Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
ACT-15-862
Inspection Worksheet Miami Shores Village 10050 N.E. 2nd Avenue Miami Shores, FL Phone: (305)795-2204 Fax: (305)756-8972 Inspection Number: INSP-232339 Permit Number: ACT-4-15-862 Scheduled Inspection Date: September 10, 2015 Permit Type: Awnings/Canopies/Tents Inspector: Rodriguez,Jorge Inspection Type: Final Owner: ORE,ZARELA Work Classification: New Job Address:895 NE 95 Street Miami Shores, FL 33138-2516 Phone Number (786)229-6316 Parcel Number 1132060142950 Project: <NONE> Contractor: ATLANTIC AWNINGS CORP Phone: (305)269-0555 Building Department Comments CANVAS CANOPY 18X9 Infractio Passed Comments INSPECTOR COMMENTS False Inspector Comments Passed Im Failed Correction ❑ Needed Re-Inspection ❑ Fee No Additional Inspections can be scheduled until re-inspection fee is paid. September 09, 2015 For Inspections please call: (305)762-4949 Page 3 of 30 Miami Shores Village Building Department APR ] 4 2715 10050 N.E.2nd Avenue, Miami Shores, Florida 33138 j�r �� ov Tel:(305)795-2204 Fax:(305)756-8972 - INSPECTION LINE PHONE NUMBER:(305)762-4949 FBC 20)e) BUILDING Master Permit No.�C� /5I"- �(SZ PERMIT APPLICATION Sub Permit No. OBUILDING ❑ ELECTRIC ❑ ROOFING ❑ REVISION EXTENSION RENEWAL I PLUMBING ❑ MECHANICAL PUBLIC WORKS ❑ CHANGE OF CANCELLATION ❑ SHOP CONTRACTOR DRAWINGS JOB ADDRESS: 895 NE 95th ST City: Miami Shores County: Miami Dade Zip: Folio/Parcel#: 11-3206-014-2950 Is the Building Historically Designated:Y NO Occupancy Type: Load: Construction Type: Flood Zone: FE: -FF� OWNER:Name(Fee Simple Titleholder):Zarela Ore hone#: 1867 - as 9^ 63 A Address:895 NE 95th ST City: Miami Shores State: FL Zip: 33138-2516 Tenant/Lessee Name: Pho #: Email: CONTRACTOR:Company Name: Atlantic Awnings Corp. Phone#: 305.269.0555 Address: 4796 SW 75th Ave. City: Miami State: FL Zip: 33155 Qualifier Name: JOEL IBARGOLLIN Phone#: 305.269.0555 State Certification or Registration#: Certificate of Competency#: 06BS00613 DESIGNER:Architect/Engineer: Cesar Castillo, P.E. Phone#: Address: 13155 SW 134th St., Suite #119 City: Miami State: FL Zip: 33186 Value of Work for this Permit:$ t()(z). Square/Linear Footage of Work: 171 S/F Type of Work: ❑ Addition ❑■ Alteration ❑ New ❑ Repair/Replace ❑ Demolition Description of Work: canvas / Specify color of color thru tile: Submittal Fee 2!") Permit Fee$ CCF$ CO/CC$ Scanning Fee$ Radon Fee$ DBPR$ Notary$ Technology Fee$ Training/Education Fee$ Double Fee$ Structural Reviews$ Bond$ TOTAL FEE NOW DUE$ 1 (Revised02/24/2014) Bonding Company's Name(if applicable) Bonding Company's Address _ City State Zip Mortgage Lender's Name(if applicable) Mortgage Lender's Address City State Zip Application is hereby made to obtain a permit to do the work and installations as indicated. I certify that no work or installation has commenced prior to the issuance of a permit and that all work will be performed to meet the standards of all laws regulating construction in this jurisdiction. I understand that a separate permit must be secured for ELECTRIC, PLUMBING, SIGNS, POOLS, FURNACES,BOILERS, HEATERS,TANKS,AIR CONDITIONERS, ETC..... OWNER'S AFFIDAVIT: I certify that all the foregoing information is accurate and that all work will be done in compliance with all applicable laws regulating construction and zoning. "WARNING TO OWNER: YOUR FAILURE TO RECORD A NOTICE OF COMMENCEMENT MAY RESULT IN YOUR PAYING TWICE FOR IMPROVEMENTS TO YOUR PROPERTY. IF YOU INTEND TO OBTAIN FINANCING, CONSULT WITH YOUR LENDER OR AN ATTORNEY BEFORE RECORDING YOUR NOTICE OF COMMENCEMENT." Notice to Applicant. As a condition to the issuance of a building permit with an estimated value exceeding$2500, the applicant must promise in good faith that a copy of the notice of commencement and construction lien law brochure will be delivered to the person whose property is subject to attachment. Also,a certified copy of the recorded notice of commencement must be posted at the job site for the first inspection which occurs seven (7) days after the building permit is issued. In the absence of such posted notice, the inspection will not be approved and a reinspection fee will be charged. Signaturt Signature a ✓ OWNER or AGENT CONTRACTOR The foregoing instrument was acknowledged before me this The foregoing instrument was acknowledged before me this LK day of 20 by e-'day of Ar r—I L" 20 /5 by q/% Q�2- who is personally known to who is personally known to me or who has produced to 6Q�> l�di�7 � )or who has produced as identification and who did take an oath. identification and who did take an oath. NOTARY PUBLIC: NOTARY PUBLIC: Sign: Sign: ,` Print: Print: of Florida ����� WAHU Seal ' v , Seal: WCOMMISSION#FF156701 o327e3 EXPIRES:October 18,2015 Bonded Thm Budget Notary Servkes / APPROVED BY �Z � t Plans Examiner Zoning Structural Review Clerk (Revised02/24/2014) 8XIMCH or SURVEY APR j 4 RTH 1 WPP ABBREVIATIONS: I (990 ( R) - t 4 , P FAC tlt, JpF 0I BLOCK-3 Nr , _ —J, LOT 1'E � x �r Btc2CK71�� �. r�p a7i��r i �_ III I — •— r i ONE. ST'ORY ------------- 17 CD c .� 4$nLLQ 17500' ` F w p ; INAJ , 'M LEGEND: N!'P N.E. 05th STREET (8o' rork RIW by PLAT) NOT VALID WITHOUT SHEET I OF 2 - :'f '. ..'.•,.f ,,f'I[4F( A ai M1kv`i YI r�}rt5 kd�i}.:,J ZAREL.A ORE JOB No.. SKETCH No.. DATE: SCALE:L2S"OF EF: 895 NE 95th Street 14-30032 27390 112-15-20141 1"-20" 2 Miami Shores, Florida 33131. O f R Certificate of Flame Resistance • ,s�►u� R r Issued By: 14 �l'?J T GLEN RAVEN MILLS INC Registered Fabric 1831 NORTH PARK AVENUE or Concern Number Date treated or manufactured: F-73101 GLEN RAVEN, NC 27217-1100 01/22/2014 This is to certify that the materials described below have been treated with a flame-retardant chemical or are.inherently nonflammable. FOR: Trivantage, LLC Amass: 1831 North Park Ave. ci:TY: Glen Raven sTATE: NC 27217 Certification is hereby made that: (Check"a"or"b") ❑ (a) The articles described at the bottom of this Certificate have been treated with a flame-retardant chemical approved and registered by the State Fire Marshal and the application of said chemical was done in conformance with the laws of the State of California and the Rules and Regulations of the State Fire Marshal. Name of chemical used: Chemical Registration#: Method of application: a (b) The articles described at the bottom of this Certificate are made from a flame-resistant fabric or material registered and approved by the State Fin;Marshal for such use. Trade Name of flame-resistant fabric or material used: FIRESIST Registration#: F-73101 The Flame-Retardant Process Used Will Not Be Removed By Washing _ GLEN RAVEN CUSTOM FABRICS WENDY MILLER, CUSTOMS COMP. MG Name of Applicator or Production Superintendent Title RCN# 0000000000 10 11604836 000000000 CUSTOMER ORDER NO. - CUSTOMER INVOICE NO. 378900 YARDS OR QUANTITY 155.00 DESCRIPTION Firesist#82006-0000 60" ITEM NUMBER 888506 We herebycertify the ve to accurately reflect the information contained within a"CERTIFICATE T "• abo y OF FLAME RESISTANCE"issued to Trivantage, LLC from the registrant set forth above. A copy of the original Certificate of Flame Resistance is available upon request to Trivantage,LLC and the registration information set forth above is on record with the California State Fire Marshal. ATLANTIC AWNINGS CORP MAILING ADDRESS 4705 SW 75TH AVENUE MIAMI, FL 33155 04,1444 t• P.E Florida RE # : 68447 13155 SW 134th Street, #119, Miami, Florida 33186 - Phone -Fax # (305) 253-9442 9"'W...k.. z PROJECT: STEEL - AWNING STRUCTURE MAURICE HERNANDEZ 895 NE 95 STREET, MIAMI SHORES, FL 33138 CUSTOMER: Atlantic Awnings DESIGNER: Cesar Castillo PE STATE OF FLORIDA REG. # 68447 CODES AND SPECIFICATIONS: AISC 9th Edition F.B.0 2010 A.S.C.E 7-10 wv 41vt1v" P.t. CONSULTING ENGINEER 13155 SW 134th STREET, SUITE 4119 MIAMI, FL 33186 PHONE#(305)253-9442 FLORIDA PE. #68447 JUN 10 Y015 0444 L 0MV& P.E Florida RE#:68447 13155 SW 134th Street,#119,Miami, Florida 33186-Phone-Fax#(305)253-9442 DESI61\1 CRITERIA & APPLICABLE CODES- CANOPY -F.B.C2010 -A.I.S.C. 9th EDITION -A.S.C.E 7-10 WIND LOAD CALCULATIONS-Z< 60 ft WIND CODE= ASCE 7-10 W INDSPEED= 105 MPH FBC 2010-3105.4.2.1 MEAN ROOF HEIGHT: Z= < 60 ft EXPOSURE CATEGORY= „C" FBC 2010-3105.4.2.1 EFFECTIVE AREA= 4.5 ft X 18.58 ft = 84 ft2 Kzt= 1 Section 26.8-2 ASCE 7-10 Kd= 0.85 Table 26.6-1 ASCE 7-10 Kz= 0.85 -Table 30.3-1 ASCE 7-10 qh= 0.00256`Kz`Kzt Kd'V2 -Section 30.3-1 20.39 psf And: GCp(1)= -1.20 Fig.30.4-2A -Using 84 SQF AS ROOF Gcpi(1)= 0.55 Table 26.11-1 -Partially Open Buldings P design= qh'(GCp-Gcpi) -35.7 psf -CRITICAL CHECKING LOADS COMBINATIONS. -ASCE 7-10 Live Load-L= 5 psf DESIGN LOADS PER ASCE 7-10 Dead Load-D= 8 psf DESIGN LOADS PER ASCE 7-10 W= -35.7 psf 1.- D= 2 D+L= 3.- D+0.75L= 4.- D+0.6W= 5.- D+0.75Lwsw= 6.- 06D+0sw= LOAD ON COMPLETE STEEL STRUCTURE Total Live Load= 5.0 psf 168 SQF 840.00 lbs Loaded Perimeter= 73.91 ft L= 11.42 Ib/ft Total Dead Load= 8.0 psf 168 SQF 1344.00 lbs Loaded Perimeter= 73.91 ft L= -35.7 psf I7 Total Wind Load= -35.7 psf 168 SQF --� -5995.20 lbs Loaded Perimeter= 73.91 ft L= -81.60 Ib/ft DESIGN OF COMPLETE STEEL STRUCTURE- 9'-1"x18'-7" See SAP 2000 Report Attached DESIGN OF CRITICAL CONCRETE DEAD WEIGHT --- Column load = 650 lbs. -See SAP 2000 Report Attached Safetyfactor(0.6) = 650 / - Iuoj.3IDs. Concrete footer required 1083 / 150 = 7.2 cu.ft. Concrete footer provided 2 x 2 x 2 (Concrete unit weight 150 lbs) = 8 cu.ft. THEN USE 2'X2'X2'-CONCRETE DEAD WEIGHT 04144 1. C"Viltv" P CONSULTING ENGINEER 13155 SW 134th STREET, SUITE#119 MIAMI, FL 33186 PHONE#(305)253-9442 FLORIDA PE. #68447 .; JUN 10 2915 Florida RE#:68447 13155 SW 134th Street,#119,Miami,Florida 33186-Phone-Fax#(305)253-9442 CHECKING LDING CONNECTION COLUMN TO EMBEDDDED BASE PLATE Using 3/16"-E70XX Electrodes Then Length of Weld= 0.65 = 0.23 inch 0.928 x 3 Therefore: 0.23 inch < 12.00 inch S.F= 51.40 CHECKING CRITICAL BRACKET TO WALL CONNECTION Moment= 2292 Ib-ft - See SAP 2000 Report Attached 27504 Ib-in H= 12 in T=C= 2292 lbs Per Each Plate _ R= 744 lbs f-See SAP 2000 Report Attached Tension= 2292 lbs Per Each Pair of Bolts �J Shea– 372 lbs Per Each Pair of Bolts Try using= (4)1/2"Wedge Bolt Anchors(Min.embed.4")per plate on Mansory Grout Filled c-90 Block Spacing Between Bolts= > 6 in 100% FULL DESIGN Edge distance= > 6 in 100% FULL DESIGN TENSION Ru= 1200 x 2 x 100% 2400 lbs > 2292 lbs SHEAR Ru= 1765 x 2 x 100% i 3530 lbs > 372 lbs OX CHECKING BIAXIAL STRESSES 2292 + 372 = 1 < 1 o.k 2400 3530 Then use : (4) 112"Wedge Bolt Anchors(Min. embed. 4" per plate on1lansory Grout Filled c-90 Block S– 44 lbs W 12" MM= '2292 Ib-ft BRACKET - MOMENT CONNEC Cwv. C14a lv, P.E. CONSULTING ENGINEER 13155 SW 134th STREET, SUITE#119 MIAMI, FL 33186 PHONE#(305)253-9442 FLORIDA PE. #68447 C— 9 JUN 10 2015 fAP2000 SAP2000 Analysis Report Model Name: MAURICE HERNANDEZ - ATLANTIC AWNINGS.SDB ecw-4 I. c4awe, PC. CONSULTING ENGINEER 13155 SW 134th STREET, SUITE#119 MIAMI, FL 33186 14 mayo 2015 PRONE#(305)253-9442 FLORIDA 4 l MAY 15 2015 �Xl W2000-,14.0 Advo ed �09- -1� 0- p 'T— 126— liidg. D� 5d- A A. -- ViMlq, -iq� L111 a ff 5, a16 =944 �T4 1A CRITICAL LOAD ASSIGNMENTS TO ELEMENTS(lb/ft) )ff,SAP20M O�MDW&—d-MA6RH J,idp D,— 1d AsH. Analyse V44y Diqn QpU— T.dk kl.lp a x -DP; Q _ .......... Ja Ob,,l 17 JwtEl—17 2 T... 0.03 25 0.00107 023033 R.n 000242 0.00109 0.00113 14 ........... mn/W, DEFORMED SHAPE(BY CRITICAL LOAD) 4 � _s STRUCTURAL ANALYSIS STEEL AWNING REPORT (31) AWNING) ATLANTIC AWNINGS SAV2=1410194—a MAUMHFana�NM AyrtnNGs ,X.;,..[ae Fsa Yew: pe.. @ridge 0.Caw Fdect:. Assegn Analyse aWtl Ueagrt gpmns Ions L(4mx Er A �A: tiirr3i. 1 �- +. �3 dx �`�� kRCRYhU1F XQW GLGBAL �b n F J 3D VIEW OF THE MODEL(FRAMES AND JOINS LABELS) �5:.720IX'i v14.0.B Ad:arcea-MAVBIC.HEFIJAVuE:-ATL"..1T.0 A`NWNGS (3-6tFex] �:.hn.A" «.�,. ..•a ++�.#�,- � •�. -: •,,�,�, � ,.��y��' `•. .L-'. __ •T''. le &I Lfi- Qef...$rid a Graw 5 4a Asst n e Dc -0•s 1-4 fjdp ...E € g 3 �i+h`= R�' -5n gpnons _e x p� ®f�= � � e � r�PAAA g9p3am a n ctar e a po ?k: 2e-l2 4 I .`c:S®A. 3;.? a0o:-,=�=[t•a qa'e'S>, ®.�'mMEc ,::.�, ,,v._:,,, tG 412i1 sp El ' t Fm Y say x ? „ i ,`A',�" F 6,�' ''�.•.. �`.�.- ° Y2F>g 4A GLGB7t b.'n.F 3D VIEW OF THE MODEL(FRAMES SECTION PROPERTY) t A— F4 E&t X.— 12.fi.. JWq. Dj— 5d- Assign A,.I,. Dugly 0aign Qpbom I-o§ ti-IP a x i z, D OJ6 P K .J k. El Ilk Al d AXIAL FORCE DIAGRAM FOR CRITICAL COMBINATION (MAX TENSION=1.65Kip FRAME 22,MAX COMPRESSION=1.33Kip, FRAME 16) 4K" SAMWv14.00M..—d-MALiEi =—VEA ENY— —;--E;- 50- A1.1p An.lF, Dkaty 0es. fpti... ..Idols Hep v rl TT5 VIL- 771", EY r X, R—b—m kmt LMC omSy. ti .......... ............ Jor Obwd 3 JorAN—t 3 2 3 -47.379 -1&710 649.984 ManeM 0.000 0.000 0.000 fGLOBAL, L 08 AL b-I,F MAXIMUM BASE REACTIONS BY CRITICAL ASD COMBINATION(lb) 1 1 1 1 Y SA 21=11x0.0 ati[d MAUFICE HERNAI� ATIAN1fCAWpHF6'iS' ' Fde Edit Y pef: Eddge Draw $deet :&,lp An*,. -DisQby Deign:.:Opti.. I-11 t_idp LIQ+�O�zexrt ss a•n.e�����d y�`,N, ..'�," �;:.__...r..r�'?. ..,�.,. ..s ..• 3 r?� „F;?�'� .. ...,. ` .'� ���....� ,.,,.n �� :: Gam.' X)Dint Rear in Jdnt Lo l CaadSys �• Jon)ode.116 Jort EL—116 —_- 1 : 2 3 .:.. )tint Reactmrrs in Joint Local CaordSy;. II Faro 6.662 39.552 __..— C'. Morta',l 1239.6fi0 Ja'vt Otwl 113 JaMEI.— 113 -: :•yi. pr.� ® 2 Faro 81.041 743.909 0• W-0 159.826El � Joint Reactions in JcL-1nt Ll CaordSys II e14 6 JortC64 06iKt a Jori Element 8 'I\ 1 2 3 / 1 Face -10.321 17.982 537.461 _ �5, •J F— 1409.981 16 218 33 280 7 i.Janc 4eacbons-n Joint Lac)C—dSpII f, JCN OEi'd 3. 1 JAW EI—3 3 Foca -47.379 -16.711 649.984 ;i f Alanenl 0.000 0.000 0.000 a�RroilLC3ekasailVJm�LfarzxwsreWe.s:� � .�_'.` r , ''� - -h. ..§" rS`qfe .,mx trs�a7 GLOBAL 0.It.F J MAXIMUM JOINT'S REACTIONS BY CRITICAL ASD COMBINATION (Ib) _.._ j(SAP'OOC 14.00Atr edMAUMCEHEMAWEZ ATLAMM - NW FdE: Edn Y Dene $edge:0. 5.1- Asiq. Anayce D¢&Y 0091 90111 kola he1P .� ���P+� nr73! _ u v'S:©<a. #�� ro!v- w.wXeY�.� �_����, �.t i :� L.Qs�.\` � �•«,4iz`i�<8ui- ���{ '7777, ,`t— 'T . R Qk 4C 114 i, �r ;;. 3rEe rl v-sa�a i,. k.S.iQh+• - iILP'ce brad Js�Sst'�Al Iyfi' ..._ SIL�l 1Y4-.. .•y\\Q"' S� .a i` a`' v ,( p f.. lt.. 1• 'K S 0 P-M RATIO COLORS AND VALUES(ALL MEMBERS PASS) II MAURICI' HERNANDEZ-ATLANTIC AWNINGS.SDB SAP2000 v14.0.0 Contentb6 14 mayo 2015 Contents 1. Model geometry............................................................................................................................................................... 4 1.1. Joint coordinates................................................................................................................................................... 4 1.2. Joint restraints....................................................................................................................................................... 9 1.3. Element connectivitV............................................................................................................................................. 9 2. Material properties......................................................................................................................................................... 16 3. Section properties.......................................................................................................................................................... 17 3.1. Frames................................................................................................................................................................ 17 4. Load patterns................................................................................................................................................................. 18 4.1. Definitions........................................................................................................................................................... 18 5. Load cases..................................................................................................................................................................... 19 5.1. Definitions........................................................................................................................................................... 19 5.2. Static case load assignments............................................................................................................................. 19 5.3. Response spectrum case load assignments...................................................................................................... 20 6. Load combinations......................................................................................................................................................... 20 7. Structure results............................................................................................................................................................. 22 7.1. Mass summary............................................................................................................................................... 22 7.2. Modal results.......................................................... :. .... ....:24 ........................................................... . . ... . 7.3. Base reactions.............................................. 1.0 ................ 8. Joint results......................................................................................................................... ............................ ?6 9. Frame results......................................................................................................................... ...........: ...... .............. 3 10. Material take-off............................................................................................................!...•.!.........,...................82 • 11. Design preferences.............................................................................................................................................83 11.1. Steel design.........................................................................................................'...'.............:..................83 11.2. Concrete design........................................................................................................................................."83 • 11.3. Aluminum design .............................................. ................................................,.........................................,...84 11.4. Cold formed design...................................................................................................r........... ........ 84 12. Design overwrites ............................................................................................................. ... •...... 84 ................i.....+...`.......... 12.1. Steel design.............................................................................................................................-....... ................ 84 13. Design summary.......................................................................................................................................................... 98 13.1. Steel design...................................................................................................................................................... 98 List of Figures Figure1: Finite element model ............................................................................................................................................ 4 Figure2: Deformed shape................................................................................................................................................. 22 List of Tables Table1: Joint Coordinates, Part 1 of 2................................................................................................................................ 4 Table1: Joint Coordinates, Part 2 of 2................................................................................................................................ 7 Table2: Joint Restraint Assignments.................................................................................................................................. 9 Table3: Connectivity- Frame, Part 1 of 2........................................................................................................................... 9 Table3: Connectivity- Frame, Part 2 of 2......................................................................................................................... 11 Table4: Frame Section Assignments................................................................................................................................ 14 Table 5: Material Properties 02 - Basic Mechanical Properties......................................................................................... 16 Table 6: Material Properties 03a - Steel Data, Part 1 of 2................................................................................................. 16 Table 6: Material Properties 03a - Steel Data Part 2 of 2................................................................................................. 17 Table 7: Material Properties 03b - Concrete Data Part 1 of 2 .......................................................................................... 17 Table 7: Material Properties 03b-Concrete Data Part 2 of 2.......................................................................................... 17 Table 8: Frame Section Properties 01 - General Part 1 of 6............................................................................................ 17 Page 2 of 103 MAURICt HERNANDEZ-ATLANTIC AWNINGS.SDB SAP2000 v14.0.0 Dist of Tables 14 mayo 2015 Table 8: Frame Section Properties 01 - General, Part 2 of 6............................................................................................ 18 Table 8: Frame Section Properties 01 -General, Part 3 of 6............................................................................................ 18 Table 8: Frame Section Properties 01 -General, Part 4 of 6............................................................................................ 18 Table 8: Frame Section Properties 01 - General, Part 5 of 6............................................................................................ 18 Table 8: Frame Section Properties 01 - General, Part 6 of 6............................................................................................ 18 Table 9: Load Pattern Definitions ...................................................................................................................................... 19 Table 10: Load Case Definitions, Part 1 of 2..................................................................................................................... 19 Table 10: Load Case Definitions, Part 2 of 2..................................................................................................................... 19 Table 11: Case -Static 1 - Load Assignments.................................................................................................................. 19 Table 12: Function - Response Spectrum - User.............................................................................................................. 20 Table 13: Combination Definitions, Part 1 of 3.................................................................................................................. 20 Table 13: Combination Definitions, Part 2 of 3.................................................................................................................. 20 Table 13: Combination Definitions, Part 3 of 3.................................................................................................................. 21 Table 14: Assembled Joint Masses................................................................................................................................... 22 Table 15: Modal Participatinq Mass Ratios, Part 1 of 3..................................................................................................... 24 Table 15: Modal Participating Mass Ratios, Part 2 of 3..................................................................................................... 25 Table 15: Modal Participating Mass Ratios, Part 3 of 3..................................................................................................... 25 Table 16: Base Reactions, Part 1 of 3......................................................................................................i.i i 26 Table 16: Base Reactions, Part 2 of 3................................................................................+.......•..........�..yy�'.............26 Table 16: Base Reactions, Part 3 of 3................................................................................!.•.•. ...;...........•....................•26 Table 17: Joint Displacements............................................................................................rrr•.••.........•• �........ �•••'•26 Table18: Joint Reactions .....................................................................................................««..............................a...... 33 . Table 19: ...0 Element Forces - Frames, Part 1 of 2 ............... ......................................................................................�,...... 13 Table 19: Element Forces - Frames. Part 2 of 2 ...................................................................................;..................58 Table 20: Material List 2 - By Section Property................. ................................................s•.�.r.s.�........ i..........:�A�•83 Table 21: Preferences -Steel Design -AISC-ASD01, Part 1 of 2...................................... ! ......... ........6!o o•83 Table 21: Preferences -Steel Design -AISC-ASD01, Part 2 of 2......................................-.!! r .,............... ..................'•83 Table 22: Preferences -Concrete Design -ACI 318-05/IBC2003 Part 1 of 2...................'........ ..........;.�....;.........."'.:•83 Table 22: Preferences - Concrete Design -ACI 318-05/IBC2003 Part 2 of 2...................;......'..........'..................:......83 .. . . ... Table 23: Preferences -Aluminum Design -AA-ASD 2000.............................................................................................. $4 Table 24: Preferences - Cold Formed Design -AISI-ASD96 Part 1 of 2.................................................�......�................ 84 Table 24: Preferences - Cold Formed Design -AISI-ASD96 Part 2 of 2.......................................................................... 84 Table 25: Overwrites - Steel Design -AISC-ASD01 Part 1 of 5....................................................................................... 84 Table 25: Overwrites - Steel Design -AISC-ASD01 Part 2 of 5....................................................................................... 87 Table 25: Overwrites -Steel Design -AISC-ASD01 Part 3 of 5....................................................................................... 89 Table 25: Overwrites -Steel Design -AISC-ASD01 Part 4 of 5....................................................................................... 93 Table 25: Overwrites -Steel Design -AISC-ASD01 Part 5 of 5....................................................................................... 96 Table 26: Steel Design 1 - Summary Data -AISC-ASD01 Part 1 of 2............................................................................. 98 Table 26: Steel Design 1 - Summary Data -AISC-ASD01 Part 2 of 2........................................................................... 101 Page 3 of 103 MAURIC� HERNANDEZ-ATLANTIC AWNINGS.SDB SAP2000 v14.0.0 1'. Model geometry 14 mayo 2015 1 . Model geometry This section provides model geometry information, including items such as joint coordinates,joint restraints, and element connectivity. - > _ \� \\.\ /. F''�.(,' •yam +:, /f i • • • • 1 /yw Figure 1: Finite element model 1.1. Joint coordinates Table 1: Joint Coordinates, Part 1 of 2 Table 1: Joint Coordinates, Part 1 of 2 good R , 1 GLOBAL Cartesian 0.0000 9.0833 0.0000 No 0.0000 2 GLOBAL Cartesian 0.0000 9.0833 0.6667 No 0.0000 3 GLOBAL Cartesian 0.0000 0.0000 -8.0000 No 0.0000 6 GLOBAL Cartesian 18.5833 9.0833 0.6667 No 18.5833 7 GLOBAL Cartesian 18.5833 9.0833 0.0000 No 18.5833 8 GLOBAL Cartesian 1.2500 12.0833 0.0000 No 1.2500 11 GLOBAL Cartesian 0.0000 0.0000 0.0000 No 0.0000 12 GLOBAL Cartesian 0.0000 0.0000 0.6667 No 0.0000 Page 4 of 103 MAURICE HERNANDEZ-ATLANTIC AWNINGS.SDB SAP2000 04.0.0 1. Model geometry 14 mayo 2015 Table 1: Joint Coordinates,Part 1 of 2Ems sN fix ,, r Ta _. 13 GLOBAL Cartesian 5.0000 0.0000 0.6667 No 5.0000 14 GLOBAL Cartesian 9.2917 0.0000 0.6667 No 9.2917 15 GLOBAL Cartesian 13.5833 0.0000 0.6667 No 13.5833 16 GLOBAL Cartesian 18.5833 0.0000 0.6667 No 18.5833 17 GLOBAL Cartesian 18.5833 0.0000 0.0000 No 18.5833 18 GLOBAL Cartesian 13.5833 0.0000 0.0000 No 13.5833 19 GLOBAL Cartesian 9.2917 0.0000 0.0000 No 9.2917 20 GLOBAL Cartesian 5.0000 0.0000 0.0000 No 5.0000 21 GLOBAL Cartesian 0.0000 4.5417 0.6667 No 0.0000 22 GLOBAL Cartesian 0.0000 4.5417 0.0000 No 0.0000 23 GLOBAL Cartesian 0.0000 2.2708 0.0000 No 0.0000 24 GLOBAL Cartesian 0.0000 2.2708 0.6667 No 0.0000 25 GLOBAL Cartesian 0.0000 6.8125 0.0000 No 0.0000 26 GLOBAL Cartesian 0.0000 6.8125 0.6667 No 0.0000 27 GLOBAL Cartesian 0.0000 1.1354 0.0000 No 0.0000 0000 28 GLOBAL Cartesian 0.0000 1.1354 0.6667 No • 0.0000 •000 Fl0.000• 29 GLOBAL Cartesian 0.0000 3.4063 0.0000 o ••• 0.0000 • 30 GLOBAL Cartesian 0.0000 3.4063 0.6667 No • 0.0000 • ••00.0 00 0 00.0.0 31 GLOBAL Cartesian 0.0000 5.6771 0.0000 .N.o •• 0.�000 • 32 GLOBAL Cartesian 0.0000 5.6771 0.6667 1100 0.0Q00 0••••0 33 GLOBAL Cartesian 0.0000 7.9479 0.0000 %0 ..• �'C.ODQO ..:060 • 34 GLOBAL Cartesian 0.0000 7.9479 0.6667 O.DQ00 35 GLOBAL Cartesian 18.5833 4.5417 0.6667 Joe.* 'x$..5$33 .•.•.• 36 GLOBAL Cartesian 18.5833 4.5417 0.0000 e!\".00 18.5833 •• 37 GLOBAL Cartesian 18.5833 2.2708 0.0000 No • : •18.5933 ....:. 38 GLOBAL Cartesian 18.5833 2.2708 0.6667 .No . :191913 • 39 GLOBAL Cartesian 18.5833 6.8125 0.0000 Na• : 48.6833 :••••: 40 GLOBAL Cartesian 18.5833 6.8125 0.6667 No •48.5833 41 GLOBAL Cartesian 18.5833 1.1354 0.0000 No 18.5833 42 GLOBAL Cartesian 18.5833 1.1354 0.6667 No 18.5833 43 GLOBAL Cartesian 18.5833 3.4063 0.0000 No 18.5833 44 GLOBAL Cartesian 18.5833 3.4063 0.6667 No 18.5833 45 GLOBAL Cartesian 18.5833 5.6771 0.0000 No 18.5833 46 GLOBAL Cartesian 18.5833 5.6771 0.6667 No 18.5833 47 GLOBAL Cartesian 18.5833 7.9479 0.0000 No 18.5833 48 GLOBAL Cartesian 18.5833 7.9479 0.6667 No 18.5833 49 GLOBAL Cartesian 7.1458 0.0000 0.6667 No 7.1458 50 GLOBAL Cartesian 7.1458 0.0000 0.0000 No 7.1458 51 GLOBAL Cartesian 11.4375 0.0000 0.0000 No 11.4375 52 GLOBAL Cartesian 11.4375 0.0000 0.6667 No 11.4375 53 GLOBAL Cartesian 16.0833 0.0000 0.0000 No 16.0833 54 GLOBAL Cartesian 16.0833 0.0000 0.6667 No 16.0833 55 GLOBAL Cartesian 2.5000 0.0000 0.0000 No 2.5000 56 GLOBAL Cartesian 2.5000 0.0000 0.6667 No 2.5000 57 GLOBAL Cartesian 1.2500 0.0000 0.0000 No 1.2500 58 GLOBAL Cartesian 1.2500 0.0000 0.6667 No 1.2500 59 GLOBAL Cartesian 3.7500 0.0000 0.0000 No 3.7500 60 GLOBAL Cartesian 3.7500 0.0000 0.6667 No 3.7500 61 GLOBAL Cartesian 14.8333 0.0000 0.0000 No 14.8333 62 GLOBAL Cartesian 14.8333 0.0000 0.6667 No 14.8333 63 GLOBAL Cartesian 17.3333 0.0000 0.0000 No 17.3333 64 GLOBAL Cartesian 17.3333 0.0000 0.6667 No 17.3333 65 GLOBAL Cartesian 5.0000 9.0833 0.6667 No 5.0000 66 GLOBAL Cartesian 9.2917 9.0833 0.6667 No 9.2917 Page 5 of 103 MAURICE HERNANDEZ-ATLANTIC AWNINGS.SDI3 SAP14 may015 2 1'. Model geometry 14 yo 2015 Table 1: Joint Coordinates,Part 1 of 2 67 N GLOBAL Cartesian 13.5833 9.0833 0.6667 No 13.5833 68 GLOBAL Cartesian 13.5833 9.0833 0.0000 No 13.5833 69 GLOBAL Cartesian 9.2917 9.0833 0.0000 No 9.2917 70 GLOBAL Cartesian 5.0000 9.0833 0.0000 No 5.0000 71 GLOBAL Cartesian 7.1458 9.0833 0.6667 No 7.1458 72 GLOBAL Cartesian 7.1458 9.0833 0.0000 No 7.1458 73 GLOBAL Cartesian 11.4375 9.0833 0.0000 No 11.4375 74 GLOBAL Cartesian 11.4375 9.0833 0.6667 No 11.4375 75 GLOBAL Cartesian 16.0833 9.0833 0.0000 No 16.0833 76 GLOBAL Cartesian 16.0833 9.0833 0.6667 No 16.0833 77 GLOBAL Cartesian 2.5000 9.0833 0.0000 No 2.5000 78 GLOBAL Cartesian 2.5000 9.0833 0.6667 No 2.5000 79 GLOBAL Cartesian 1.2500 9.0833 0.0000 No 1.2500 80 GLOBAL Cartesian 1.2500 9.0833 0.6667 No 1.2500 81 GLOBAL Cartesian 3.7500 9.0833 0.0000 No 3.7500 82 GLOBAL Cartesian 3.7500 9.0833 0.6667 No ,'1.'1540 83 GLOBAL Cartesian 14.8333 9.0833 0.0000 Vo . . 14.8133 84 GLOBAL Cartesian 14.8333 9.0833 0.6667 110' ' •14.$133 '• 85 GLOBAL Cartesian 17.3333 9.0833 0.0000 No:" 1 .3333 •• • 0*0 86 GLOBAL Cartesian 17.3333 9.0833 0.6667 No 17. 333 :.••.: 87 GLOBAL Cartesian 5.0000 4.5417 2.6667 !fo*•• :•s.J(10 88 GLOBAL Cartesian 9.2917 4.5417 2.6667 Ifo • • 9.2917 • i• • ••• • •• ••••• 89 GLOBAL Cartesian 13.5833 4.5417 2.6667 No.•• • •13.5833 •• •• •••• •••••• 90 GLOBAL Cartesian 13.5833 4.5417 2.0000 .No• 13.5833 • 91 GLOBAL Cartesian 9.2917 4.5417 2.0000 �to • � � 9.2917 ... • 92 GLOBAL Cartesian 5.0000 4.5417 2.0000 o ;•e.eeao • 93 GLOBAL Cartesian 7.1458 4.5417 2.0000 too•• •7.148 •••' 94 GLOBAL Cartesian 7.1458 4.5417 2.6667 No '.Z.14!:8 95 GLOBAL Cartesian 11.4375 4.5417 2.0000 No 11.4375 96 GLOBAL Cartesian 11.4375 4.5417 2.6667 No 11.4375 97 GLOBAL Cartesian 16.0833 4.5417 1.0000 No 16.0833 98 GLOBAL Cartesian 16.0833 4.5417 1.6667 No 16.0833 99 GLOBAL Cartesian 2.5000 4.5417 1.0000 No 2.5000 100 GLOBAL Cartesian 2.5000 4.5417 1.6667 No 2.5000 101 GLOBAL Cartesian 1.2500 4.5417 0.5000 No 1.2500 102 GLOBAL Cartesian 1.2500 4.5417 1.1667 No 1.2500 103 GLOBAL Cartesian 3.7500 4.5417 1.5000 No 3.7500 104 GLOBAL Cartesian 3.7500 4.5417 2.1667 No 3.7500 105 GLOBAL Cartesian 14.8333 4.5417 1.5000 No 14.8333 106 GLOBAL Cartesian 14.8333 4.5417 2.1667 No 14.8333 107 GLOBAL Cartesian 17.3333 4.5417 0.5000 No 17.3333 108 GLOBAL Cartesian 17.3333 4.5417 1.1667 No 17.3333 109 GLOBAL Cartesian 2.5000 2.2708 1.6667 No 2.5000 110 GLOBAL Cartesian 2.5000 6.8125 1.6667 No 2.5000 111 GLOBAL Cartesian 16.0833 2.2708 1.6667 No 16.0833 112 GLOBAL Cartesian 16.0833 6.8125 1.6667 No 16.0833 113 GLOBAL Cartesian 22.0833 2.2708 0.0000 No 22.0833 116 GLOBAL Cartesian 16.0833 12.0833 0.0000 No 16.0833 Page 6 of 103 IVAURIC� HERNANDEZ-ATLANTIC AWNINGS.SDB SAP2000 v14.0.0 1. Model geometry 14 mayo 2015 Table 1: Joint Coordinates, Part 2 of 2 Table 1: Joint Coordinates,Part 2 of 2 &KReiiwl- 1 9.0833 0.0000 2 9.0833 0.6667 3 0.0000 -8.0000 6 9.0833 0.6667 7 9.0833 0.0000 8 12.0833 0.0000 11 0.0000 0.0000 12 0.0000 0.6667 13 0.0000 0.6667 14 0.0000 0.6667 15 0.0000 0.6667 16 0.0000 0.6667 17 0.0000 0.0000 18 0.0000 0.0000 19 0.0000 0.0000 • • 20 0.0000 0.0000 • • • • 21 4.5417 0.6667 • • • • 22 4.5417 0.0000 • 23 2.2708 0.0000 •••••• 24 2.2708 0.6667 • • •••••• •••• • ••••• 25 6.8125 0.0000 • 26 6.8125 0.6667 • ' • • • 27 1.1354 0.0000 ` 28 1.1354 0.6667 : ` : • • •.•.:. 29 3.4063 0.0000 • • :````` • • 30 3.4063 0.6667 `••` : • ••• : : 31 5.6771 0.0000 `••` 32 5.6771 0.6667 33 7.9479 0.0000 34 7.9479 0.6667 35 4.5417 0.6667 36 4.5417 0.0000 37 2.2708 0.0000 38 2.2708 0.6667 39 6.8125 0.0000 40 6.8125 0.6667 41 1.1354 0.0000 42 1.1354 0.6667 43 3.4063 0.0000 44 3.4063 0.6667 45 5.6771 0.0000 46 5.6771 0.6667 47 7.9479 0.0000 48 7.9479 0.6667 49 0.0000 0.6667 50 0.0000 0.0000 51 0.0000 0.0000 52 0.0000 0.6667 53 0.0000 0.0000 54 0.0000 0.6667 55 0.0000 0.0000 56 0.0000 0.6667 57 0.0000 0.0000 Page 7 of 103 MAURICE HERNANDEZ -ATLANTIC AWNINGS.SDB SAP2000 v14.0.0 •1. Model geometry 14 mayo 2015 Table 1: Joint Coordinates,Part 2 of 2 58 0.0000 0.6667 59 0.0000 0.0000 60 0.0000 0.6667 61 0.0000 0.0000 62 0.0000 0.6667 63 0.0000 0.0000 64 0.0000 0.6667 65 9.0833 0.6667 66 9.0833 0.6667 67 9.0833 0.6667 68 9.0833 0.0000 69 9.0833 0.0000 70 9.0833 0.0000 71 9.0833 0.6667 72 9.0833 0.0000 73 9.0833 0.0000 74 9.0833 0.6667 75 9.0833 0.0000 '` ' •' ; : `• 76 9.0833 0.6667 • 77 9.0833 0.0000 """ ` i••••i 78 9.0833 0.6667 ♦'```• i•••i• 79 9.0833 0.0000 '``` • •i `• 80 9.0833 0.6667 ``:``: : .``. • 81 9.0833 0.0000 �� �� •��� ������ • 82 9.0833 0.6667 • • • • • • • • •••••• 83 9.0833 0.0000 •••••• 84 9.0833 0.6667 • 85 9.0833 0.0000 • • • 86 9.0833 0.6667 87 4.5417 2.6667 88 4.5417 2.6667 89 4.5417 2.6667 90 4.5417 2.0000 91 4.5417 2.0000 92 4.5417 2.0000 93 4.5417 2.0000 94 4.5417 2.6667 95 4.5417 2.0000 96 4.5417 2.6667 97 4.5417 1.0000 98 4.5417 1.6667 99 4.5417 1.0000 100 4.5417 1.6667 101 4.5417 0.5000 102 4.5417 1.1667 103 4.5417 1.5000 104 4.5417 2.1667 105 4.5417 1.5000 106 4.5417 2.1667 107 4.5417 0.5000 108 4.5417 1.1667 109 2.2708 1.6667 110 6.8125 1.6667 111 2.2708 1.6667 Page 8 of 103 MAURICE HERNANDEZ-ATLANTIC AWNINGS.SDB SAP2000 04.0.0 1. Model geometry 14 mayo 2015 Table 1: Joint Coordinates,Part 2 of 2 112 6.8125 1.6667 113 2.2708 0.0000 116 12.0833 0.0000 1.2. Joint restraints Table 2: Joint Restraint Assignments Table 2: Joint Restraint Assignments S" I= ml4 � yk {a ffi�� 3 Yes `Yes Yes No No No 8 Yes Yes Yes Yes Yes Yes .�`•�• 113 Yes Yes Yes Yes Yes Yes 'A •�• �••• .••Y.• 116 Yes Yes Yes Yes Yes Yes •• • +• :!: •• • 1.3. Element connectivity Table 3: Connectivity - Frame, Part 1 of 2 ! •Y...• Table 3: Connectivity-Frame,Part 1 of 2 •• • •• ;•; • • IYI" E x "'5z"�fi;wk 1 3 11 No 8.0000 0.0000 0.0000 -4.0000 3 79 8 No 3.0000 1.2500 10.5833 0.0000 5 37 113 No 3.5000 20.3333 2.2708 0.0000 7 75 116 No 3.0000 16.0833 10.5833 0.0000 14 11 12 No 0.6667 0.0000 0.0000 0.3333 16 13 14 No 4.2917 7.1458 0.0000 0.6667 17 14 15 No 4.2917 11.4375 0.0000 0.6667 19 16 17 No 0.6667 18.5833 0.0000 0.3333 21 18 19 No 4.2917 11.4375 0.0000 0.0000 22 19 20 No 4.2917 7.1458 0.0000 0.0000 24 20 13 No 0.6667 5.0000 0.0000 0.3333 25 19 14 No 0.6667 9.2917 0.0000 0.3333 26 18 15 No 0.6667 13.5833 0.0000 0.3333 31 22 21 No 0.6667 0.0000 4.5417 0.3333 32 23 24 No 0.6667 0.0000 2.2708 0.3333 33 25 26 No 0.6667 0.0000 6.8125 0.3333 34 12 24 No 2.2708 0.0000 1.1354 0.6667 35 24 21 No 2.2708 0.0000 3.4063 0.6667 36 21 26 No 2.2708 0.0000 5.6771 0.6667 37 26 2 No 2.2708 0.0000 7.9479 0.6667 38 1 25 No 2.2708 0.0000 7.9479 0.0000 39 25 22 No 2.2708 0.0000 5.6771 0.0000 40 22 23 No 2.2708 0.0000 3.4063 0.0000 41 23 11 No 2.2708 0.0000 1.1354 0.0000 42 27 28 No 0.6667 0.0000 1.1354 0.3333 Page 9 of 103 OAURICE HERNANDEZ-ATLANTIC AWNINGS.SDB SAP2000 04.0.0 .1. Model geometry 14 mayo 2015 Table 3: Connectivity-Frame,Part 1 of 2 t'ittttl �z a� 1 43 29 30 No 0.6667 0.0000 3.4063 0.3333 44 31 32 No 0.6667 0.0000 5.6771 0.3333 45 33 34 No 0.6667 0.0000 7.9479 0.3333 48 36 35 No 0.6667 18.5833 4.5417 0.3333 49 37 38 No 0.6667 18.5833 2.2708 0.3333 50 39 40 No 0.6667 18.5833 6.8125 0.3333 51 16 38 No 2.2708 18.5833 1.1354 0.6667 52 38 35 No 2.2708 18.5833 3.4063 0.6667 53 35 40 No 2.2708 18.5833 5.6771 0.6667 54 40 6 No 2.2708 18.5833 7.9479 0.6667 55 7 39 No 2.2708 18.5833 7.9479 0.0000 56 39 36 No 2.2708 18.5833 5.6771 0.0000 57 36 37 No 2.2708 18.5833 3.4063 0.0000 58 37 17 No 2.2708 18.5833 1.1354 0.0000 59 41 42 No 0.6667 18.5833 1.1354 0.3333 60 43 44 No 0.6667 18.5833 3.4063 ••44333 61 45 46 No 0.6667 18.5833 • 5.6771 ••44133 •••••• 62 47 48 No 0.6667 18.5833 •414:9 • 94363 • 63 49 50 No 0.6667 7.1458 ••6*660 •.0:3333 ••••:• 64 51 52 No 0.6667 11.4375 01.3333 • • 65 53 54 No 0.6667 16.0833 ••e.ae00 :..%-1133 • • 66 55 56 No 0.6667 2.5000 •S.WO • 0.3333 •0:0• 67 12 56 No 2.5000 1.2500 ••Q.00QO •Cf.%67 00000 68 56 13 No 2.5000 3.7500 ••0.0e00 ••Qd667 see*:* 69 20 55 No 2.5000 3.7500 :66z6Q0 X0000 '. 70 55 11 No 2.5000 1.2500 ' 0.000O •"LOO �'•�• 71 18 53 No 2.5000 14.8333 0.0840 0.0000 i••••i 72 53 17 No 2.5000 17.3333 '8.0010 •o 01100 • • 73 16 54 No 2.5000 17.3333 0.0000 •*0.6?67 74 54 15 No 2.5000 14.8333 0.0000 0.6667 75 57 58 No 0.6667 1.2500 0.0000 0.3333 76 59 60 No 0.6667 3.7500 0.0000 0.3333 77 61 62 No 0.6667 14.8333 0.0000 0.3333 78 63 64 No 0.6667 17.3333 0.0000 0.3333 79 1 2 No 0.6667 0.0000 9.0833 0.3333 80 65 66 No 4.2917 7.1458 9.0833 0.6667 81 66 67 No 4.2917 11.4375 9.0833 0.6667 82 6 7 No 0.6667 18.5833 9.0833 0.3333 83 68 69 No 4.2917 11.4375 9.0833 0.0000 84 69 70 No 4.2917 7.1458 9.0833 0.0000 85 70 65 No 0.6667 5.0000 9.0833 0.3333 86 69 66 No 0.6667 9.2917 9.0833 0.3333 87 68 67 No 0.6667 13.5833 9.0833 0.3333 88 71 72 No 0.6667 7.1458 9.0833 0.3333 89 73 74 No 0.6667 11.4375 9.0833 0.3333 90 75 76 No 0.6667 16.0833 9.0833 0.3333 91 77 78 No 0.6667 2.5000 9.0833 0.3333 92 2 78 No 2.5000 1.2500 9.0833 0.6667 93 78 65 No 2.5000 3.7500 9.0833 0.6667 94 70 77 No 2.5000 3.7500 9.0833 0.0000 95 77 1 No 2.5000 1.2500 9.0833 0.0000 96 68 75 No 2.5000 14.8333 9.0833 0.0000 97 75 7 No 2.5000 17.3333 9.0833 0.0000 98 6 76 No 2.5000 17.3333 9.0833 0.6667 Pae 10 of 103 MAURICE HERNANDEZ-ATLANTIC AWNINGS.SDB SAP2000 04.0.0 1. Model geometry 14 mayo 2015 Table 3: Connectivity-Frame,Part 1 of 2 99 � 76 67 No 2.5000 14.8333 9.0833 � 0.6667 100 79 80 No 0.6667 1.2500 9.0833 0.3333 101 81 82 No 0.6667 3.7500 9.0833 0.3333 102 83 84 No 0.6667 14.8333 9.0833 0.3333 103 85 86 No 0.6667 17.3333 9.0833 0.3333 104 87 88 No 4.2917 7.1458 4.5417 2.6667 105 88 89 No 4.2917 11.4375 4.5417 2.6667 106 89 90 No 0.6667 13.5833 4.5417 2.3333 107 90 91 No 4.2917 11.4375 4.5417 2.0000 108 91 92 No 4.2917 7.1458 4.5417 2.0000 109 92 87 No 0.6667 5.0000 4.5417 2.3333 110 91 88 No 0.6667 9.2917 4.5417 2.3333 111 93 94 No 0.6667 7.1458 4.5417 2.3333 112 95 96 No 0.6667 11.4375 4.5417 2.3333 117 97 98 No 0.6667 16.0833 4.5417 1.3333 118 99 100 No 0.6667 2.5000 4.5417 1.3333 119 22 99 No 2.6926 1.2500 4.5417 0.5000 120 99 92 No 2.6926 3.7500 4.5417 ••1.000 121 21 100 No 2.6926 1.2500 • 4.5,117 0001.4967 •••••• • 122 100 87 No 2.6926 3.7500 '•4'54:7 • 2.4667 • • 123 89 98 No 2.6926 14.8333 •.46417 ••2.1667 •••••• 124 98 35 No 2.6926 17.3333 0 0 4447 1!.1667 • • 125 36 97 No 2.6926 17.3333 •4,6417 • U000 • • 126 97 90 No 2.6926 14.8333 •46417 + 1.5000 127 101 102 No 0.6667 1.2500 ••4.6447 • 0'.8133 •"" 128 103 104 No 0.6667 3.7500 ••4.6417 •••?.8333 """ • 129 105 106 No 0.6667 14.8333 :-#.:4:7 1:8333 '• 130 107 108 No 0.6667 17.3333 • 4.54'17 ;••0.$333 ""• 131 12 87 No 7.0446 2.5000 ; 2.;1(18 ' 1.6667 :•••• 132 87 2 No 7.0446 2.5000 '6.8125 •' 1=7 133 109 56 No 2.4813 2.5000 1.1354 ••1.1667 134 109 24 No 2.6926 1.2500 2.2708 1.1667 135 110 78 No 2.4813 2.5000 7.9479 1.1667 136 110 26 No 2.6926 1.2500 6.8125 1.1667 137 89 16 No 7.0446 16.0833 2.2708 1.6667 138 111 38 No 2.6926 17.3333 2.2708 1.1667 139 111 54 No 2.4813 16.0833 1.1354 1.1667 140 89 6 No 7.0446 16.0833 6.8125 1.6667 141 112 76 No 2.4813 16.0833 7.9479 1.1667 142 112 40 No 2.6926 17.3333 6.8125 1.1667 145 88 14 No 4.9625 9.2917 2.2708 1.6667 146 88 66 No 4.9625 9.2917 6.8125 1.6667 Table 3: Connectivity - Frame Part 2 of 2 Table 3: Connectivity-Frame,Part 2 of 2 ,j. 1 3 5 7 14 Page 11 of 103 MAURICE HERNANDEZ-ATLANTIC AWNINGS.SDB SAP2000 04.0.0 1.. Model geometry 14 mayo 2015 Table 3: Connectivity-Frame,Part 2 of 2 16 17 19 21 22 24 25 26 31 32 33 34 35 36 37 38 39 40 41 • • 42 : .•• •••• •.•••• 43 • • • • 44 • 45 48 • • •••••• •••• • ••••• 49 5051 • 52 • • • • •••••• 53 • . • • • 54 •• • • ••. 55 •••� 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 Page 12 of 103 04.0.0 MAURICE•HERNANDEZ -ATLANTIC AWNINGS.SDB SA14 ma o, 2015 1. Model geometry 14 mayo 2015 Table 3: Connectivity-Frame,Part 2 of 2 It 14,N'O 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 •••* 97 • • 98 • • . • 99 ' ' ...... .. . ...... 100 ' 101 •��••� 102 • • •...•• 103 • 104 of'see o • 105 ...... • • 106 ; ' : • • •..•:• 107 • • • • • 108 •• • • ..• • • 109 •• • 110 111 112 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 Page 13 of 103 MAURICE HERNANDEZ-ATLANTIC AWNINGS.SDB SAP2000 04.0.0 1. Modt-1 geometry 14 mayo 2015 Table 3: Connectivity-Frame,Part 2 of 2 137 .. 138 139 140 141 142 145 146 Table 4: Frame Section Assignments Table 4: Frame Section Assignments 1 Box/Tube N.A. TUBE 3"x3"x1/4" TUBE 3"x3"x1/4" Default 3 Box/Tube N.A. TUBE 3"x3"x1/4" TUBE 3"x3"x1/4" Default 5 Box/Tube N.A. TUBE 3"x3"x1/4" TUBE 3"x3"x1/4" Q8 MGIT 7 Box/Tube N.A. TUBE 3"x3"x1/4" TUBE 3"x::"x1/i". DM811 • 14 Pipe N.A. STL P 1-1/4" STL P 1-174' ' p&fayl?; �. ... • • 0000•• 16 Pipe N.A. STL P 1-1/4" STL P 1'114• Default 17 Pipe N.A. STL P 1-1/4" STL P 1'17,t'*�� Default 19 Pipe N.A. STL P 1-1/4" STL P 1. ,f'*�. taefoel!• 21 Pipe N.A. STL P 1-1/4" STL P 1-M-* Default 000000 • •• 0000• 22 Pipe N.A. STL P 1-1/4" STL P 1-1/4 • Default • •• •• 0000 0000•. 24 Pipe N.A. STL P 1-1/4" STL P 1-1/4"�� Defa qt • 25 Pipe N.A. STL P 1-1/4" STL P 1 /4"• Default. 26 Pipe N.A. STL P 1-1/4" STL P 1-1/4" liMC?• 31 Pipe N.A. STL P 1-1/4" STL P 1;./J• Defa4 32 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Dej;jLMt ; 33 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 34 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 35 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 36 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 37 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 38 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 39 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 40 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 41 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 42 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 43 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 44 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 45 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 48 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 49 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 50 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 51 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 52 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 53 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 54 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 55 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 56 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 57 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default Page 14 of 103 00 14.0.0 MAURICE HERNANDEZ-ATLANTIC AWNINGS.SDB SAP14 may 015 2 1.' Model`geometry 14 yo 2015 Table 4: Frame Section Assignments 1 01,111, wr �a 58 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 59 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 60 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 61 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 62 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 63 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 64 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 65 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 66 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 67 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 68 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 69 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 70 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 71 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 72 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 73 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 74 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 75 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 76 Pipe N.A. STL P 1-1/4" STL P 1-1/4" COW• 77 Pipe N.A. STL P1-1/4" STL P1-1/4"•'. Dei&V 78 Pipe N.A. STL P 1-1/4" STL P 1-1 4" aePaL:t �• 79 Pipe N.A. STL P 1-1/4" STL P 1-1 N • Default 80 Pipe N.A. STL P1-1/4" STL P1-11xVDefault :••••� 81 Pipe N.A. STL P1-1/4" STL P1-410% Default:• 82 Pipe N.A: STL P 1-1/4" STL P 1-174"� Default • • 83 Pipe N.A. STL P1-1/4" STL P1-1/4+�::• Dei lt�• ������ 84 Pipe N.A. STL P 1-1/4" STL P 1-J�4� DefaL�t 85 Pipe N.A. STL P 1-1/4" STL P 1-:/4"• ; 4efault. 86 Pipe N.A. STL P 1-1/4" STL P 1-'/4" . [v"t" . . 87 Pipe N.A. STL P 1-1/4" STL P 1-%4;' ; DejaLit.. • • 88 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Clefault 89 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 90 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 91 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 92 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 93 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 94 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 95 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 96 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 97 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 98 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 99 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 100 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 101 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 102 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 103 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 104 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 105 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 106 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 107 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 108 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 109 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 110 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 111 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default Page 15 of 103 MAURICE HERNANDEZ-ATLANTIC AWNINGS.SDB SAP2000 v14.0.0 '2. Material properties 14 mayo 2015 Table 4: Frame Section Assignments u 112 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 117 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 118 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 119 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 120 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 121 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 122 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 123 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 124 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 125 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 126 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 127 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 128 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 129 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 130 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 131 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 132 Pipe N.A. STL P 1-1/4" STL P 1-1/4" Default 133 Pipe N.A. STL P 1-1/4" STL P 1-1/4" DpLaVd 134 Pipe N.A. STL P 1-1/4" STL P 1-1/4" 14favu• ...... 135 Pipe N.A. STL P 1-1/4" STL P 1t-V4'- 136 Pipe N.A. STL P1-1/4" STLPI;U4".•• i7�f•nLlt; ••.•:. 137 Pipe N.A. STL P 1-1/4" STL P DefaWlt • • 138 Pipe N.A. STL P 1-1/4" STL P 1144"•. Default • • 139 Pipe N.A. STL P 1-1/4" STL P 1 144".•• Default• ••••• 140 Pipe N.A. STL P 1-1/4" STL P 1.144"..• Refael! ••••• 141 Pipe N.A. STL P 1-1/4" STL P 1.1x4"•• Defaelt• •••• • 142 Pipe N.A. STL P 1-1/4" STL P 1•-W4"••• Defaelt • • 145 Pipe N.A. STL P1-1/4" STLP1e1/4"� T*Vlt ••••.• 146 Pipe N.A. STL P 1-1/4" STL P 1 el/4",•• Default 2. Material properties This section provides material property information for materials used in the model. Table 5: Material Properties 02 - Basic Mechanical Properties Table 5: Material Properties 02-Basic Mechanical Properties 4000Psi 1.5000E+02 4.6621E+00 519119501. 216299792.0 0.200000 5.5000E-06 A53GrB 4.9000E+02 1.5230E+01 4176000000 1606153846 0.300000 6.5000E-06 A992Fy50 4.9000E+02 1.5230E+01 4176000000 1606153846 0.300000 6.5000E-06 Table 6: Material Properties 03a - Steel Data, Part 1 of 2 Table 6: Material Properties 03a-Steel Data,Part 1 of 2 0 A53GrB 5040000.00> 8640000.00 5544000.00 9504000.00 Simple Kinematic 0.020000 0.140000 Page 16 of 103 i 1 MAURICF HERNANDEZ-ATLANTIC AWNINGS.SDB SAP2000 v14.0.0 3. Section properties 14 mayo 2015 Table 6: Material Properties 03a-Steel Data,Part 1 of 2 A992Fy50 7200000.00 9360000.00 7920000.00 10296000.00 Simple Kinematic 0.015000 0.110000 Table 6: Material Properties 03a - Steel Data, Part 2 of 2 Table 6: Material Properties 03a-Steel Data,Part 2 of 2 �S if ' Firm Sh, A53GrB 0.200000 -0.100000 A992Fy50 0.170000 -0.100000 Table 7: Material Properties 03b - Concrete Data, Part 1 of 2 Table 7: Material Properties 03b-Concrete Data, Part 1 of 2 ru 114, gi eQp �5 , .e' �Irlr1 4000Psi 576000.00 No Mander Takeda 0.002219 0.0050 • 0.100000 • • 0.000 •• • Table 7: Material Properties 03b - Concrete Data, Part 2 of 2 •••• • Table 7: Material • • Properties 03b-Concrete ";•': : . • ••• Data, Part 2of2 •• •• •••• •••••• anal �� a,s 4000Psi 0.000 : ••• •••••• 3. Section properties This section provides section property information for objects used in the model. 3.1. Frames Table 8: Frame Section Properties 01 - General, Part 1 of 6 Table 8: Frame Section Properties 01 -General,Part 1 of 6 STL P 1-1/4" A53GrB Pipe 0.13833 0.01167 TUBE 3"x3"x1/4" A53GrB Box/Tube 0.25000 0.25000 0.02083 0.02083 Page 17 of 103 MAURICE,HERNANDEZ-ATLANTIC AWNINGS.SDB SAP2000 v14.0.0 4. Load patterns 14 mayo 2015 Table 8: Frame Section Properties 01 - General, Part 2 of 6 Table 8: Frame Section Properties 01 -General,Part 2 of 6 STL P 1-1/4" 0.0046 0.000019 9.390E-06 9.390E-06 0.0023 0.0023 0.000136 TUBE 3"x3"x1/4" 0.0191 0.000251 0.000169 0.000169 0.0104 0.0104 0.001348 Table 8: Frame Section Properties 01 - General, Part 3 of 6 Table 8: Frame Section Properties 01 :General,Part 3 of 6 STL P 1-1/4" 0.000136 0.000188 0.000188 0.04497 a 0.04497 No No TUBE 3"x3"x1/4" 0.001348 0.001646 0.001646 0.09394 0.09394 No No Table 8: Frame Section Properties 01 - General, Part 4 of 6 Table 8: Frame Section Properties 01 -General,Part 4 of 6 #1` Yi �Q1 Y"r alWkp 4V W9 lift"MM ••• , STL P 1-1/4" White 550.91 17.12 No 1.000000 1.tM0000 *1-.0 0D0 •. TUBE 3"x3"x1/4" Blue 163.76 5.09 No 1.000000 1.06 jon 1:d000a0 '••••• •••• • ••••• Table 8: Frame Section Properties 01 - General, Part 5 of 6 .. ..:••• Table 8:Frame Section Properties 01 -General,Part 5 of 6 •• '• •• ••••:• e e STL P1-1/4" 1.000000 1.000000 1.000000 1.000000 1.000000 • • . •0664• TUBE 3"x3"x1/4" 1.000000 1.000000 1.000000 1.000000 1.000000 • • • Table 8: Frame Section Properties 01 - General, Part 6 of 6 Table 8: Frame Section Properties 01 -General,Part 6 of 6 STL P 1-1/4" Added 14/05/2015 11:06:14 a.m. TUBE 3"x3"x1/4" Added 14/05/2015 11:07:08 a.m. 4. Load patterns This section provides loading information as applied to the model. 4.1. Definitions Page 18 of 103 MAURICE HERNANDEZ-ATLANTIC AWNINGS.SDB SAP2000 v14.0.0 5. Load cases 14 mayo 2015 Table 9: Load Pattern Definitions Table 9: Load Pattern Definitions iii� fdy �+8� UI ! Q s to sa � C3 �° DEAD DEAD 1.000000 LIVE LIVE 0.000000 WIND WIND 0.000000 None 5. Load cases This section provides load case information. 5.1. Definitions Table 10: Load Case Definitions, Part 1 of 2 Table 10: Load Case Definitions,Part 1 of 2 • DEAD LinStatic Zero Prog Det 4E044 0 0 None • • MODAL LinModal Zero Prog Det OTV� None, LIVE LinStatic Zero Prog Det I'-lW.V.•' .None** ••••• WIND LinStatic Zero Prog Det VyWp•• *None• ••:.. •••••• • • • Table 10: Load Case Definitions, Part 2 of 2 ""•` ...... Table 10: Load Case Definitions, Part 2 of 2 •• : • ••• • • DEAD Yes Finished MODAL Yes Finished LIVE Yes Finished WIND Yes Finished 5.2. Static case load assignments Table 11: Case - Static 1 - Load Assignments Table 11: Case-Static 1 -Load Assignments L© DEAD Load pattern DEAD 1,000000 LIVE Load pattern LIVE 1.000000 WIND Load pattern WIND 1.000000 Page 19 of 103 MAURICE HERNANDEZ-ATLANTIC AWNINGS.SDB SAP2000 v14.0.0 -6. Load combinations 14 mayo 2015 5.3. Response spectrum case load assignments Table 12: Function - Response Spectrum - laser Table 12: Function-Response Spectrum-User UNIFRS 0.000000 1.000000 0.050000 UNIFRS 1.000000 1.000000 6. Load combinations This section provides load combination information. Table 13: Combination Definitions, Part 1 of 3 Table 13: Combination Definitions,Part 1 of 3 om 'oNatt�e�� = C�ttln�ioTYps�,�uCot3�sTgn `��� asp � ase ca e a ur e be D Linear Add No Linear Static DEAD 1.000000 D+L Linear Add No Linear Static DEAD •1-:K0.00 ND D+L Linear Static LIVE 1.448000 "•••• D+0.75*L Linear Add No Linear Static DEAD ••••• D+0.75*L Linear Static LIVE �aj�QpDO000*0 D+0.6*W Linear Add No Linear Static DEAD •1. gwto 93e•0 •••••• D+0.6*W Linear Static WIND •44"QO • •� D+0.75*L+0.6*W Linear Add No Linear Static DEAD ;1.oft 0:0 • No �p.750000 • •••••• D+0.75*L+0.6*W Linear Static LIVE •••••• • • • D+0.75*L+0.6*W Linear Static WIND •0.6000:0 • ••• • • 0.6*D+0.6*W Linear Add No Linear Static DEAD 0.600000 •*Aes • 0.6*D+0.6*W Linear Static WIND 0.600000 I Table 13: Combination Definitions, Part 2 of 3 Table 13: Combination Definitions,Part 2 of 3 D DEAD No No No D+L DEAD No No No D+L LIVE D+0.75*L DEAD No No No D+0.75*L LIVE D+0.6*W DEAD No No No D+0.6*W WIND D+0.75*L+0.6*W DEAD No No No D+0.75*L+0.6*W LIVE D+0.75*L+0.6*W WIND 0.6*D+0.6*W DEAD No No No 0.6*D+0.6*W WIND Page 20 of 103 • s MAURICE HERNANDEZ-ATLANTIC AWNINGS.SDB SAP2000 v14.0.0 6. Load'combinations 14 mayo 2015 Table 13: Combination Definitions, Part 3 of 3 Table 13: Combination Definitions,Part 3 of 3 D DEAD D+L DEAD D+L LIVE D+0.75*L DEAD D+0.75*L LIVE D+0.6*W DEAD D+0.6*W WIND D+0.75*L+0.6*W DEAD D+0.75*L+0.6*W LIVE D+0.75*L+0.6*W WIND 0.6*D+0.6*W DEAD 0.6*D+0.6*W WIND • • •••• •••••• •••••• •• • •••••• • • • •••••• •••• • ••••• •• •• •••• •••••• 60* • • • • • •••••• • • III Page 21 of 103 SAP2000 ywWai�'�� � Project "` Job Number Engineer AISC-ASD01 STEEL SECTION CHECK Combo 0.6*D+0.6*W Units lb, ft, F Frame 1 Design Sect: TUBE 3"x3"xl/4" X Mid 0.000 Design Type: Column Y Mid 0.000 Frame Type Ordinary Moment Frame Z Mid -4.000 Sect Class Compact Length 8.000 Major Axis 0.000 degrees counterclockwise from local 3 Loc 8.000 RLLF 1.000 Area 0.019 SMajor 0.001 rMajor 0.094 AVMajor: 0.010 SMajor : 1.685E-04 SMinor 0.001 rMinor 0.094 AVMinor: 0.010 IMinor 1.685E-04 ZMajor C.002 E 4176000000. Ixy 0.000 ZMincr 0.002 Fy 5040000.000 STRESS CHECK FORCES & MOMENTS Location P M33 M22 V2 V3 T 8.000 694.901 -379.032 -133.678 47.379 16.710 0.000 PMM DEMAND/CAPACITY RATIO Governing Total P MMajor MMinor Ratio Status 0000 Equation Ratio Ratio Ratio Ratio Limit Check • • (H2-1) 0.126 = 0.012 + 0.065 + 0.030 0.950 0 0 0.00 • 0.0• 0 0 • OK • AXIAL FORCE DESIGN O O O O •00000 •• • • 0000 P fa Fa Ft • Force Stress Allowable Allowable 000000 • •0•� Axial 694.901 36387.547 157892.630 3024000.000 00•• 0 0 0 O • • •0000• 0000 • • ••• MOMENT DESIGN 0 O •000•• • •• • ••• M fb Fb Fe Cm K• • L • • L0 Moment Stress Allowable Allowable Factor Factor OF�actor Facer 0 •000 Major Moment -379.032 281118.722 3326400.000 157892.630 1.000 4.3434••01!000 1.000 0 • Minor Moment -133.678 99145.566 3326400.000 170587.707 1.000 4.1:9 0 1.000 • • • 0000 •0.00• SHEAR DESIGN 000 0 • 0000 ,I V fv Fv Stress Status 00 0 T •0 �0� O O Force Stress Allowable Ratio Check Torsion •• • Major Shear 47.379 4548.386 2016000.000 0.002 OK 0.000 Minor Shear 16.710 1604.135 2016000.000 0.001 OK 0.000 SAP2000 04.0.0-File:E:\CONSIGN LLC\MAURICEHERNANDEZ\MAURICEHERNANDEZ-ATLANTICAWNINGS mayo14.2015 13:42 5-- Project SAP2000 Job Number Engineer AISC-ASDO1 STEEL SECTION CHECK Combo 0.6-D+0.6*W Units lb, ft, F Frame 7 Design Sect: TUBE 3"x3"xl/4" X Mid 16.083 Design Type: Beam Y Mid 10.583 Frame Type Ordinary Moment Frame Z Mid 0.000 Sect Class Compact Length 3.000 Major Axis 0.000 degrees counterclockwise from local 3 Loc 3.000 RLLF 1.000 Area 0.019 SMajor 0.001 rMajor 0.094 AVMajor: 0.010 IMajor 1.685E-04 SMinor 0.001 rMinor 0.094 AVMinor: 0.010 IMinor 1.685E-04 ZMajor 0.002 E 4176000000. Ixy 0.000 ZMinor 0.002 Fy 5040000.000 STRESS CHECK FORCES & MOMENTS Location P M33 M22 V2 V3 T 3.000 39.552 1239.660 -17.435 -438.741 6.662 -16.287 PMM DEMAND/CAPACITY RATIO Governing Total P MMajor MMinor Ratio Status 00.0 Equation Ratio Ratio Ratio Ratio Limit • 0 Check'0000' •� ••� (H2-1) 0.281 = 0.000 + 0.276 + 0.004 0.950 • • • OK • • • • • AXIAL FORCE DESIGN 0 •0000 •• • •• ••• P fa Fa Ft ' •0.00• • • • Force Stress Allowable Allowable '• •" Axial 39.552 2071.080 2776945.870 3024000.000 0090 • • • • MOMENT DESIGN 0 M fb Fb Fe Cm k • L ' • Cb Moment Stress Allowable Allowable Factor Factor •Factor 'actor •• 0•• Major Moment 1239.660 919425.113 3326400.000 21086147.57 1.000 1.0@00•••1.000 1!000 '• Minor Moment -17.435 12931.325 3326400.000 21086147.57 1.000 1.Q00 • ♦.000 • • ••0.00 SHEAR DESIGN : •0• • •• •" V fv Fv Stress Status " ' T •• �•: • • Force Stress Allowable Ratio Check Torsion •• • Major Shear 438.741 42119.142 2016000.000 0.021 OK 0.000 Minor Shear 6.662 639.577 2016000.000 0.000 OK 0.000 SAP2000 v14.0.0-File:E:\CONSIGN LLC\MAURICE HERNANDE7\MAURICE HERNANDEZ-ATLANTIC AWNINGS mayo 14,2015 13:40 4 4 , I t C�VTE T' D r D ,UHE++y� a��va.'- aceaHsca:•• 'eh#i :"a�.�Z-.:d.+u,. .,.Q>F�..:ix'.},�.. i The Wedge-Bolt anchor is designed to match standard fixture clearance holes that are 1116"over nominal to }' provide a secure fit. Since the Wedge-B®I 6 ;Y � Wedge Bolt is specially matched to _; �l � ' 0 the clearance hole,the need for Concrete,Block,Brick,Stone Tight it ;', P layout or hole spotting is eliminated. 3/16"x1-1/4 to3/4'x8" Heat Treated,High Strength Carbon Steel s B The Wedge-Bolt anchor is versatile PRODUCT DESCRIPTION,:. ® and can be used in a variety of base The Wedge-Bolt anchor is a one piece,heavy duty anchor with either a finished BR rCK materials.This reduces the need to hex head-or countersunk Phillips flat head.It is easy to identify,removable and stock assorted anchor types and vibration resistant.The Wedge-Bolt anchor also has many unique features and learn a variety of installation ` procedures.A function test(i.e.trial benefits that make it well suited for almost every application.Optimum et.ocrc +9` a ;� -�, . performance is obtained using a combination of patented design concepts.The L xa a ,} installation)in the actual base ? benefit to the designer is higher load capacities while the benefit to the user is °tY CONCRETE r��r� t oD material is recommended for high ease of installation. s"a�L� 4s T e; `F lj ;s'' density precast concrete and slabs ii4 T r_u^4" �Y a a ;d 3 with compressive strengths greater R Paraboll HOLLOW BLOCK ' ` - than 5,000 psi. Th d iP v de Hlgh 1 ti n l✓d L dCaP Y + H d Again f ea '�r-a OUR x:.... 9 .�'. fid ? Finished Hea Hd Q I.( E q d f gAtl` ci g 'r "�h [s^'ilY '= ' ed Tip The Wedge-Bolt anchor is designed to be used with a matched tolerance' E yC t y D Wedge-Bit for optimum performance.This high performance bit has a special p 4 tolerance range to ensure optimum results.Remember...Blue tip,Blue bit! Mi h EasyRead High Heb gl - bL Len91h Id.nUticrtion F 1.. 1.0 ,p Pr d A D n Rell 1 ,}I.j 74 - �Lti s BlueTip L Th ly,MW_,r�aa Hyl S ail c ,rxXPs� � Blue Bit e5 The Wedge-Bolt anchor is a one- The Wedge-Bolt anchor can be piece unit which features a finishedinstalled at shallower embedment hex head formed with an integral e or depths than traditional wed P g €_ washer,a patented dual lead thread a dP•�°°Le `4,�},�; ` o sleeve anchors reducing the chance and a chamfered tip.A one piece +, a t� Versus i® rIQ `' �1 vw �� of striking reinforcing bars or I design eliminates the possibility of . , _ ; p; embedded cables.Drilling time and ♦ 4 ¢ �s4R y 'a .L f I lost anchor parts or improper bit wear can be reduced resulting in assembly. a �' d•.,� sx a.b 4 .o y ��' � g.• � significant savings. p D O ,r I "��NE�S> - us-P,s�,,,o-.:e•` , . ..� �. 4,,M reduced by 28%.Edge distances closer or less than 3 diameters(31))need to be field tested.Actual base material conditions will determine any applicable reduction factor.The following table lists the load reduction factor,Re,for each anchor diameter,D,based on the anchor center to edge distance. 2796 3/16 3 5 1 1 3/16 2-1/2 2-1/4 2. 1-3/4 1-1/2 1-1/4 1 3/4 1/2 314 7 ....•.f In f. n ... 3/8 3-3/4 3-318 3. 2-518 2-1/4 1-718 1-1/2 1-1/8 �y - y. 4-1/2`- 4. ' 3 11Z,.,.;� 3. 2-1/2 2 . .;1';1/Z-. MMIN G �L f. P ki3'.�iY� ?y a 5/8 61/4 5-5/8 5. 4-3/8 3-3/4 3118 2-1/2 1-718 • • � :,' 364 ��?�z�dl' 63/4':�g v 6rs, ,s5 119 s ,-' 4 112,,. .:;x3 314, Jr 2';1/4: 2791 Combo 3116"Wedge-BolYTAPPER 1000 Tool 4" 5-112" 1 3/4 Re 1.00 0.96 0.92 0.88 0.84 0.80 0.76 0.72 Mr D911@ E;;s 1 For shear loads,an edge distance,E,of 10 anchor diameters(10D)or greater D should be used to obtain the maximum load.The minimum recommended BMT \! edge distance,E,is 3 anchor diameters(3D)at which point the shear load should be reduced by 84%.Edge distances closer or less than 3 diameters(3D) i need to be field tested.Actual base material conditions will determine any' applicable reduction factor.The following table lists the load reduction factor, S Re,for each anchor diameter,D,based on the anchor center to edge distance. S S S E E , D=Anchor Size F F S=Spacing 3/16 2-112 2-1/4 2. 1-3/4 1-112 1-1/4 1 3/4 E=Edge Distance 1/4J` 2 1/2' 2 114 2 1 314 1 1/2 1 1/4- 1 ,3%4 BMT=Base Material Thickness I 318 33/4 3318 3 2518 2-1/4 1-7/8 1-1/2 1-1/8 1/2- 5 41/2 > 4 3 112 3 2-10 2 1 1/2` 518 6 114 5-5/8 5 4-3/8 3-3/4 3-118 2-1/2 1-7/8 The minimum recommended thickness of solid base material,BMT,is 125%of 3(4' r 7 112;: 6 3/4 f 6.. . ,5 1/4_. 4 1/2 3-3/4 3 2-114 the embedment to be used.For example,when installing an anchor to a depth Re 1.00 0.88 0.76 0.64 0.52 0.40 0.28 0.16 of 4",the base material thickness should be 5". To obtain the maximum load in tension or shear,a spacing,S,of 10 anchor ` diameters(10D)or greater should be used.The minimum recommended anchor d P a spacing,S,is 5 anchor diameters(5D)at which point the load should be reduced by 50%.Anchor spacing closer or less than 5 diameters(51))needs to be field tested.Actual base material conditions will determine any applicable reduction factor.The following table lists the load reduction factor,Rs,for each anchor diameter,D,based on the center to center anchor spacing. A P a 17 3/16 2-1/2 2-1/4 2. 1-3/4 1-1/2 1-1/4 f p a 1:1/2 "' 1-1id`` d N 3/8 374 3-3/8 3 2-5/8 2'-'1'14 1-7/8 5 `4112 Q� 'w.'iHA B TEEL ., 31/2 3 ' 2=112" 5/8 6-1/4 -""5-5/8 5 4-3/8 3-3/4 3-1/8 r "i7 Wedge Bit/Drid Bit Size '3/16 114 '318 *112 5/8 `3!4" ( � ,. 1�2 ri J+6 3(,4. .- 6. , 5 1/4 41/2 . 3 3/4'+ Rs 1.00 0.90 0.80 0.70 0.60 0.50 Fixtpre Clearance Hole **5/16 S/16s 7/t6 : 9/16" 1.1/•16" 1'3/161: Head Washer Height 7/32" 21/64" 7/16" 112" 19/32" �nrt #N WasherOD 9b16' 1-3/16' 1-137 d 3.2,. For tension loads,an edge distance,E,of 10 diameters 0OD)or greater should For Size 7/16" 9/16" 314" 15/16" 1-1/8 be used to obtain the maximum tension load.The minimum recommendedFor proper performance,a Wedge-Bit must be used. **Same 3116"standard bit used for 114"TAPPER is packaged with each box of 3/16••Wedge- edge distance,E,is 3 diameters(3D)at which point the tension load should be Sok anchors. The following load capacities are based on testing conducted according to ASTM Standard E 488. r 3116" 1" 660 1,300 800 1,465 945 1,630 1,090 1,800 1,250 1,920 "�g°K > � '� '• 5. '� �/e '=����'�; 90 ��`� � �:.'�X��7Q0� ,, 370 S �"�1 8�(�1y�„�s�'144: �" ,`;jl�� � ► 3/16" 1-1/4" 895 1,675 1,155 1,725 1,385 1,775 1,650 1,825 1,700 1,930 i`�jev'�:••-�r �''`°'�.ISs f z- yi.r- rx�s,,YS^+� mn ty�.,"•4.4"`y ^u�:tom g �;-?� �„,t+u" �'--i 9�;gF.c' .g'�;,.�«.•a w-e�5�+s wR»a"' f!'�q�°'.�ye:%t-ac g; �a'�.l.B,aH ��•>,�s�?.: ��� $�'�� .. �. �i���,�c.�la$�� �..�: "6�`�, •��-���:�t�r934 ..;�a5ht840y�t,t���;1cJ43�a���f9� : 3/16" 1-1/2" 1,130 1,955 1,465 1,955 1,800 1,955 2,140 1,955 2,140 2,025 p.�... tws•>i c �y+.st-a� ,� "°� 'w�' ,a. _*"r•'�"•t ^i. Pt � y'4^'�' p 4r'�S�s.�'Kr" y. r �:. � y� ��: 3/16" 1-314" 1,560 2,165 1,895 2,175 2,230 2,185 2,570 2,195 2,570 2,200 tH , t f 7+^S` rtAc'r(vy>�r++s/ n. �'r��, "".mac C'a .. �[1c' ti x^ ritv7'3�3`- .rw T .Usi r-sn -qR'--���t•�t •�,, 4a#..c'S'�"z1 i` 4�yy��. 3/16" 2" 1,990 2,280 Ultimate load values should be reduced by a minimum safety factor of 4 or greater to determine the allowable working load.All anchors were installed in holes drilled with 3116"diameter(TAPPER)drill bits that have a tolerance range of 0.202"to 0.204'.All anchors were installed using the TAPPER 1000 Installation(Combo Kit)Tool-Catalog Number 2791.To avoid installation problems in denser concrete base materials having compressive strengths over 2,000 psi,select an anchor length that results in an embedment depth that does not exceed 1-314". ROM the allowable working load. The design professional familiar with the actual product installation should be consulted.All anchors were installed in holes drilled with 3116"diameter(TAPPER)drill 111Mbits that have a tolerance range of 0.202'to 0.204"All anchors were installed using the TAPPER EMMEM 1000 Installation(Combo Kit)Tool-Catalog Number 2791.Since the consistency of masonry base 1/4 1 1,080 1,640 materials varies real the load capacities shown should be used as guidelines on lob site tests FROM�; v " ' * 76 3 , ; 9 N, pa .. g . ly ^OM_'I I . „i,,,,, ,, t ,,,�,•,_1c lµ8 should be conducted to determine installation success rate and actual load capacities. 3/8 1 1/2 2 160 4,260 SP4,1430% . .�� ar x Y -g?sssr; Utir t `fit 3412 t-4 x % 51G0� 5 vA80 Y 1/2" 2-112" 3,880 i 7,200 13�* a �4r * �tks830� u 8;� 0! 1/4 2'1 12 2 280 1,480 5/8 3 S,940 10640tt -�, •��. �-�B,At ,�ij �:r���•''' t,;�,1/��d�-b�:;;�,,.,�z>..�i390,,.�;a=.�-..v_��,Yt ✓830�' t 3 3stixalt�R 4ra5:rT se�r &3s �t v §'v 9b¢0 1/2 4 4,800 7,060 3/4 3 7,260 13,600 n� t�A � it� ',. n4ku &57t ,a: ,,0� 7 t�`�1-W es ,'9,7ms+ a �ric� ?OS 3/4" 4 6,580 :.m•12340 NOTE. The values listed above are ult mate load capac ties hich should be reduced by a safety NOTE: Depending upon anchor application and governing building code,ultimate load capacities factor of 4 or greater to determine the allowable working load. should be reduced by a minimum safety factor of 4 or greater to determine the allowable working The following tables list the ultimate or failure load for theWedge Bolt load. The design professional familiar with the actual product installation should be consulted. Please refer to the general section entitled Evaluation of Test Data that appears earlier in this manual anchor when installed in grout filled block 0solid red brick.These values for current industry standards.The consistency of solid red brick varies greatly. The load capacities should be used as a guide since the consiste� cy of walls constructed from listed above should be used as guidelines only. lob site tests should be conducted to verify base these materials varies widely.lob site tests should be conducted to material consistency and actual anchor performance. determine site specific values. o e, � 3 t �"eeRtyY c .,�E: Y • Y :• 3/16" 1-114" 770 1,310 1/4" 21/2' 2,280 1,480avx 45 MN MWA �, 0`i0� 11,00 , �- x:. D, - � 30 3/16 1-7/8 1,450 1,310 112" 4 4,800 7,060AAMIMM �� 1 � �My h 'r', �t -• .0 dam, s i x a- tfil 314" 4" 6,580 12,340 NOTE:Depending upon anchor application and governing building code,ultimate load capacities ' should be reduced by a minimum safety factor of 4 or greater to determine the allowable working load. The design professional familiar with the actual product installation should be consulted. The 3/16 1-1/4" 1,140 1,840 consistency of grout filled masonry varies greatly. The load capacities listed above should be used as A Y guidelines only.lob site rests should be conducted to venly base material consistency and actual • e• e anchor performance. L-__ � $rtrodebt c 3/16" 1,1/4" 1,160 1,475 NOTE:Depending upon anchor application and governing building code,ultimate load values in masonry base materials should be reduced by a minimum safety factor of 4 or greater to determine 3116" the allowable working load.The design professional familiar with the actual product installation 1 114 2 095 2,160 should be consulted.All anchors were installed in holes drilled with 3116"diameter(TAPPER)drill 6 1 z `q �: ,sr ell $ 1'16MO bits that have a tolerance range of 0.202"to 0104".All anchors were installed using the TAPPER 3/16" 1 118" 3,400 2,160 1000 Installation(Combo Kit)Tool-Catalog Number 2791 with the exception of those installed in RIM s:r k "Florida"Hollow Block.Anchors used in extreme) soft base materials should be manually installed �`sv ,_ + 2 1I4 Y Y with a hand held socket or screwdriver.Since the consistency of masonry base materials varies Depending upon anchor application and governing building code,ultimate load values in masonry greatly,the load capacities shown should be used as guidelines only lob site tests should be base materials should be reduced by a minimum safetv factor of either 4 or oreater to determine rc)ndl Irtpd to dptprminp Incrall;&nn a irrocc nto-4 -of Inorl ro nrfr4 r PRODUCT DESCRIPTION: _ THE WEDGE-BOLT ANCHOR ISA UNIVERSAL HIGH STRENGTH CARBON STEEL ANCHOR DESIGNED FOR USE IN STORE AGGREGATE - CONCRETE.IT IS A VERSATILE,HIGH PERFORMANCE ANCHOR THAT IS REMOVABLE.IT IS AVAILABLE WITH A FINISHED HEX WASHER O HEAD IN 1/4',3/8',12',S`8'AND 3'4'DIAMETERS.THE WEDGE-BOLT ANCHOR IS A ONE-PIECE UNIT FORMED FROM THROUGH HARDENED STEEL WITH A FINISHED HEX HEAD FORMED WITH AN INTEGRAL WASHER,A DUAL LEAD THREAD.AND A CHAMFEREO yp TIP.THE CARBON STEEL VERSION OF THE ANCHOR IS LNC-PLATED FOR CORROSION RESISTANCE WITH A SUPPLEMENTAL WEDGE-BOLT ANCHOR E CHROMATE FINISH IN ACCORDANCE WITH ASTM 8 633. GENERAL NOTES: u 1. THESE APPROVAL DOCUMENTS REPRESENT A POWER WEDGE-BOLT ANCHOR ANALYZED WITH THE PROVISION SET FOR THE w A O o� ISSUANCE OF A NOTICE OF ACCEPTANCE(NOAI BY MIAMI4DADE COUNTY PRODUCT CONTROL DIVISION FOR THE HIGH VELOCITY - HURRICANE ZONE(HVHZ)OF THE FLORIDA BUILDING CODE 2004 WITH 2005 SUPPLEMENT. H y- k£ Z. ANCHOR INSTALLATION SHALL BE MAO[IN ACCORDANCE WITH THE MANUFACTURE'S PUBLISHED INSTALLATION INSTRUCTIONS 0-33,AND THIS MIAMI-DADE COUNTY BCCO NOTICE OF ACCEPTACE.THE WEDGE-BOLT ANCHOR HOLE MUST BE DRILLED USING A -SPECIAL MATCHED TOLERANCE WEOGE-BIT.TO INSTALL THE ANCHOR,PRESS THE CHAMFERED TIP OF THE ANCHOR THROUGHTFIE FIXTURE IWO THE HOLE.AMD TIGHTEN IT USING A SOCKET WRENCH OR IMPACT WRENCH.AS THE ANCHOR IS TIGHTENEDINTO THE HOLE.THE REVERSE PARABOLIC DUAL LEAD THREADS UNDERCUT THE WALL OF THE HOLE.THE DUAL LEAD THREAD IS FORMED WITH A HIGH HELIX ANGLE FOR FAST ENTRY AND ADVANCING,A SPECIALLY DESIGNED RELIEF THREAT)FORMED IN THE BODY OFTHE ANCHOR ALLOWS EASY TIGHTENING.FOR EASE OF IDENTIFICATION AFTER INSTALLATION,THE HEAD OF THE ' A= LENGTH B=DIAMETER ANCHOR IS STAMPED WITH BOTH THE DIAMETER AND LENGTH.ALLOWABLE TENSION AND SHEAR VALUES ARE NOTED IN TABLE 1 r 3. NO INCREASE IN ALLOWABLE STRESS HAS BEEN USED IN THE DESIGN OF THIS PRODUCT. 4.THESE APPROVAL DOCUMENTS ARE GENERIC AND DO NOT INCLUDE INFORMATION FOR SITE-SPECIFIC APPLICATION, / rx: 5 USE OF THESE APPROVAL DOCUMENTS SI4ALL COMPLY WITH CHAPTER 61 G7523 OF THE FLORIDA ADMINISTRATIVE CODE E 6, ANY MOO IFI CAT IONS OR ADDITIONS TO TI-IESE APPROVAL DOCUMENTS WILL VOID THE APPROVAL DOCUMENTS _ V Z Q Z O g TABLE No.1 WEDGE-BOLT ANCHOR-Allowable Loads. m W' 1 W � Anchor Embedment 2000 psi Concrete 3000 psi Concrete 4000 psi Concrete 5000 psi Concrete 6000 psi Concrete Size / Depth Tension Shear/ Tension Shear Tension Shear Tension Shear Tension Shear o (inches) (inches) (pounds) (pounds) (pounds) (pounds) (pounds) (pounds) (pounds) (pounds) (oaunds) (pounds) ` I IBD - 260. 260 390 335 520 375 560 415 600 I_W = 1/4 1-1/2 360• 550 - 450 550 . 535 550 500 590 620 625 2 600 550 . 795 550 985 550 1,115 640 1,245 730 _ a rJo2-1/2 880 550 1,025 n W.Ko c. - 550 1,165 550 1.240 640 1,315 730 i-v? 475 045 555 1,010 630 1,170 695 1,440 760 L,710 TABLE No.2 WEDGE-BOLT ANCHOR-Allowable 5 aCln and Ed a Distance. / a.,r ^ DISTANCE FOR FULL ANCHOR DISTANCE FOR REDUCED ANCHOR REDUCTION 2 750 L110 B65 1,190 980 1,270 LMT) 1,490 1,300 1,710 CAPACITY (Critical Distance)' CAPACITY (Minimum Distance)e FACTOR i 3/6 2-1/2 1,025 L,370 1,180 1.370 1,330 11370 1585 1.540 1,835 1,710 i 3 1,450 1,425 1,695 1,455 1,935 1,480 2.205 1,595 2,475 1,710 SPACING BETWEEN ANCHORS - TENSION 12cl X 4el 1 0.50 0 3-1/2 I,B75 1,475 2,205 1,535 2,535 1,590 2.825 1,650 3,110 1,710 SPACING BETWEEN ANCHORS - SHEAR 12d 4d 0.75 „ - EDGE DISTANCE - TENSION 8d y 3d 0.70 // o• 2 715 1,430 850 1,570 985 1,705 1.090 1,945 1,195 2,185 EDGE DISTANCE - SICAR I2d! 3d 0.15 r 2-1/2 1,025 1,670 1,165 1,775 1,300 1,875 1.460 2,075 1,620 2,270 i 0 1/2 3 1.480 11790 1,715 1,945 I, O 2,095 2.t50 2,185 2,345 2,270 1- The listed values are the minimum distances required to obtain the load values listed in Table No. 1. / 3-1/2 1,515 2,165 1,820 2,220 2,120 2,270 2,550 2.335 2,975 2,400 'd' equals Anchor Diameter. When adjacent anchors ore different sizes or embedments, use largest value of 'd' .h 4 I.B90 2.165 2,525 2,220 3,155 2,270 3,155 2,335 3,155 2,400 2- The listed values are the minimum distances al which the anchor can be set, when food volues are / e m - adjusted appropriately, g o x I 2-1/2 055 1,000 1.020 2,255 t,180 2,705 1,455 3,030 1,725 3.350 3- Load values in the tables are multiplied by the reduction factor when anchors are installed at theme, N 3 1,140 2,325 1.495 2,690 1,845 3,055 2,045 3,305 2,240 3.550 m distance listed. Linear interpolation may be used for spacing or edge distances between the / m S/6 4 2060 3148 - -- critical and minimum distances. Multiple reduction factors for more than one spacing or edge distance 2.625 3,420 3,190 7,690 7,385 3.835 3,580 31900 shod he calculated separately and multiplied. / I_ 5 3,325 3,750 3,940 4,010 4,555 4,270 4,BB5 4,355 5,215 4,440 n I-I 3 LOBO 3.005 L350 3,420 1,620 3.835 1.900 4,265 2,175 4,695 4 1,780 3,630 2,410 4,590 3,035 5,550 3,27a 5,630 3,505 5,705 J 3/4 -- _ _ _ FNDI'OCT Hr.^:FrvyD 5 _2,835 4,690 3,295 5,400 3,755 6,110 4,305 6,150 4,950 61190 n,cla.�p!yi„4-1,,j,- I, - )h,idfnO T)5/1 B, ° 6 3,885 5.745 4,180 6,210 4,475 6,670 5,355 6.670 6,190 6,670 A,<[prer�«nvp Er4ensslos U /.// '�NOTED C E I- Allowable Loads are bd an Ultimate Load divided by a lsafely tactor. Z- Spacing and edgee distance shall be in accordance with Table No. 2. sy � Dh,14nn 06-3 F sheet T_ CHAQTER 30 ,WIND LOADS - COMPONENTS AND CLADDING figure 3-0,44-2A- . External Pressure G�oefficien{s,(C Enclosed,Partially Enclosed Buildings Gable Roofs e < 7° I I a 8J - a -Z- - L3 I 1 I I I I I I 0 \•. I I OI O O lO I 1 h I I I I I I 10 100 a 10 100 -3.2 U 3.2 -3.03.0 2e Roof 2828 Overhan CL O -2.8 U 2.6 U 2.6 U •2.4 2.4 O C2.2 O -2.2 •2.0 i CU .2.0 1.8 O I.6 1.6 1.6 1.fi (� -1.4 " .1.4 L -1.2t n- .1.2 '1.0iC -1.01.1 � 09 C U) 0.8 W 0.8 -0.8 CL .0.6 < 0 6 m 04 i 1 10 2C 50 100 20C 500 1000 C: -0.2 10.11 10 91 19. (4.61 19.31 (18.6; 14fi.S1192.91 0 W +0.2 , z , 02 Effective Wind Area, ft 2 (M2 ) +6.4 1oa t0.6 i B 10 20 50 100 200 5001000 (0.1) (0.9) (1,9) (4.6) (9,3) (18.6) (46.5)!929) Effective Wind Area, ft2 (M2 ) Notes: 1. Vertical scale denotes GC,to be used with qh. 2. Horizontal scale denotes effective wind area, to square feel(square meters). 3. Plus and minus signs signify pressures acting toward and away from the surfaces, respectively. 4. Each component shall be designed for maximum positive and negative pressures. 5. If a parapet equal to or higher than 3 ft(0.9m)is provided around the perimeter of the roof with 0 S 7°, the negative values of GC➢in Zone 3 shall be equal to those for Zone 2 and positive values of GC.P in Zones 2 and 3 shall be set equal to those for.wall Zones 4 and 5 respectively in Figure 30:4-1. 6. Values of GC, for roof overhangs include pressure contributions from both upper and Iower surfaces. 7. Notation: a: 10 percent of least horizontal dimension or 0.4h,whichever is smaller, but not less than either 4%of least horizontal dimension or 3 ft(0.9 m). h: Eave height shall be used for 0 S 10'. 0: Angle of plane of roof from horizontal, in degrees. 336 14DATE: 03/25/15 3/4"X14"X14"ST.PL. 7" ■ REVISIONS BY INTO EXISTING V- „ 2GROUT 6 © BLOCK FILLED C-90 3 \ 8'_0 1 W/(4)Yz"X 4"EMB. WEDGE BOLT ANCHOR 4, 0" (TYP OF 4) l/VV rn 11uu 3k C-4 m 1" ED7ETAN.Cg >6" �' y� `-L1 L N L J ^ m ts ASTMC1019 cz w - v PLATE DETAIL _ w S - Nmigth t 28 days Z_ U) �0 9 O iO 3000 psi „ _ i 4"Y2 Z w �Lu (n `� �, m o„ O i3 LL '� c to N— N U w Q. = O _ a i..� Z N E „ E ° ST 3'X3'&4 2'�6 M Z a o w TYP. BRACKET 0„ z3 0 � � Z s oco o ,6 CO 0_ U a rrn 2 2 in 8., o r 18-/ L r N N U Q co LO M ^ LO 3' D' F 3: � M z cn . _ �, gcDE H � ca = cu 5' (�itl C ¢ i1 LL i 00 M N w N I__ -a Q F J ca U 'i ED °mow J w ct� ST 3"X3"X%" COLUMN. m >O (TYPICAL) w 0" (a_ 0010 ALL PIPE TO BE 1Y"O SCH. 40 U.N.O. 8'-0 AFF a g GENERAL NOTES: :2 - ALL STRUCTURAL PIPES TO BE SCH. 40 GALV. STEEL A53-Fy=36 ksi OST - ALL STRUCTURAL STEEL PLATES TO BE STEEL A-36 - Fy= 36 ksi - ALL CONNECTIONS-TO BE FULLY WELDED J"-E7018 1/4"X8"X 8" SHEET DESCRIPTION - ALL WELDS COVERED WITH CORROSION RESISTANCE COATING. nP STL PL. - ALL STRUCTURES DESIGNED IN ACCORDANCE WITH: ISOMETRIC F.B.0 2010 CONCRETE DEAD WEIGHT a" A.S.C.E 7-10 2'-OX2'-0X2'-0 TSHEET: 1 of 1 EXPOSURE "C" - V= 105 MPH Min. A.I.S.0 9th EDITION SHALL DEVELOP ACI 318 3000 psi IN 28 DAYS 2 3"0 - NOTIFY ENGINEER OF ANY ERRORS / OMISSIONS FOUND OR IF ANY PART OF THE DRAWINGS IS NOT UNDERSTOOD. �6 rP - CANVAS MUST BE REMOVED WHEN A HURRICANE WARNING ISOMETRIC IS ISSUED (ABC 3105.4.2.1) - PROVIDE PERMANENT LABEL %4°X4"X 4" - FABRIC TO MEET CURRENT NFPA-701 ARE CODE. - SOIL CONDITIONS AT THE SITE ARE SAND AND ROCK WITH STL PL. MINIMUM SOIL BEARING CAPACITY 2000 psf. CONC.DEAD WEIGHT DETAIL - CRITICAL GRAVITY BEARING LOAD < 2000 psf "J"BOLTS EDGE DISTANCE>3" GtIA4 f. PS Florida P.E#:68447 13155 SW 134th Street,#119,Miami,Florida 33186-Phone-Fax#(305)253-9442 DESIGN CRITERIA 4 APPLICABLE CODES- CANOPY -F.B.0 2090 -A.I S.C.9th EDITION r c -A.S.C.E7-10 JUL 16 2015 WIND LOAD CALCULATIONS-Z<60 IT WIND CODE= ASCE 7-10 W INDSPEED= 105 MPH -FBC 2010-3105.4.2.1 MEAN ROOF HEIGHT: Z= < 60 ft EXPOSURE CATEGORY= "C" -FBC 2010-3105.4.2.1 EFFECTIVE AREA= 4.5 ft X 18.58 ft = ft2 Kzt= 1 -Section 26.8-2 ASCE 7-10 Kd= 0.85 -Table 26.6-1 ASCE 7-10 Kz-- 0.85 -Table 30.3-1 ASCE 7-10 qh= 0.00256*KzKA Kd*V2 -Section 30.3-1 20.39 psf And: AF GCp(1)= -1.20 -Fig.30.4-2A -Using 84 SQF -AS ROOF Upy Gcpi(1)= 0.55 -Table 26.11-1-Partially Open Buldings P design= qh"(GCp-Gcpi) -35.7 psf -CRITICAL CHECKING LOADS COMBINATIONS. -ASCE-7-10 •• • . . .... ...... Live Load-L= 5 psf -DESIGN LOADS PER ASCE 7-10 • • • • Dead Load-D= 8 psf -DESIGN LOADS PER ASCE 7-10 • • •• . : •• W= -35.7 psf •••�•• •• •••••• 1.- D= •••••• • • • 2.- D+L= •••• • • • • 3.- D+0.75L= •••••• �••••• ••••• 4.- D+0.6W= ' • 5.- o.o.� .e ww- • • • • • •• •• •• • •••••• 6.- oso.o.ew. • LOAD ON COMPLETE STEEL STRUCTURE •••• • . . . . ...... Total Live Load= 5.0 psf 168 SQF •••••• 840.00 lbs •� Loaded Perimete- 73.91 ft CA r .• : : • • L= 11.42 lb/ft •' • Total Dead Load= 8.0 psf 168 SQF 1lbs Loaded Perimeter- 73.91 73.91 ft L= 18.30 lb/ft Total Wind Load= -35.7 psf 168 SQF -5995.20 lbs Loaded Pedmete- 73.91 ft L= -81.60 Ib/ft DE MPLETE STEEL STRUC - x -7" See SAP 2000 Report Attached DESIGN OF CRITICAL CONCRETE DEAD WEIGHT Column load = 650 lbs. -See SAP 2000 Report Attached Safety factor(0.6) = 650 / V.0 - lu Concrete footer required 1083 / 150 = 7.2 cu,ft. Concrete footer provided 2 x 2 x 2 (Concrete unit weight 150 lbs) = 8 cu.ft. THEN USE 2'X2'x2'-CONCRETE DEAD WEIGHT PE. CON G E EER 34th STREET, MIAMI, FL 33186 PHONE#(305)253-8442 FLORIDA P.E. #88447 JUN 10 2015 t w■Ili r. P.E Florida P.E#:68447 13155 5W 134th Street,#119,Miami,Florida 33186-Phone-Fax#(305)253-9442 CHECKING LDING CONNECTION COLUMN TO EMBEDDDED BASE PLATE Using 3/16"-E70XX Electrodes Then Length of Weld= 0.65 = 0.23 Inch 0.928 x 3 Therefore; 0.23 Inch < 12.00 inch S.F= 51.40 CHECKING CRITICAL BRACKET TO WALL CONNECTION Moment= 2292 Ib-ft -See SAP 2000 Report Attached 27504 Ib-in H= 12 in T=C= 2292 lbs Per Each Plate R= 744 lbs ( See SAP 2000 Report Attache Tension= 2292 Ibs Per Each Pair of Bolts( Shea— 372 lbs Per Each Pair of Bolts Try using= (4)1/2"Wedge Batt Anchors(Min.embed,4")per plate on Mansory Grout Filled c-90 Block •.•. Spacing Between Bolts= > In Edge distance= > 6 100% ;FULLpESIGN '.•••' 066::9 TENSION 6 in 100% • �L#-DESIGN • Ru= 1200 x 2x 100% 00•9•0 •• 00.0.0 2400 Ibs > 2292 Ibs •••0 SHEAR•• • • • • • 0000 • • • Ru= 1765 x 2 x 100% • • •••••• 3530 lbs > 372 lbs ' ":"• 0000•• • • ••0•• CHECKING BIAXIAL STRESSES O_K •••••• • •••0:0 2292 372 1 •••• • • o.k • 3530 . •0000• `. so 0000• Then use: (4) 1/2"W loltAnckirs (Min, embe r plate o anso t to ;••,•0 ... . • S 44 lbs 12" M=22921" BRACKET - MOMENT CONN C 1. C44d4, p E. CONSULTING ENGINEER 13155 SW 134th STREET, SUITE#119 MIAMI,FL 33186 PHONE#(305)253.9442 FLORIDA PE #68447 JUN 101015 OEM 14, — --- -- -- - DATE 03/25/15 I O INTOI1'X14'8T. REVISIONS BYyp GROU BLOCI wFq►S'x4..: CAr r V"w"NOLT 5 4 D ANCHOR tryp OF 1 O 1 4 � a� • PLATE DET 7e�� X6,.0" C,: x�. az n 7000pel 0 d r GEE 2'6r 2'-01 U s" z ( o 5" a v $ LL Ca�rE� N U LL 10 aw ST 3"X3"X4"COLUMN. _> z O (TYPICAL) uj W,= ALL PIPE TO BE 1Ya"0 SCH. 40 U.N.O. a'-� a. 0 N f f NY < GENERAL NOTES: _ 0. -ALL STRUCTURAL PIPES TO BE SCH.40 GALV STEEL A534y=36 ksi -ALL STNICTURAL STEEL PLATES TO BE STEEL A-36-F1c 36 ksI -ALL CONVECTIONS 10 BE FIRLY WELDED 1}'-E7015 V' Y1X8'XB' SHEET DESCRIPTION -ALL MODS COMBED*M CORROSION RESISTANCE COATING. •• 000 • • • • •• -ALL STRUCTURES DESIGNED I!ACCORDANCE WITH: • • • • • • • n PL. FSC 2010 i ONCRFJC DE(10 • • • • ISOMETRIC ASCE 7-10 ••• • T�4DIPOSURE'C-V=105 MPH • 2'-OXF'-@X2'•-0• • • •AlSC 9th EDITION SA.Q-1 DEVEL QP SHEET: T of 1 ACI 318 3000 psi IN 28 DAYS 12-NOTIFY ENGINEER Of ANY ERRORS/OEISSIONS MI DOR F ANY PART OF THE DRAWINGS IS NOT IIDERSTOOD. -CANVAS MUST BE REIMM*0 A HURRICANE WARNING • ••• • •• •IS BSIIED(FBC 3105.4.21)-PROVDE PauveNT LABELTTDT/�-FABRIC TO MEET CURRENT NFPA-701 FINE CODE • • 15 E 1 RIC -SOI.CONDITDNS AT K SITE ARE SAND AND ROCI WITH •• • IMNAJM SOL BEARING CAPACITY 2000 pO 0 0 • •• • • • CONC.DEAD WEIGHT -CRITICAL GIumY BEARING;LOAD v'BCN LOAD<2000 pd EDGE DISTANCE NCE>>31 0:0•• • • • • ••• • • • • • • • • • • • • • •• •• • • • :0 • •• ••• • • • ••• • • eW44 t. P.E Florida P.E#: 68447 13380 SW 128th Street,Miami,Florida 33186- Phone-Fax# (305) 253-9442 1. - VERIFY CRITICAL BRACKET TO WALL CONNECTION- SHEAR & TE Mx= 2292 Ib-ft 27504 Ib-in See SAP 2000 Report H= 12 in T=C= 2292 lbs Per Each Pair of Bolts S= 744 Tension= 2292 lbs Per Each Pair of Bolts Shear= 372 lbs Per Each Pair of Bolts COPY Try using= (4)1/2"Wedge Bolt Anchor(Min.embed.4")per plate on Mansory Grout Filled C-90 Block Wall-See Attached NOA Spacing Between Bolts= > 6 in 100% -FULL DESIGN Edge Distance= > 6 in 100% End Distance= > 12 in 100% TENSION Ru= 1200 x 2 x 100% 2400 lbs > 2292 lbs SHEAR Ru= 1765 x 2 x 100% 3530 lbs > 372 lbs OX CHECKING BIAXIAL STRESSES 2292 + 372 = 1 < 1 o.k 2400 3530 Then use : (4)1/2"Wedge Bolt Anchor(Min.embed.4")per plate on Mansory Grout Filled C-90 Block Wall-See Attached NOA -- r-L 1i T_ Tfziao% -r • go. M I ov.-° • Co 00 • CONSULTING ENGINED.' : 13155 SW 134th STREET, SUITE,#119 MIAMI, FL 33188 PHONE#(30!)253-9442 FLORIDA FF. #02447 AUG 91 2015 1. P.E Florida RE#: 68447 13155 SW 134th Street,#119, Miami,Florida 33186- Phone -Fax# (305) 253-9442 2. - DESIGN ESTABILITYAGAINTS UPLIFT(NEW CONCRETE DEAD WEIGHT. V V pUpr s Go tr^,rte Loa Alts• 2 xr2 -K rS� C- d-DESIGN ESTABILTYAGAINTS UPLIFT(DEAD WEIGHT) Column load = 650 lbs. FROM SAP 2000 REPORTS Safety factor(0.6) = 650 / 0.6 = 1083 lbs. Concrete footer required 1083 / 150 = 7 cu.ft. Concrete footer provided 2 x 2 x 2 (Concrete unit weight 150 lbs) = 8 cu.ft. Ano: 8 >>> 7 r • • • • •••••• •• • •••••• •••••• • •••• •••• • • 00*9 • • • • •••••• ••• • ••••• •• •• •• •••••• • •••••• • • • • • • •••••• CONSULTING ENGINEER 13155 SW 134th STREET, SUITE#119 MIAMI, FL 3:188 PHONE#(305)2,"-9442 FLORIDA P Er/ ,✓J i ' �RAC4GT R .0� w r aTwxttc Jssvly[tGs Izct Qcugrt pnal}zDisQl e y _:Design Qpflons fools:�lelp - a 3d by � Sz nu U 6t£t$ •8'1°cs,[] /° a L-f!-Z�`} t�� I �-,�� i BAAPf i,� ,�„ '° t ��, .�,,t Y a. ;a 1 � �Qs O:� a" .?a��� (�-E'er •� •r-•, t —111 I'm ..,wm Joint Reactions in tont Local CobrdSys 1 ! Jont ObierJ 116, -:JoMElement. 116 ! :.:. ;1 _ 2 3.:..:_ W loin Reactions in Joint Local CoorlS/' ' f ln[Obiecl 113: �Jarct Element:113 l Alamert -1239 660 16:287_: 17.435-! J._.d_. ._ _ I ti1 ; _. - .. ...81 743.909 :- Farce .. 041 i moioent '159.826 22 ` 66. •.gyp �° � ---- --- 9�1-j1�\—�p---- ,Sys 17.982 -537.461.E 16.248_ . 3.280 e•1 I ,� B -t :(j Joint Ructions in Joint Lool Ccc+dSY S Jcmt Obled 3 J nt ElemwrN 3 1 2 3 Fac -47.373 16.710 -649.984 Ncmert 0 000 " 0.000 $4 'a ��:.GLOBAL J:.Ih.0.F 1AXIMUM JOINT'S REACTIONS BY CRITICAL ASD COMBINATION (Ib) -.--,�-....��.. ,xM.;- a=u z -r ��:` ��.�� �a��::a7 �` ,zv v, ��:i l I GI+ ' ,� •••••• ' RN.uVEf� aTLaml�awmr>Gs �s -.�'� ' �`� • • •••• ••••••'. • • • • sI q select ?sign Analre D°oFay CesttJn Cpnens Teals �ielp #_• • •• • • � �Q.r^ rel mar L n Clod r? a °tt� o nn3=4 �: I • s• • ••••0 ale 73 p • • r £ a' 4 -`'�M E �° a E Obi�1E E� - • • ��. f2.5 i ®Qs .w i�g �.^ •••• • ••• . ..M5 ,...' `— ••• •••• •• "Yi c°\} e� '�3rc'-�'—y S; t��i f �5 r,, •` •••• ••i ••a•�i�� k\r� "'.\��q ,'yIt P�r'if'nn�� s�. f�/ • �7: { .5�e \Q ytYN1fJSZfo74jafii i\ • •�•� • • � f • ••••• r... \�{ L+4:0.l\„' • • • • • �- f.\ftp y\� p. ea •• • _. '47L P • N r •'S`';.fit* �:�?H vjj�. n IF 9. Miami Shores Village r tel7f# T� °A�ir / �Inp ltt$ 10050 N.E.2nd Avenue NE '!,4W 3 Miami Shores,FL 33138-0000 =moo` Phone: (305)795-2204 s y.P fll tk p WED flOR1AII' Expiration: 02/03/2016 Project Address Parcel Number Applicant 895 NE 95 Street 1132060142950 Miami Shores, FL 33138-2516 Block: Lot: ZARELA ORE Owner Information Address Phone Cell ZARELA ORE 895 NE 95 Street (786)229-6316 MIAMI SHORES FL 33138- 895 NE 95 Street MIAMI SHORES FL 33138- Contractor(s) Phone Cell Phone Valuation: $ 2,400.00 ATLANTIC AWNINGS CORP (305)269-0555 Total Sq Feet: 171 Approved:In Review Available Inspections: Comments: Inspection Type: Date Approved: : In Review Final Date Denied: Foundation Type of Work:CANVAS CANOPY 18X9 Additional Info: Review Structural Classification:Residential Color Approved:In Review: In Review Review Structural Code Comments: : Code Approved: :In Review Review Structural Code Denied: Scanning:3 Review Structural Review Structural Review Planning Review Building Review Building Fees Due Amount Pay Date Pay Type Amt Paid Amt Due CCF $1.80 DBPR Fee Invoice# ACT-4-15-55184 $2.00 08/07/2015 Credit Card $592.80 $50.00 DCA Fee $2.00 Education Surcharge $0.60 04/14/2015 Credit Card $50.00 $0.00 Notary Fee $5.00 Permit Fee $100.00 Plan Review Fee(Engineer) $120.00 Plan Review Fee(Engineer) $80.00 Plan Review Fee(Engineer) $40.00 Plan Review Fee(Engineer) $120.00 Plan Review Fee(Engineer) $160.00 Scanning Fee $9.00 Technology Fee $2.40 Total: $642.80 In consideration of the issuance to me of this permit, I agree to perform the work covered hereunder in compliance with all ordinances and regulations pertaining thereto and in strict conformity with the plans,drawings, statements or specifications submitted to the proper authorities of Miami Shores Village. In accepting this permit I assume responsibility for all work done by either myself, my agent, servants, or employes. I understand that separate permits are required for ELECTRICAL,PLUMBING,MECHANICAL,WINDOWS,DOORS,ROOFING and SWIMMING POOL work. OWNERS AFLzo certi at all the fo going information is accurate and that all work will be done in compliance with all applicable laws regulating construc'o a . ut rmore,I au rize the above-named contractor to do the work stated. August 07, 2015 Autho ze nat . wn / / Contractor / Agent Date Building Dep ment Copy August 07,2015 1