00 3.26 617.69 877.50 1.35 92.27 157.50 +D+L+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=8.0 ft 1 0.758 0.527 1.00 1.000 1.00 1.00 1.00 1.00 1.00 3.90 738.94 975.00 2.08 92.27 175.00 Length=9.20 it 2 0.758 0.527 1.00 1.000 1.00 1.00 1.00 1.00 1.00 3.90 738.94 975.00 1.94 92.27 175.00 Length=3.560 ft 3 0.634 0.527 1.00 1.000 1.00 1.00 1.00 1.00 1.00 3.26 617.69 975.00 1.35 92.27 175.00 +D+Lr+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=8.0 it 1 0.606 0.422 1.25 1.000 1.00 1.00 1.00 1.00 1.00 3.90 738.94 1218.75 2.08 92.27 218.75 ALEX KONDRAT&ASSOC Project Title: i i•i i • i i 10305 NW ST,SUITE 124 Enineer; ; .;, : : . . .:. Project ID: DORAL,FL 33178 Pro?ect Descr PE#58086 Title Block'Selection. ••• • •.• Title Block Line 6 • • • • • • • • • •• X95.531PM re ••• •' filetYVASCU/1� wood;Bea1t16llpNE-41CPRCSIENERCALCi1680.ec8 ` `_ �EIdEf�C,ING`..�3s1015,�u6d8.15.1.19;Ver.8.15.1.i9' KW-0600684& • •-• ASSOCIATES INC Description: 2-202 WOOD BEAM Load Combination Max SSS Ratios `. ;`;Mom V14 :0 `e Shear Values Segment Leath Span# M V C d C FN C i Cr Cm C t C49* ; •.• 11: : i J:,b ••' V iV FV Length=9.20 It 2 0.606 0.422 1.25 1.000 1.00 1.00 1.00 1.00 1.00 3.90 738.94 1218.75 1.94 92.27 218.75 Length-3.580 It 3 0.507 0.422 1.25 1.000 1.00 1.00 1.00 1.00 1.00 3.26 617.69 1218.75 1.35 92.27 218.75 +D+S+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=8.0 it 1 0.659 0.458 1.15 1.000 1.00 1.00 1.00 1.00 1.00 3.90 738.94 1121.25 2.08 92.27 201.25 Length=9.20 ft 2 0.659 0.458 1.15 1.000 1.00 1.00 1.00 1.00 1.00 3.90 738.94 1121.25 1.94 92.27 201.25 Length=3.5801t 3 0.551 0.458 1.15 1.000 1.00 1.00 1.00 1.00 1.00 3.26 617.69 1121.25 1.35 92.27 201.25 40+0.750Lr-0.750L+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=8.0 It 1 0.606 0.422 1.25 1.000 1.00 1.00 1.00 1.00 1.00 3.90 738.94 1218.75 2.08 92.27 218.75 Length=9.20 ft 2 0.606 0.422 1.25 1.000 1.00 1.00 1.00 1.00 1.00 3.90 738.94 1218.75 1.94 92.27 218.75 Length=3.580 It 3 0.507 0.422 1.25 1.000 1.00 1.00 1.00 1.00 1.00 3.26 617.69 1218.75 1.35 92.27 218.75 +D40.750L+0.75084H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=8.0 it 1 0.659 0.458 1.15 1.000 1.00 1.00 1.00 1.00 1.00 3.90 738.94 1121.25 2.08 92.27 201.25 Length=9.20 it 2 0.659 0.458 1.15 1.000 1.00 1.00 1.00 1.00 1.00 3.90 738.94 1121.25 1.94 92.27 201.25 Length=3.580 ft 3 0.551 0.458 1.15 1.000 1.00 1.00 1.00 1.00 1.00 3.28 617.69 1121.25 1.35 92.27 201.25 +D+0.60W4H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=8.0 ft 1 0.474 0.330 1.60 1.000 1.00 1.00 1.00 1.00 1.00 3.90 738.94 1560.00 2.08 9227 280.00 Length=9.20 ft 2 0.474 0.330 1.60 1.000 1.00 1.00 1.00 1.00 1.00 3.90 738.94 1560.00 1.94 92.27 280.00 Length=3.580 it 3 0.396 0.330 1.60 1.000 1.00 1.00 1.00 1.00 1.00 3.26 617.69 1560.00 1.35 92.27 280.00 +D+0.70E+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=8.0 it 1 0.474 0.330 1.60 1.000 1.00 1.00 1.00 1.00 1.00 3.90 738.94 1560.00 2.08 92.27 280.00 Length=9.20 ft 2 0.474 0.330 1.60 1.000 1.00 1.00 1.00 1.00 1.00 3.00 738.94 1560.00 1.94 92.27 280.00 Length=3.580 It 3 0.396 0.300 1.60 1.000 1.00 1.00 1.00 1.00 1.00 3.26 617.69 1560.00 1.35 92.27 280.00 +D+0.750Lr40.750L40.450W4H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=8.0 ft 1 0.474 0.330 1.60 1.000 1.00 1.00 1.00 1.00 1.00 3.90 738.94 1560.00 2.08 92.27 280.00 • Length=9.20 It 2 0.474 0.330 1.60 1.000 1.00 1.00 1.00 1.00 1.00 3.00 738.94 1560.00 1.94 92.27 280.00 Length=3.580 it 3 0.398 0.330 1.60 1.000 1.00 1.00 1.00 1.00 1.00 3.26 617.69 1560.00 1.35 92.27 280.00 +D+0.750L+0.750S40.450W+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=8.0 ft 1 0.474 0.330 1.60 1.000 1.00 1.00 1.00 1.00 1.00 3.90 738.94 1560.00 2.08 92.27 280.00 Length=9.20 ft 2 0.474 0.330 1.60 1.000 1.00 1.00 1.00 1.00 1.00 3.90 738.94 1560.00 1.94 92.27 280.00 Length=3.580 it 3 0.396 0.330 1.60 1.000 1.00 1.00 1.00 1.00 1.00 3.26 617.69 1560.00 1.35 92.27 280.00 +D+0.750L40.750S40.5250E4H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=8.0 it 1 0.474 0.330 1.60 1.000 1.00 1.00 1.00 1.00 1.00 3.90 738.94 1560.00 2.08 92.27 280.00 Length=9.20 It 2 0.474 0.330 1.60 1.000 1.00 1.00 1.00 1.00 1.00 3.90 738.94 1560.00 1.94 92.27 280.00 Length=3.580 It 3 0.396 0.330 1.60 1.000 1.00 1.00 1.00 1.00 1.00 3.26 617.69 1560.00 1.35 92.27 280.00 40.60D+0.60W40.60H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=8.0 It 1 0.284 0.198 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.34 443.37 1560.00 1.25 55.36 280.00 Length=9.20 It 2 0.284 0.198 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.34 443.37 1560.00 1.16 55.36 280.00 Length=3.580 it 3 0.238 0.198 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.95 370.61 1560.00 0.81 55.36 280.00 +0.60040.70E+0.60H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=8.01t 1 0.284 0.198 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.34 443.37 1560.00 1.25 55.36 280.00 Length=9.20 it 2 0.284 0.198 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.34 443.37 1560.00 1.16 55.36 280.00 Length=3.580 ft 3 0.238 0.198 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.95 370.61 1560.00 0.81 55.36 280.00 .Overall Maximum Deflections Load Combination Span Max.'"De8 Location in Span Load Combination Max.'+'Deft Location in Span D Only 1 0.0367 3.429 0.0000 0.000 D Only 2 0.0200 4.793 D Only 40001 0.155 D Only 3 0.0258 3.580 D Only -0.0002 0.181 Vertical ReadonS . Support notation:Far left Is#1 Values in KIPS Load Combination Support 1 Support 2 Support 3 Support 4 r Oral um 1.546 4.928 Overall MINhnum 0.928 2.957 2.453 4D+H 1.546 4.928 4.088 +D4L+H 1.546 4.928 4.088 +D4Lr+H 1.546 4.928 4.088 40+S+H 1.546 4.928 4.088 +D40.750Lr40.750L+H 1.546 4.928 4.088 4040.750L+0.750S+H 1.546 4.928 4.088 +M.60W+H 1.546 4.928 4.088 ALEX KONDRAT&ASSOC Project Ve:• 10305 NW ST,SUITE 124 Engineer ; •;+ ; ; ; ; •;. Project ID: DORAL,FL 33178 Project Desm 6 PE#58086 Title Block'Selection. • ••♦ • • • •e• Title Block Line 6 • • • • • e • • • •• Ptinwt 30 JM Y015.5.31PM • +: -1118IL+110ALCSIENERCAfC116�?ei Wood g�allri �Nc+iso, . C, 201�Bin7d.8.15:11�Ver'815.1.1$ 1.11. • .' • Description: 2-202 WOOD BEAM :00 see Vertical Reactions Support notation:Far R%ls i t•I., •• Values lhrjPS TLoad Combinatlon Support 1 Support 2 Support 3 Support 4 •+• ; ••• • •• +0.7 4.088 +D+0.750Lr+0.750L+0.450W+H 1.546 4.928 4.088 +D+0.750L+0.750S+0.450W+H 1.5446 4.928 4.088 +D+0.750L+0.750S+0.5250E+H 1.546 4.928 4.088 +0.60D+0.60W+0.60H 0.928 2.957 2.453 +0.60D+0.70E+0.60H 0.928 2.957 2.453 0 Only 1.546 4.928 4.088 Lr Only L Only S Only W Only EO* H Only pap Project: ATexMfldrlt i i i •i• Location:Collar Tie 1 . Alex Kondrat 5 Associates,Inc / Collar Tie 10305 NW 41 Sgreet,Suite 20% [2010 Florida Building Code(2012 NDS)] "«`` bcral,Ft%176 • •• • • 1.5 IN x 7.25 IN x 12.75 FT(11.8+1)@ 24 O.C. • • • • • • • •• #2-Southern Pine-Ory Use StruCalc ioi=9.0.1.7 ••• •• �;y112Qf5 3:13:23 PM 1.5 x 11.25 Solid Sawn Lumber with minimum Ft=575 Section Adequate By:8.9% Controlling Factor.Deflection •• • • • •• ••• •• DEFLECTIONS Center mght MATERIALI iq9 I fii i i i i• •• Live Load 0.22 IN U675 -0.05 IN 21.1464 • • -Dead Load 0.17 in -0.04 in •• • • • • RahMalm Adiusted Total Load 0.38 IN U381 -0.09 IN 2Ll262 Bending Stress: Fb= 750 psi FW= 1156 psi Live Load Deflection Criteria:U240 Total Load Deflection Criteria:0240 Cd=1.25 CF=1.23 RAFTER REACTIONS Shear Stress: Fv= 175 psi Fv'= 219 psi LOADS REACTIONS Cd=1.25 Lower Live Load @ B 255 pif 510 Ib Modulus of Elasticity: E= 1600 ksi E'= 1600 ksi Lower Dead Load @ B 197 pif 394 Ib gyp•-L to Grain: Fc--L= 565 psi Fc--L= 565 psi Lower Total Load @ B 452 pif 904 Ib Controlling Moment: 275 ft-lb dollar Tie Tension 1579 Ib 11.748 Ft from left support of span 2(Center Span) 13AF]ER SUPPORT DATA Created by combining all dead loads and live loads on span(s)2,3 H Controlling Shear. -427 Ib Bearing Length 1.07 in 11.642 Ft from left support of span 2(Center Span) RATER DATA Interior Eave Created by combining all dead loads and live loads on span(s)2,3 Span Length 11.75 ft 1 ft Comparisons with required sections: agWd Provided Unbreced Length-Bottom 0 ft 0 ft Section Modulus: 2.86 in3 13.14 in3 Rafter Pitch 3 :12 Area(Shear): 2.93 in2 10.88 int Collar Tie Location 3.09 ft Moment of Inertia(deflection): 43.72 in4 47.63 in4 Roof Duration Factor 1.25 Moment: 275 ft-ib 1266 ft-lb Peak Notch Depth 0.00 Shear. -427 Ib 1586 Ib -Base Notch Depth 0.00 RAFTER LQADIKG COLLAR TIE DESIGN Uniform Floor Loading 1.5 x 11.25 Solid Sawn Lumber with minimum Ft=575 Roof Live Load: LL= 20 psf Base Values Adusted Roof Dead Load: DL= 15 psf Tension Parallel to Grain Ft= 575 psi Ft'= 1078 psi Slope Adjusted Spans And Loads Cd=1.25 00.00 Interior Span: L-adj= 12.11 It Collar Tie Location 3.09 ft Eave Span: L-Eave-adj= 1.03 ft Collar Tie Tension 1579 ib Rafter Live Load: wL-adj= 38 pif Collar Tie Capacity 18193 Ib Eave Live Load: wL-Eave-adj= 38 pif Nailing Required @ Both Ends Rafter Dead Load: wD-adj= 29 pN 16d Common 9 Nails Rafter Total Load: WT-adj= 67 ptf 16d Sinker 11 Nails Eave Total Load: WT-Eave-ad'= 67 pff 16d Box 13 Nails LOADING DIAGRAM 1 ft 11.75 ft 3.09 ft 23.5 ft 4 1 Response to Critique August 7,2015 Miami Shores Village Building Department 10050 N.E.2nd Avenue Miami Shores,Florida 33138 Attn: Building Official Ref Residence Located At 1680 N.E. 104th Street Process Number: RC 14-2234 This letter will serve as clarification to the above referenced project. We have made the following revisions in response to the Building Department Critique: �• Building Critique: I/I. Please see the cost analysis file provided by client. "2. Please see the cost analysis file provided by client. 6. Please see the attached Energy Calculations,and building revised sections on A-5. (4. Please see Sheet A-1,A-3 and A-5. 5. Please see Sheet A-2. '/6. Please see Sheet A-2. ,/7. Please see Sheet A-3. 8. Please see Sheet A-3,A-4,and A-5. "'9. Please see E, M, P Sheets. 40. Please see Sheet A-5. 41. Please see structural plans X12. Please see structural plans iY3. Please see revised set of plans fj /,14. Please see structural plans ✓J,_5. Please see structural plans 16. Please see the cost analysis file provided by client. 17. Please see the cost analysis file provided by client. 18. Please see the cost analysis file provided by client. /'19. Please see the cost analysis file provided by client. -16. Please see the cost analysis file provided by client. 1 ' 21. Please see the cost analysis file provided by client. J 22. Please see the cost analysis file provided by client. /23. Please see the cost analysis file provided by client. /24. Please see the cost analysis file provided by client. '25. Please see the cost analysis file provided by client. X26. Please see Sheet D-1. 47. Revisions have been clouded i�OF FLO Should you req lk-l*P�QVa n regarding this matter,do not hesitate to contact me. Sincerely, try 0 e Pascual,Perezdc{ 'iQfit�A.� es Edgar Perez,AI% Q/' • ��4's� Principal h�0 --RED P,?'G? AR0015394 i r 2 Alex Kondrat & Associates, Inc. ' Alex Kondrat P.E. Telephone(305)387-5770 10305 NW 41 Street,Suite 124 Fax(305)387-5769 Doral,Florida 33178 alexkondratAbellsouth.net RESPONSE TO COMMENTS DATED 7-12-15 PERMIT NO RC14-2234 1680 NE 104 STREET 1) ARCHITECT TO ADDRESS. 2) ARCHITECT TO ADDRESS. 3) SEE CALCULATIONS FOR DIAPHRAGM, STRAP DESIGN &MASONRY PAGES 1-36. 4) EXISTING STRUCTURE SUPPORTED ON 10" & 12"SQUARE PRECAST PILES. 5) SEE ATTACHED LETTER CERTIFYING THE FLOOR. 6) ARCHITECT TO ADDRESSS. 7) COPIES OF ROOF CONNECTORS NOA'S ATTACHED. 8) TWO SETS OF SPECIAL INSPECTORS LOG PROVIDED s N M14m 5hores, V- 190$0 hi.h.W Avenue. M14MI 0100",Florida 331 CO-P" y Tet- 6.2204, ;"2204 Fax;#300)160.807 ; »- IJ Permit-N P�g� 7 of 1 Structural Crijtque Shoot AUJ0 Alf bA4> k ir LL STOPPER REMEW Piga rev'iaw is not complete,when add Items at�+e are crr�ted,wt will:dc a compiete glen review. ff any shoots are volded,remove them,from the'plans and.repf"ece wltlr end.tricluda ane= a set of voided sheets In ibe reysubmittsl 44win0c M00.1.Aer0f