Loading...
RC-16-2500 (4)November 2, 2015 RC tu-2500 All State Engineering & Testing Consultants, Inc. TESTING LABORATORIES -ENGINEERS -INSPECTION SERVICES -CHEMISTS -DRILLING -ENVIRONMENTAL SERVICES Monica Savit§ , 1460 NE 103rd "Street. Miami Shy; FL 33138 RE: Savits — Christopher Residence 1460 NE 103rd Street. Miami Shores, FL 33138 To whom it may concern, This letter presents the results of All State Engineering & Testing Consultants, Inc. (ASETC) Geotechnical Engineering Study for the above referenced project. The purpose of the geotechnical engineering study was to evaluate the site subsurface conditions and provide foundation recommendations for the project. Project Description Our understanding of the site is based on our observations during our subsurface investigation. Information you provided to us indicates the project consists of the construction of a new house. Test Method and Subsurface Investigation The borings were conducted in accordance with procedures outlined for Standard Penetration Test and split spoon sampling of soils by ASTM Method D-1586 as described below. Two (2) feet long, two (2) inches O.D. split spoon sampler was driven into the ground by successive blows with a 140 lbs hammer dropping thirty (30) inches. The soil sampler was driven two (2) feet at a time (continuous method) then extracted for visual examination and classification of the soil samples. The number of blows required for one (1) foot penetration of the sample is designated as "N" (known as the standard Penetration Resistance Value). The N Value provides an indication of the relative density of non- cohesive soils and the consistency of cohesive soils. A general evaluation of soils is made from the established correlation between "N" and the relative density or consistency of soils. This dynamic method of soil testing has been widely accepted by foundation engineers and architects to conservatively evaluate the bearing capacity of soils. The subsurface investigation consstelof Rerforroing.three{a), 25 -ft deep Standard Penetration Test (SPT) borings (B-1, B-2, and B-3). The boringsWr4perftkijo orl October 30, 2015. .. • 00 goo 00 0 an • • • .: • • • : • • : ALLi.. TATE 12949 W Okeechobee Rd, Hialeah;Qartlens' W33619 /Phone: 305-888-3373 Fax: 305-888-7443 Ew Based on the information obtained from the SPT borings, Boring B-1 comprised of Topsoil from 0'-0" to 01- 2", Backfill — Grey medium Sand with Rock fragments from 0'-2" to 6'-6" with N value ranging from 8 to 22, Brown medium Sand with some Wood pieces from 6'-6" to 8'-0" with N value 2, Black medium Sand with Muck and some Wood pieces from 8'-0" to 13'-6" with N values ranging from 14 to 20, Grey medium Sand with some Rock fragments from 13'-6" to 18'-0" with N values ranging from 20 to 28, Tan medium Limerock from 18'-0" to 25'-0" with N value ranging from 47 to 91. Boring B-2 comprised of Topsoil from 0'-0" to 0'-2", Black medium Sand with some Rocks from 0'-2" to 6'- 0" with N value ranging from 5 to 15, Grey medium Beach Sand with Silt and Peat from 6-0" to 12'-6" with N values ranging from 2 to 7, Grey medium Beach Sand from 12'-6" to 18'-0" with N values ranging from 16 to 34, Tan Limerock from 18'-0" to 25'-0" with N values ranging from 51 to 83. Boring B-3 comprised of Black medium Silica Sand with some Rocks from 0'-0" to 2'-0" with N value 12, Tan medium Sand with some Shells and Rocks from 2'-0" to 3'-6" with N value 8, Black medium Sand with some Rocks from 3'-6" to 8'-6" with N value 2 to 9, Grey medium Beach Sand with Silt from 8'-6" to 13'-0" with N value ranging from 4 to 18, Grey medium Beach Sand with Shells from 13'-0" to 17'-6" with N values ranging from 18 to 37, Tan medium Lime Sand with Coral Rock from 17'-6" to 22'-0" with N values ranging from 37 to 63, Tan Limerock from 22'-0" to 25-0" with N values ranging from 36 to 66. Detailed subsurface information is provided in the attached SPT Soil Boring Reports. Groundwater Conditions The groundwater table was first encountered approximately 2'-0" below the existing ground surface during the performance of the borings. The groundwater elevation is expected to change with seasonal and tidal fluctuations, and during storm/hurricane events. The possibility of groundwater level fluctuations should be considered when developing the design and construction plans for the project. Foundation Evaluation and Recommendations Based on the encountered subsurface conditions and project location, we have evaluated a number of foundation systems for the project. Special consideration in the analysis was given due to the location of the property being in an area classified as a Special Flood Hazard Zone. Additionally, there exists the unsuitable soil strata of Silt (B-1: 8'-0" to 13'-6"; B-2: 6-0 to 12'-6"; B-3: 8'-6" to 13'-0") and also, there are areas of the sand strata Black/Brown medium Sand (B-1: 6'-6" to 8'-0"; B-2: 0'-2" to 6-0"; B-3: 3'-6" to 8'-6") which have N values that classify the soil's relative density as Loose. Because of these factors, we have selected the use of Augercast Piles and Helical Piles or Pin Piles. A deep foundation would serve to keep the structure in place in case of tidal surges/flood event. Also, the use of a foundation system using piling would bypass the unsuitable soils and organics and allow the direct transfer of the proposed structural loads Jo Jhe.limestona layer encountered below, thereby providing a stable foundation. The following dile critetid'sliould:bj hed.to design the support of the proposed structure: : •.: •.• : : .. . 0 .. .. • tin • . • • ca .:. : • • • : : C1, . ... • 00 00 ILL,.I.T.ATE 12949 W Okeechobee Rd, Hialeah Gardens' FC33M / Phone: 305-888-3373 Fax: 305-888-7443 Augercast Piles: The capacity of these piles is essentially developed in tip bearing and side friction. The analysis for this foundation option consisted of determining a pile capacity for a specific size and depth of installation. The relationship obtained is as follows: Pile Diameter Proposed Depth Allowable Compressive Capacity Allowable Tensile Capacity Allowable Lateral Capacity 14" 22' 35 tons 8 tons 2 tons The Augercast Piles should be installed with a minimum embedment of 3 ft into the limestone layer. Grout strength and steel reinforcement size should be determined by the Structural Engineer. ASETC should be provided with drawings and structural details upon their development for our review. A minimum of three (3) indicator piles should initially be installed at strategic locations in order to verify the suggested pile depth. The pile installation should be inspected to confirm compliance with depth penetration, continuity of grout, and reinforcing details. Helical Piles: The capacity of these piles is essentially developed in tip bearing and side friction. The analysis for this foundation option consisted of determining a pile capacity for a specific size and depth of installation. The relationship obtained is as follows: The Helical Piles' helix size/number and required installation torque should be determined by the Structural Engineer. ASETC should be provided with drawings and structural details upon their development for our review. Please refer to the chosen helical pile manufacturer's guide for termination and installation requirements. Helix size/number and/or final depth (shallower or deeper) may need to be adjusted according to torque values obtained during installation. A minimum of three (3) indicator piles should initially be installed at strategic locations in order to verify the suggested pile depth. The pile installation should be inspected to confirm compliance with torque requirements and depth. Pin Piles: The capacity of these piles is essentially developed in tip bearing. The analysis for this foundation option consisted of determining a pile capacity for a specific pile size and depth of installation. The relationship obtained is as follows: ...... •' Pile • • • Shaft Proposed Allowable Allowable Tensile Type Diameter Depth Compressive Capacity Capacity Type B 3.5" 22' 15 tons 5 tons Helix Pile The Helical Piles' helix size/number and required installation torque should be determined by the Structural Engineer. ASETC should be provided with drawings and structural details upon their development for our review. Please refer to the chosen helical pile manufacturer's guide for termination and installation requirements. Helix size/number and/or final depth (shallower or deeper) may need to be adjusted according to torque values obtained during installation. A minimum of three (3) indicator piles should initially be installed at strategic locations in order to verify the suggested pile depth. The pile installation should be inspected to confirm compliance with torque requirements and depth. Pin Piles: The capacity of these piles is essentially developed in tip bearing. The analysis for this foundation option consisted of determining a pile capacity for a specific pile size and depth of installation. The relationship obtained is as follows: ...... •' Pile • • • • • Proposed' ' Allowable Compressive O.D. Depth Capacity 4" :•: :• :: 5 tons .:' 00 ... . • • • • • • • • • : • • � AnoirrtiwxTcE 12949 W Okeechobee Rd, Hialeah Oardens' FL'33dfd / Phone: 305-888-3373 Fax: 305-888-7443 W, to CZ a Grout strength and steel reinforcement size should be determined by the Structural Engineer. ASETC should be provided with drawings and structural details upon their development for our review. A minimum of three (3) indicator piles should initially be installed at strategic locations in order to verify the suggested pile depth. The pile installation should be inspected to confirm compliance with depth penetration, continuity of grout, and reinforcing details. Limitations Regardless of the thoroughness of our geotechnical exploration there is always a possibility that conditions on the subject project may be different from those at the test locations. With this being said, ASETC reserves the right to amend/supplement this report upon discovery of new information. Should any subsoil conditions different from those reported in our boring logs be encountered during construction, All State Engineering and Testing Consultants, Inc. should be notified immediately. The conclusions provided by All State Engineering & Testing Consultants, Inc. are based solely on the information presented in this report. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval. We appreciate the opportunity to have been of service to you. Please feel free to contact us if there are any questions or comments pertaining to this report. Sincerely, iLtktu�W1 Gilberto Gavarrete PE # 51371 All State Engineering & Testing, Consultants, n Inc. ND 22015 ATTACHMENT 1.0 — BORING LOG ATTACHMENT 2.0 — BORING LOCATION MAP ....... . .. .. CZ • • • • • • • ; • ; • • • (LNGLI [ERIMGE 12949 W Okeechobee Rd, Hialeahf�ardens,'FL"33d18 / Phone: 305-888-3373 Fax: 305-888-7443 ATTACHMENT 1.0 - BORING LOG ....... ........ . .. .. A!_i_ sT�TE All State Engineering & Testing Consultants, Inc. ENGINEERING TESTING LABORATORIES -ENGINEERS -INSPECTION SERVICES-CHEMIST-DRILLING-ENIVIRONMENTAL SERVICES 12949 West Okeechobee Rd. Unit C-4. Hialeah Gardens, Florida 33018 / Phone: 305.888-3373, Fax: 305-888-7443 SPT SOIL BORING REPORT CLIENT: Monica Savits Page: 1 of 1 CLIENT ADDRESS: 1460 NE 103rd Street. Miami Shores, FL 33138 Report #: 1 PROJECT: Savits - Christopher Residence Boring #: B-1 PROJECT ADDRESS: 1460 NE 103rd Street. Miami Shores, FL 33138 Date: 10/30/15 BORING LOCATION: See the attached Boring Location Map Driller: AG DEPTH (FEET) DESCRIPTION OF MATERIALS Sample No. Hammer blows on sampler "N" Value 1 0'-0" to 0'-2" Topsoil 0'-2" to 6'-6" Backfill - Grey medium Sand with Rock fragments 0'-2' 13 ...12 ...................1*111, 10 i 12 22 2 3........ 2'-4' ............ 9 6 19 4 5 4'-6' 5 .......6 ............................ 3 1 4 8 6 7 6'-6" to 8'-0" Brown medium Sand with some Wood pieces 6'-8' 21 ..................................... 1 1 2 8 9 8'-0" to 13'-6" Black medium Sand with Muck and some Wood pieces 8'-10' 36........ ................. �........... 8 7 1a 10 11 10'-12' 7 .....8........ ................:.... 9 8 17 12 13 12'-14' ............10 ...... 11 10 20 14 13'-6" to 18'-0" Grey medium Sand with some Rock fragments 15 14'-16' ........3 ...... 13 14 25 16 17 16-18' 1.5......;........1 2....... 16 25 28 18 19 18'-0" to 25'-0" Tan medium Limerock 18'-20' 28 31 ............................ . 30 32 61 20 21....-31 20'-22' .......:.......33....... 31 36 64 22 23.....4... 22'-24' ..............48....... 43 41 91 24 25 24'-26' 47 4 9...... ;.................... 47 26 End of Boring @ 25'-0" 27.................. 26-28' :.................... 28 29 ;. 30 Respectfully Submitted: WATER TABLE: 2'-0" below surface • • • • • • • • • • • NOV o 2i • i••�••••• 2015- •• • •• • • • • • • • • • i • •• • i • • • i i • % � t�GLti.t.4t "v � . • • • •rQilberto et PE #51371 • • • • • • • • • • e Eng steering & Testing Consultants, Inc. As a mutual protection to clients, the public an# Qurseges, $11 rriposs are submittetla S tht i&fiden.!ial property of clients, and authorization for publication of statements, conclusions or extracts from or regordingeur reportsls reseived pending our wriNsn approval. • •• ••� • • • 0 • • 0 • • •• •• ALLSTATE All State Engineering & Testing Consultants, Inc. ENGINEERING TESTING LABORATORIES -ENGINEERS -INSPECTION SERVICES-CHEMIST-DRILLING-ENIVIRONMENTAL SERVICES 12949 West Okeechobee Rd. Unit C4. Hialeah Gardens, Florida 33018 / Phone: 305-888.3373, Fax: 305888-7443 SPT SOIL BORING REPORT CLIENT: Monica Savits Page: 1 of 1 CLIENT ADDRESS: 1460 NE 103rd Street. Miami Shores, FL 33138 Report #: 1 PROJECT: Savits - Christopher Residence Boring #: B-2 PROJECT ADDRESS: 1460 NE 103rd Street. Miami Shores, FL 33138 Date: 10/30/15 BORING LOCATION: See the attached Boring Location Map Driller: AG DEPTH I (FEET) DESCRIPTION OF MATERIALS Sample No. Hammer blows on sampler "N" Value 1 0'-0" to 0'-2" Topsoil 0'-2" to 6'-0" Black medium Sand with some Rocks 0'-2' 6 7........ ........................... 8 6 15 2 3 2'-4' .......6 ................3........ 2 4 5 q 5 4'-6' € ....... 4 3 ............................... 2 2 5 6 7 6-0" to 12'-6" Grey medium Beach Sand with Silt and Peat 2 11 2 8 9 8'-10' ................ 2 3 3 10 11................... 10'-12' ........ 4........ 3 6 7 12 13 12'-6" to 18'-0" Grey medium Beach Sand 12'-14' 8 7........ ................�. 9 1 8 16 14 15 14'-16' .......... .................5....... 12 13 27 16 1734 16-18' 6 ..............1 5....... 19 25 18 19 18'-0" to 25'-0" Tan Limerock 18'-20' -28 22 ................ . 29 ': 26 51 20 21 20'-22' .....23 ..............31........ 36 's 38 67 22 23 22'-24' ..4.1.......t....... 40....... ...... 43 f 41 83 24 25.....42 24'-26' ..............40....... 40 26 End of Boring @ 25'-0" 27 .................<.................... 28 29 28'-30' 30 Respectfully Submitted: WATER TABLE: 2'-4" below surface .. ... • • 10-0 22015► . ...... cLtkLu�w1 • • • • • Gilb6eV f ret PE #51371 • • . . • • Epg ee ing & Testing Consultants, Inc. 000 . • • As a mutual protection to clients, the public and ourselves, all reports arasubmiQed;s the P onAdcHtorprcuerty of clients, and authorization for publication of statements, conclusions or extracts from or regarding bQr repoRs is reserAd pending our wntten apprcval. • • • • • • • • • • • •• •• • • • •• •• ••• • • • ••• • • ALLSTATE All State Engineering & Testing Consultants, Inc. ENGINEERING TESTING LABORATORIES -ENGINEERS -INSPECTION SERVICES-CHEMIST-DRILLING-ENIVIRONMENTAL SERVICES 12949 West Okeechobee Rd. Unit C-4. Hialeah Gardens, Florida 33018 / Phone: 305.888.3373, Fax: 305888.7443 SPT SOIL BORING REPORT CLIENT: Monica Savits Page: 1 of 1 CLIENT ADDRESS: 1460 NE 103rd Street. Miami Shores, FL 33138 Report #: 1 PROJECT: Savits - Christopher Residence Boring #: B-3 PROJECT ADDRESS: 1460 NE 103rd Street. Miami Shores, FL 33138 Date: 10/30/15 BORING LOCATION: See the attached Boring Location Map Driller: AG DEPTH I (FEET) DESCRIPTION OF MATERIALS Sample No. Hammer blows on sampler "N" Value 1 0'-0" to 2'-0" Black medium Silica Sand with some Rocks 0'-2' 8 € 6 ...................................... 6 3 12 2 3 2'-0" to 3'-6" Tan medium Sand with some Shells and Rocks 2'-4' 4 3 2 8 4 3'-6" to 8'-6" Black medium Sand with some Rocks 5 4'-6' 2 1 1 1 2 6 7 6'-8' 4 3 ....... .................... S i 4 9 8 9 8'-6" to 13'-0" Grey medium Beach Sand with Silt 8'-10' 3i 2 ................ �........... 2 1 3 4 10 11 10'-12' 4 5 ...................................... 5 6 10 12 12'-14' 8 10 14 13'-0" to 17'-6" Grey medium Beach Sand with Shells 15 14'-16' .......... .................3....... 12 13 25 16 17....................................... 16'-18' 19 23 37 18 17'-6" to 22'-0" Tan medium Lime Sand with Coral Rock 19.................. 18'-20' ........ 2fi....... 21 28 47 20 21 20'-22' 31 ............. 30....... 33 32 63 22 23 22'-0" to 25'-0" Tan Limerock 22'-24' 3435 .................................... 31 30 66 24 25 24'-26' 36 38 ...... :.................... 36 26 End of Boring @ 25'-0" 27 26-28' .................i.................... 28 29 28'-30' ..................................... 30 Respectf0y Submitted: WATER TABLE: 2'-6" below surface .. ... . • . .•*NOV...O2 2015 •.••' , .. . • • • • • •. , .. . ... . Gil e G arr • • • • • ;All S art ring & Testing Consultants, Inc. •• • • • • • • • • • As a mutual protection to clients, the public and ourselvesp all reports ard0su BmiRed •as the PTfldsfltjpFproperty of air nts, and authorization for publication of statements, conclusions or extracts from or regardingbdr repor{s is reserved pending our wditen approval. • • • • • • • • • • • •• •• • • • •• •• ••• • • • ••• • • ATTACHMENT 2.0 - BORING LOCATION MAP ....... . .. .. .. ... .. . .... .. . .... . .. .. . .... .. .. .... ....... . . ..... . ... 7ALLTATE All State Engineering & Testing Consultants, Inc. EERING TESTING LABORATORIES-ENGINEERS-INSPECTIONSERVI CES -CHEMISTS -DRILLING -ENVIRON MENTAL SERVICES 12949 West Okeechobee Rd. Hialeah Gardens, Florida 33018 / Phone: 305-888-3373 Fax: 305-888-7443 Boring Location Map 1460 NE 103rd Street. Miami Shores, FL 33138 Legend: 'raperty Boundary ® Boring Location ••• • • • ••• Y - :F.1 C, \0- 2 50 0 FORM R405-2014 FLORIDA ENERGY EFFICIENCY CODE FOR BUILDING CONSTRUCTION Florida Department of Business and Professional Regulation - Residential Performance Method Project Name: Savits Residence Builder Name: Street: 1460 NE 103 ST Permit Office: Dade County %cy City, State, Zip: Miami Shores, FL, 33144 Permit Number: Owner: Savits Residence Jurisdiction: 231000 Design Location: FL, Miami County:: Miami -Dade (Florida CA' to one. 1. R. a 1. New construction or existing Addition yyy 9. Wall Types (3321.6 sqft. ) Ibis ationlArea 2. Single family or multiple family Single-family a. Concrete Block -Int Ins I E% i r b. Interior Frame - Wood, Interior'. R= .1 2 10.90 ft' M 2 3. Number of units, if multiple family 1 c. Concrete Block - Int Insul, Adjacent R�4.1 C.�12.38 ft R=11.0 198.33 ft2 4. Number of Bedrooms Bedrms In Addition) 3(0) d. N/A R= ft2 5. Is this a worst case?10. No Ceiling Types (4020.0 sqft.) Insulation Area a. Under Attic (Vented) R=30.0 4020.00 ft2 6. Conditioned floor area above grade (ft2) 4020 b. N/A R= ft2 Conditioned floor area below grade (ft2) 0 c. N/A R= ft2 11. Ducts R ft2 7. Windows(753.2 sqft.) Description Area a. Sup: NewSpace2, Ret: NewSpace2, AH: NewSpa 6 131 a. U -Factor: Dbl, U=1.08 753.24 ft2 b. Sup: Main, Ret: Main, AH: Main 6 600 SHGC: SHGC=0.50 c. Sup: NewSpace3, Ret: NewSpace3, AH: NewSpa 6 221 b. U -Factor: N/A ft2 12. Cooling systems kBtu/hr Efficiency SHGC: a. Central Unit 54.0 SEER:15.00 b. Central Unit 18.0 SEER:15.00 c. U -Factor: N/A ft2 c. Central Unit 24.0 SEER:15.00 SHGC: 13. Heating systems kBtu/hr Efficiency d. U -Factor: N/A ft2 a. Electric Strip Heat 34.1 COP:1.00 SHGC: b. Electric Strip Heat 17.1 COP:1.00 Area Weighted Average Overhang Depth: 5.058 ft. c. Electric Strip Heat 17.1 COP:1.00 Area Weighted Average SHGC: 0.500 14. Hot water systems - Replacement equipment a. Electric Tankless Cap: 1 gallons 8. Floor Types (4020.0 sqft.) Insulation Area EF: 0.920 a. Slab -On -Grade Edge Insulation R=0.0 3353.00 ft2 9 b. Conservation features b. Floor Over Other Space R=0.0 667.00 ft2 None c. N/A R= ft2 15. Credits Pstat Glass/Floor Area: 0.187 Total Proposed Modified Loads: 140.59 PASS Total Baseline Loads: 141.56 1 hereby certify that the plans and specifications covered by Review of the plans and iE Sx rA this calculation are in compliance with the Florida Energy specifications covered by this © ti _ Off, Code. calculation indicates compliance + + �© with the Florida Energy Code. ti rr,,,, ., •` ���„ O PREPARED BY: � ��� DATE: Before construction is completed this building will be inspected for compliance with Section 553.908 O a I hereby certify that this building, as designed, is in compliance Florida Statutes. 5� with the Florida Energy Code. G'Orj WE OWNER/AGENT: .. .B1AQJNQ OF.FLQIA1., DATE: �. • \` �CrA7E: - compJ=enc WCAJQ'"chulic cert'r�e�ry� III 1 �01Irt, 1O - co rt l' Ci re ires ar4S'�fr, r test �ep in a r 88 witha $ 8 AV oil /o/./ ...N�\t 9/8/2016 9: A L E by the air handier unit manufacturer that the Jr handler enclosure qualifies as nce with R403.2.2.1. and Insulation Inspgctiort Checklist in accordance with R402.4.1.1 and an envelope leakage ,4.1.2.% .. . . . ....... . .. .... .... .... ....... . • • • • • • • • • • EnergyGauge® USA - FlaResv^14 Sectioti R405.49* Eompliark Software Page 1 of 5 FORM R405-2014 • 9/8/2016 9:48 AM EnergyGauge® USA - FlaRes2014 Section R405.4.1 Compliant Software Page 2 of 5 PROJECT Title: Savits Residence Bedrooms: 3 Address Type: Street Address Building Type: User Conditioned Area: 4020 Lot # Owner: Savits Residence Total Stories: 2 Block/SubDivision: # of Units: 1 Worst Case: No PlatBook: Builder Name: Rotate Angle: 0 Street: 1460 NE 103 ST Permit Office: Dade County Cross Ventilation: No County: Miami -Dade Jurisdiction: 231000 Whole House Fan: No City, State, Zip: Miami Shores, Family Type: Single-family FL, 33144 New/Existing: Addition Comment: CLIMATE IECC Design Temp Int Design Temp Heating Design Daily Temp Design Location TMY Site Zone 97.5% 2.5% Winter Summer Degree Days Moisture Range FL, Miami FL_MIAMI_INTL_AP 1 51 90 70 75 149.5 56 Low BLOCKS Number Name Area Volume 1 Block1 2754 23684.4 2 Block2 599 5151.4 3 Block3 667 5556.1 SPACES Number Name Area Volume Kitchen Occupants Bedrooms InfilID Finished Cooled Heated 1 Main 2754 23684.4 Yes 4 2 1 Yes Yes Yes 2 NewSpace2 599 5151.4 No 1 0 1 Yes Yes Yes 3 NewSpace3 667 5556.1 No 2 1 1 Yes Yes Yes FLOORS # Floor Type Space Perimeter Perimeter R -Value Area Joist R -Value Tile Wood Carpet 1 Slab -On -Grade Edge Insulatio Main 259 ft 0 2754 ft2 ---- 0.2 0 0.8 2 Slab -On -Grade Edge Insulatio NewSpace2 113 ft 0 599 ft2 ---- 0.2 0 0.8 3 Floor Over Other Space NewSpace3 ---- ---- 667 ft2 0 0.2 0 0.8 ROOF V Roof Gable Roof Solar SA Emitt Emitt Deck Pitch # Type Materials Area Area Color Absor. Tested Tested Insul. (deg) 1 Hip Barrel tile 3456 ft2 0 ft2 Medium •• 0.75 No 0.9 No 0 14 .ATTIC .. . / V • • • # Type Ventilation Vent Ratio (1 in) Area RBS IRCC 1 Full attic Vented ; ; ;150 ; ; ; ; 3353; i2 Y N • 9/8/2016 9:48 AM EnergyGauge® USA - FlaRes2014 Section R405.4.1 Compliant Software Page 2 of 5 FORM R405-2014 CEILING # Ceiling Type Space R-Value Ins Type Area Framing Frac Truss Type 1 Under Attic (Vented) Main 30 Blown 2754 ft2 0.11 Wood 2 Under Attic (Vented) NewSpace2 30 Blown 599 ft2 0.11 Wood 3 Under Attic (Vented) NewSpace3 30 Blown 667 ft2 0.11 Wood WALLS Adjacent Cavity Width Height Sheathing Framing Solar Below \Z 9 arnt To Wall TypeSpace ue Ft In Ft In Area R-Value Fraction AhSor C� 1 NE Exterior Concrete Block - Int Insul Main _Va 4.1 45 3 8 6 384.6 ft2 4.1 0 0.3 0 2 SW Exterior Concrete Block - Int Insul Main 4.1 31 10 8 6 270.6 ft2 4.1 0 0.3 0 3 SE Exterior Concrete Block - Int Insul Main 4.1 51 2 8 6 434.9 ft2 4.1 0 0.3 0 4 NW Exterior Concrete Block - Int Insul Main 4.1 38 4 8 6 325.8 ft2 4.1 0 0.3 0 5 NE Main Interior Frame - Wood NewSpace2 4.1 36 9 8 6 312.4 ft2 0 0 0.3 0 6 SW Exterior Concrete Block - Int InsLNewSpace2 4.1 36 9 8 6 312.4 ft2 4.1 0 0.3 0 _ 7 SE Exterior Concrete Block - Int InsLNewSpace2 4.1 5 0 8 6 42.5 ft2 4.1 0 0.3 0 _ 8 NW Exterior Concrete Block - Int InsLlUewSpace2 4.1 19 10 8 6 168.6 ft2 4.1 0 0.3 0 _ 9 SW Garage Concrete Block - Int Insul Main 11 23 4 8 6 198.3 ft2 11 0 0.3 0 10 NE Exterior Concrete Block - Int InsLNewSpace3 4.1 23 0 8 4 191.7 ft2 4.1 0 0.3 0 11 SW Exterior Concrete Block - Int InsLtUewSpace3 4.1 23 0 8 4 191.7 ft2 4.1 0 0.3 0 12 SE Exterior Concrete Block - Int InsLNewSpace3 4.1 29 0 8 4 241.7 ft2 4.1 0 0.3 0 13 NW Exterior Concrete Block - Int InsLNewSpace3 4.1 29 0 8 6 246.5 ft2 4.1 0 0.3 0 DOORS # Ornt Door Type Space Storms U-Value Width Height Area Ft In Ft In 1 SW Wood Main None .46 3 7 21 ft2 WINDOWS Orientation shown is the entered, Proposed orientation. / Wall Overhang �/ # Ornt ID Frame Panes NFRC U-Factor SHGC Area Depth Separation Int Shade Screening 1 NE 1 Metal Low-E Double Yes 1.08 0.5 16.0 ft2 2 ft 6 in 1 ft 0 in None None 2 NE 1 Metal Low-E Double Yes 1.08 0.5 11.0 ft2 2 ft 6 in 1 ft 2 in None None 3 NE 1 Metal Low-E Double Yes 1.08 0.5 68.6 ft2 12 ft 0 in 0 ft 11 in None None 4 SW 2 Metal Low-E Double Yes 1.08 0.5 74.3 ft2 5 ft 0 in 1 ft 4 in None None 5 SW 2 Metal Low-E Double Yes 1.08 0.5 69.8 ft2 13 ft 0 in 1 ft 4 in None None 6 SE 3 Metal Low-E Double Yes 1.08 0.5 32.0 ft2 2 ft 6 in 1 ft 1 in None None 7 SE 3 Metal Low-E Double Yes 1.08 0.5 9.0 ft2 2 ft 6 in 1 ft 1 in None None 8 SE 3 Metal Low-E Double Yes 1.08 0.5 40.0 ft2 2 ft 6 in 1 ft 1 in None None 9 NW 4 Metal Low-E Double Yes 1.08 0.5 10.0 ft2 2 ft 6 in 1 ft 1 in None None 10 NW 4 Metal Low-E Double Yes 1.01i • • 4.5 • • • •24.0 ft2. • 2 ft 6 in 1 ft 1 in None None 11 NW 4 Metal Low-E Double Yes 4$ p 5 .'; ; ; :J.;ft•• 2 ft 6 in 1 ft 1 in None None 12 SW 6 Metal Low-E Double Yes 1.108 • V5 • • • •48:0 ft2• 2 ft 6 in 1 ft 2 in None None 13 SW 6 Metal Low-E Double Yes 1.08 0.5 50.7 ft2 5 ft 0 in 1 ft 2 in None None 14 SW 6 Metal Low-E Double Yes • 1.08* 0.5 .'. �' • 74.3 ft2 . 5•ft 0 in 1 ft 4 in None None 15 SE 7 Metal Low-E Double Yes • 1-,08 • 0!5.-. • • •1748 ft2 : 5:ft 0 in 1 ft 2 in None None •• • • • . • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • ••• • • • ••• • • 9/8/2016 9:48 AM EnergyGauge® USA - FlaRes2014 Section R405.4.1 Compliant Software Page 3 of 5 FORM R405-2014 HEATING SYSTEM # System Type Subtype Efficiency WINDOWS Block Ducts 1 Electric Strip Heat None COPA 34.12 kBtu/hr 1 Orientation shown is the entered, Proposed orientation. 2 Electric Strip Heat None COPA 17.1 kBtu/hr 2 Wall 3 Electric Strip Heat None Overhang 17.1 kBtu/hr 3 # Ornt ID Frame Panes NFRC U -Factor SHGC Area Depth Separation Int Shade Screening 16 NW 8 Metal Low -E Double Yes 1.08 0.5 17.8 ft' 2 ft 6 in 1 ft 7 in None None 17 NE 10 Metal Low -E Double Yes 1.08 0.5 18.0 ft' 2 ft 6 in 1 ft 0 in None None 18 SW 11 Metal Low -E Double Yes 1.08 0.5 104.6 ft' 2 ft 6 in 1 ft 0 in None None 19 NW 13 Metal Low -E Double Yes 1.08 0.5 4.0 ft' 2 ft 6 in 1 ft 0 in None None 20 SE 3 Metal Low -E Double Yes 1.08 0.5 11.0 ft' 2 ft 6 in 1 ft 1 in None None 21 NW 8 Metal Low -E Double Yes 1.08 0.5 48.0 ft' 2 ft 6 in 1 ft 1 in None None GARAGE # Floor Area Ceiling Area Exposed Wall Perimeter Avg. Wall Height Exposed Wall Insulation 1 596.48 ft' 596.48 ft' 72.6 ft 8 ft 11 INFILTRATION # Scope Method SLA CFM 50 ELA EgLA ACH ACH 50 1 Wholehouse Proposed ACH(50) .000272 2866 157.34 295.9 .2309 5 HEATING SYSTEM # System Type Subtype Efficiency Capacity Block Ducts 1 Electric Strip Heat None COPA 34.12 kBtu/hr 1 sys#2 2 Electric Strip Heat None COPA 17.1 kBtu/hr 2 sys#1 3 Electric Strip Heat None COPA 17.1 kBtu/hr 3 sys#3 1 Electric Tankless Garage COOLING SYSTEM 120 deg None # System Type Subtype Efficiency Capacity Air Flow SHR Block Ducts 1 2 3 Central Unit Central Unit Central Unit Split Split Split SEER: 15 54 kBtu/hr SEER: 15 18 kBtu/hr SEER: 15 24 kBtu/hr 1620 cfm 540 cfm 720 cfm 0.7 1 0.7 2 0.7 3 sys#2 sys#1 sys#3 HOT WATER SYSTEM # System Type SubType Location EF Cap Use SetPnt Conservation 1 Electric Tankless Garage 0.92 1 gal 60 gal 120 deg None SOLAR HOT WATER SYSTEM FSEC Cert # Company Name Collector System Model # Collector Model # Area Storage Volume FEF None None • • • • . . ft2 • • • • • • • • • • ••• • • • • ••• • • ••• • • • ••• • • 9/8/2016 9:48 AM EnergyGaugeO USA - FlaRes2014 Section R405.4.1 Compliant Software Page 4 of 5 FORM R405-2014 • 0:0 •• • • • . 000 000 :0 000 000 000 000 9/8/2016 9:48 AM EnergyGauge® USA - FlaRes2014 Section R405.4.1 Compliant Software Page 5 of 5 DUCTS ----Supply ---- ---- Return ---- Air CFM 25 CFM25 HVAC # # Location R -Value Area Location Area Leakage Type Handler TOT OUT QN RLF Heat Cool 1 NewSpace2 6 131 ft' NewSpace2 32 ft' Default Leakage NewSpace2 (Default) (Default) 2 2 2 Main 6 600 ft' Main 200 ft' Default Leakage Main (Default) (Default) 1 1 3 NewSpace3 6 221 ft' NewSpace3 55 ft' Default Leakage NewSpace2 (Default) (Default) 3 3 TEMPERATURES Programable Thermostat: Y Ceiling Fans: Cooling Jan [[Xjj Feb [[Xjj Mar ((Xjj Apr May [[Xjj Jun ((Xjj Jul [[X]] Aug [[Xjj Sep [[Xjj Oct [[Xjj Nov X Dec rXj] Heating J Jan [X] Feb [X] Mar [X] Apr XMay JXJ [Xj Jun [X] Jul [X] Aug [X] Sep [X] Oct [X] Nov X Dec Venting j Jan [[X]] Feb [[X]] Mar [[X]] Apr XMay [[Xjj Jun [[X]] Jul [[X]] Aug [[X]] Sep [[X]] Oct [[X]] Nov X Dec Thermostat Schedule: HERS 2006 Reference Hours Schedule Type 1 2 3 4 5 6 7 8 9 10 11 12 Cooling (WD) AM 78 78 78 78 78 78 78 78 80 80 80 80 PM 80 80 78 78 78 78 78 78 78 78 78 78 Cooling (WEH) AM 78 78 78 78 78 78 78 78 78 78 78 78 PM 78 78 78 78 78 78 78 78 78 78 78 78 Heating (WD) AM 66 66 66 66 66 68 68 68 68 68 68 68 PM 68 68 68 68 68 68 68 68 68 68 66 66 Heating (WEH) AM 66 66 66 66 66 68 68 68 68 68 68 68 PM 68 68 68 68 68 68 68 68 68 68 66 66 MECHANICAL VENTILATION Type Supply CFM Exhaust CFM Fan Watts HRV Heating System Run Time Cooling System None 0 0 0 0 1 - Electric Strip Heat 0% 1 - Central Unit • 0:0 •• • • • . 000 000 :0 000 000 000 000 9/8/2016 9:48 AM EnergyGauge® USA - FlaRes2014 Section R405.4.1 Compliant Software Page 5 of 5 FORM R405-2014 ENERGY PERFORMANCE LEVEL (EPL) DISPLAY CARD ESTIMATED ENERGY PERFORMANCE INDEX* = 99 The lower the EnergyPerformance Index, the more efficient the home. 1. New construction or existing 2. Single family or multiple family 3. Number of units, if multiple family 4. Number of Bedrooms 5. Is this a worst case? 6. Conditioned floor area (ft2) 7. Windows- Description a. U -Factor: Dbl, U=1.08 SHGC: SHGC=0.50 b. U -Factor: N/A SHGC: c. Concrete Block - Int Insul, Adjacent c. U -Factor: N/A SHGC: R= d. U -Factor: N/A SHGC: Area Area Weighted Average Overhang Depth: Area Weighted Average SHGC: 1460 NE 103 ST, Miami Shores, FL, 33144 Addition Single-family 1 3(0) No 4020 Area 753.24 ft2 ft2 ft2 ft2 8. Floor Types Insulation a. Slab -On -Grade Edge Insulation R=0.0 b. Floor Over Other Space R=0.0 c. N/A R= I certify that this home Construction througo in this home beforil"11 based on installef Qpd Builder Signaturf X Address of New UVe! 5.058 ft. 0.500 Area 3353.00 ft2 667.00 ft2 ft2 9. Wall Types Insulation I Area a. Concrete Block - Int Insul, Exterior R=4.1 2810.90 ft2 b. Interior Frame - Wood, Interior R=4.1 312.38 ft2 c. Concrete Block - Int Insul, Adjacent R=11.0 198.33 ft2 d. N/A R= ft2 10. Ceiling Types Insulation Area a. Under Attic (Vented) R=30.0 1020.00 ft2 b. N/A R= ft2 c. N/A R= ft2 11. Ducts R ft2 a. Sup: NewSpace2, Ret: NewSpace2, AH: NewSpa 6 131 b. Sup: Main, Ret: Main, AH: Main 6 600 c. Sup: NewSpace3, Ret: NewSpace3, AH: NewSpa 6 221 12. Cooling systems kBtu/hr 1 Efficiency a. Central Unit 54.0 SEER:15.00 b. Central Unit 18.0 SEER:15.00 c. Central Unit 24.0 SEER:15.00 13. Heating systems kBtu/hr Efficiency a. Electric Strip Heat 34.1 COP:1.00 b. Electric Strip Heat 17.1 COP:1.00 c. Electric Strip Heat 17.1 COP:1.00 14. Hot water systems - Replacement equipment a. Electric Cap: 1 gallons EF: 0.92 b. Conservation features None 15. Credits EFdVatAthe Florida Energy Efficiency Code for Building QQf.,sA4-ng features which will be installed (or exceeded) aA'OAtrpe, a new EPL Display Card will be completed iant d' RIDP •' so . l01\� Nq L •EtA Date: City/FL Zip: *Note: This is not a-BWdia&kMrgy Rating. If your Index is below 70, your home may qualify for energy efficient mortgage (EEM) incentives if you obtain a Florida Enei� y'Gauje 32A4. CArltacf the EnergyGauge Hotline at (32 1) 638-1492 or see the EnergyGauge web site at energygauge.eprntor iWrrAstf�onand a list of certified Raters. For information about the Florida Building Code, Energy C6MseM0iorr, contact•the Florida Building Commission's support staff. **Label required by Section R303.1.3 of the Florida A;Vdij Codec trier�y CopsekAion, if not DEFAULT. .. . • 9/8/2016 9:49 AM EnergyGauge® USA - FlaRes2014 - Section R405.4.1 Compliant Software Page 1 of 1 FORM R405-2014 Florida Department of Business and Professional Regulations Residential Whole Building Performance and Prescriptive Methods ADDRESS: 1460 NE 103 ST Permit Number: Miami Shores, FL, 33144 MANDATORY REQUIREMENTS See individual code sections for full details. IBS 401.3 Energy Performance Level (EPL) display card (Mandatory). The building official shall require that an energy performance level (EPL) display card be completed and certified by the builder to be accurate and correct before final approval of the building for occupancy. Florida law [Section 553.9085, Florida Statues] requires the EPL display card to be included as an addendum to each sales contract for both presold and nonpresold residential buildings. The EPL display card contains information indicating the energy performance level and efficiencies of components installed in a dwelling unit. The building official shall verify that the EPL display card completed and signed by the builder accurately reflects the plans and specifications submitted to demonstrate compliance for the building. A copy of the EPL display card can be found in Appendix C. R402.4 Air leakage (Mandatory). The building thermal envelope shall be constructed to limit air leakage in accordance with the requirements of Sections R402.1 through R402.4.4. O R402.4.1 Building thermal envelope. The building thermal envelope shall comply with Sections R402.4.1.1 and R402.4.1.2. The sealing methods between dissimilar materials shall allow for differential expansion and contraction. • R402.4.1.1 Installation. The components of the building thermal envelope as listed in Table R402.4.1.1 shall be installed in accordance with the manufacturer's instructions and the criteria listed in Table 402.4.1.1, as applicable to the method of construction. Where required by the code official, an approved third party shall inspect all components and verify compliance. • R402.4.1.2 Testing. The building or dwelling unit shall be tested and verified as having an air leakage rate of not exceeding 5 air changes per hour in Climate Zones 1 and 2, and 3 air changes per hour in Climate Zones 3 through 8. Testing shall be conducted with a blower door at a pressure of 0.2 inches w.g. (50 Pascals). Where required by the code official, testing shall be conducted by an approved third party. A written report of the results of the test shall be signed by the party conducting the test and provided to the code official. Testing shall be performed at any time after creation of all penetrations of the building thermal envelope. During testing: 1. Exterior windows and doors, fireplace and stove doors shall be closed, but not sealed, beyond the intended weatherstripping or other infiltration control measures; 2. Dampers including exhaust, intake, makeup air, backdraft and flue dampers shall be closed, but not sealed beyond intended infiltration control measures; 3. Interior doors, if installed at the time of the test, shall be open; 4. Exterior doors for continuous ventilation systems and heat recovery ventilators shall be closed and sealed; 5. Heating and cooling systems, if installed at the time of the test, shall be turned off; and 6. Supply and return registers, if installed at the time of the test, shall be fully open. O R402.4.2 Fireplaces. New wood -burning fireplaces shall have tight -fitting flue dampers and outdoor combustion air. O R402.4.3 Fenestration air leakage. Windows, skylights and sliding glass doors shall have an air infiltration rate of no more than 0.3 cfm per square foot (1.5 Us/m2), and swinging doors no more than 0.5 cfm per square foot (2.6 Us/m2), when tested according to NFRC 400 or AAMA/WDMA/CSA 101/I.S.2/A440 by an accredited, independent laboratory and listed and labeled by the manufacturer. Exception: Site -built windows, skylights and doors. O R402.4.4 Recessed lighting. Recessed luminaires installed in the building thermal envelope shall be sealed to limit air leakage between conditioned and unconditioned spaces. All recessed luminaires shall be IC -rated and labeled as having an air leakage rate not more than 2.0 cfm (0.944 Us) when tested in accordance with ASTM E 283 at a 1.57 psf (75 Pa) pressure differential. All recessed luminaires shall be sealed with a gasket or caulk between the housing and the interior wall or ceiling covering. R403.1.1 Thermostat provision (Mandatory). At least one thermostat shall be provided for each separate heating and cooling system. R403.1.3 Heat pump supplementary heat (Mandatory). Heat pumps having supplementary electric -resistance heat shall have controls that, except during defrost, prevent supplemental heat operation when the heat pump compressor can meet the heating load. If R403.2.2 Sealing (Mandatory)AII ducts, air handlers, and filter boxes and building cavities that form the primary air containment passageways for air distribution systems shall be considered ducts and plenum chambers, shall be constructed and sealed in accordance with Section C403.2.7.2 of the Commercial Provisions of this code and shall be shown to meet duct tightness criteria by post -construction or rough -in testing below. Duct tightness shall be verified by testing to Section 803 of the RESNET Standards by either an energy rater certified in accordance with Section 553.99, Florida Statutes, or as authorized by Florida Statutes, to be.'Su4V4nt0IlX leal� free' by eithr of the following: 1. Post -construction test: Total leakage shall be less than or e;Ual to I;frrg f1:13Vmini Per 100 square feet (9.29 m2) of conditioned floor area when tested at a pressure differential of 0.1 inches w.g. (25.P,) ac toss theeen4ire:syetem, Aoiuding the manufacturer's air handler enclosure. All register boots shall be taped or otherwise sealed during the test. 2. Rough -in test: Total leakage shall be less than or equal to 4 cfm (113 Umin) per 100 square feet (9.29 m2) of conditioned floor area when tested at a pressure differential of 0.1 inches w.g. (25Pa) across ttie syVem, iracludigg the mvt&ctp?er's air handler enclosure. All registers shall be taped or otherwise sealed during the test. If the air handrej is nql instal ft 9t tDe DnV c: ?V tlst:total leakage shall be less than or equal to 3 cfm (85 Umin) per 100 square feet (9.29 m2) of conditioned &dr arCt. • • • • • • • • • • Exceptions: 1. The total leakage testis not required for ducts and air handless located eptirgly yvitbin the�building envelope. 2. Duct testing is not mandatory for buildings complying by�ecjo%Rg ;dfjhis Fodei • •• •. • . • •. .• 9/8/2016 9:49 AM EnergyGauge® USA - FlaRes2014 - Section R405.4.1 Com Page 1 of 3 FORM R405-2014 MANDATORY REQUIREMENTS - (Continued) ❑ R403.2.3 Building Cavities (Mandatory). Building framing cavities shall not be used as ducts or plenums. ❑ R403.3 Mechanical system piping insulation (Mandatory). Mechanical system piping capable of carrying fluids above 105•F (41 °C) or below 55°F (13°C) shall be insulated to a minimum of R-3., R403.3.1 Protection of piping insulation. ❑ R403.4.1 Circulating hot water systems (Mandatory). Circulating hot water systems shall be provided with an automatic or readily accessible manual switch that can turn off the hot-water circulating pump when the system is not in use. ❑ R403.4.3 Heat traps (Mandatory). Storage water heaters not equipped with integral heat traps and having vertical pipe risers shall have heat traps installed on both the inlets and outlets. External heat traps shall consist of either a commercially available heat trap or a downward and upward bend of at least 3 % inches (89 mm) in the hot water distribution line and cold water line located as close as possible to the storage tank. ❑ R403.4.4 Water heater efficiencies (Mandatory). O R403.4.4.1 Storage water heater temperature controls R403.4.4.1.1 Automatic controls. Service water heating systems shall be equipped with automatic temperature controls capable of adjustment from the lowest to the highest acceptable temperature settings for the intended use. The minimum temperature setting range shall be from 100°F to 140•F (38°C to 60°C). R403.4.4.1.2 Shut down. A separate switch or a clearly marked circuit breaker shall be provided to permit the power supplied to electric service systems to be turned off. A separate valve shall be provided to permit the energy supplied to the main burner(s) of combustion types of service water heating systems to be turned off. O R403.4.4.2 Water heating equipment. Water heating equipment installed in residential units shall meet the minimum efficiencies of Table C404.2 in Chapter 4 of the Florida Building Code, Energy Conservation, Commercial Provisions, for the type of equipment installed. Equipment used to provide heating functions as part of a combination system shall satisfy all stated requirements for the appropriate water heating category. Solar water heaters shall met the criteria Section R403.4.4.2.1. R403.4.4.2.1 Solar water heating systems. Solar systems for domestic hot water production are rated by the annual solar energy factor of the system. The solar energy factor of a system shall be determined from the Florida Solar Energy Center Directory of Certified Solar Systems. Solar collectors shall be tested in accordance with ISO Standard 9806, Test Methods for Solar Collectors, and SRCC Standard TM -1, Solar Domestic Hot Water System and Component Test Protocol, Collectors in installed solar water heating systems should meet the following criteria: 1. Be installed with a tilt angle between 10 degrees and 40 degrees of the horizontal; and 2. Be installed at an orientation within 45 degrees of true south. ❑ R403.5 Mechanical ventilation (Mandatory). The building shall be provided with ventilation that meets the requirements of the Florida Building Code, Residential or Florida Building Code, Mechanical, as applicable, or with other approved means of ventilation. Outdoor air intakes and exhausts shall have automatic or gravity dampers that close when the ventilation system is not operating. R403.6 Heating and cooling equipment (Mandatory). The following sections are mandatory for cooling and heating equipment. O R403.6.1 Equipment sizing. Heating and cooling equipment shall be sized in accordance with ACCA Manual S based on the equipment loads calculated in accordance with ACCA Manual J or other approved heating and cooling calculation methodologies, based on building loads for the directional orientation of the building. The manufacturer and model number of the outdoor and indoor units (if split system) shall be submitted along with the sensible and total cooling capacities at the design conditions described in Section R302.1. This code does not allow designer safety factors, provisions for future expansion or other factors which affect equipment sizing. System sizing calculations shall not include loads created by local intermittent mechanical ventilation such as standard kitchen and bathroom exhaust systems. • R403.6.1.1 Cooling equipment capacity. Cooling only equipment shall be selected so that its total capacity is not less than the calculated total load, but not more than 1.15 times greater than the total load calculated according to the procedure selected in Section 403.6, or the closest available size provided•by tke menwfacturer's psodu4;Wines. The corresponding latent capacity of the equipment shall not be less than the calculated latent load: •.; ; ; • .• . • • . .•• . .• •.• .• • . • .• • . • . • . • . • • • . • . . • . •• . • • •. . . • • • • . . • • • • • • • • • • • • • • • • • ••• • • • ••• • • 9/8/2016 9:49 AM EnergyGaugeO USA - FlaRes2014 - Section R405.4.1 Com Page 2 of 3 FORM R405-2014 MANDATORY REQUIREMENTS - (Continued) O R403.6.1.1 Cooling equipment capacity. (continued) The published value for AHRI total capacity is a nominal, rating -test value and shall not be used for equipment sizing. Manufacture's expanded performance data shall be used to select cooling -only equipment. This selection shall be used to select cooling -only equipment. This selection shall be based on the outdoor design dry bulb temperature for the load calculation (or entering water temperature for water -source equipment), the blower cfm provided by the expanded performance data, the design value for entering wet bulb temperature and the design value for entering dry bulb temperature. Design values for entering wet bulb and dry bulb temperature shall be for the indoor dry bulb and relative humidity used for the load calculation and shall be adjusted for return side gains if the return duct(s) is installed in an unconditioned space. Exceptions: 1. Attached single- and multi -family residential equipment sizing may be selected so that its cooling capacity is less than the calculated total sensible load but not less than 80 percent of that load. 2. When signed and sealed by a Florida -registered engineer, in attached single- and multi -family units, the capacity of equipment may be sized in accordance with good design practice. O R403.6.1.2 Heating equipment capacity • R403.6.1.2.1 Heat pumps. Heat pumps sizing shall be based on the cooling requirements as calculated according to Section R403.6.1.1 and the heat pump total cooling capacity shall not be more than 1.15 times greater than the design cooling load. • R403.6.1.2.2 Electric resistance furnaces. Electric resistance furnaces shall be sized within 4 kW of the design requirements calculated according to the procedure selected in Section R403.6.1. • R403.6.1.2.3 Fossil fuel heating equipment. The capacity of fossil fuel heating equipment with natural draft atmospheric burners shall not be less than the design load calculated in accordance with Section R403.6.1. O R403.6.1.3 Extra capacity required for special occasions. Residences requiring excess cooling or heating equipment capacity on an intermittent basis, such as anticipated additional loads caused by major entertainment events, shall have equipment sized or controlled to prevent continuous space cooling or heating within that space by one or more of the following options: A separate cooling or heating system is utilized to provide cooling or heating to the major entertainment areas. A variable capacity system sized for optimum performance during base load periods is utilized. O R403.7 Systems serving multiple dwelling units (Mandatory). Systems serving multiple dwelling units shall comply with Sections C403 and C404 of the Commercial Provisions in lieu of Section R403. Q R403.8 Snow melt system controls (Mandatory). Snow and ice -melting systems, supplied through energy service to the building, shall include automatic controls capable of shutting off the system when the pavement temperature is above 55°F, and no precipitation is falling and an automatic or manual control that will allow shutoff when the outdoor temperature is above 40°F. R403.9 Swimming pools, inground spas and portable spas (Mandatory). The energy requirements for residential pools and inground spas shall be as specified in Sections R403.9.1 through R403.9.3 and in accordance with ANSI/APSP-15. The energy requirements for portable spas shall be in accordance with ANSI/APSP-14. O R403.9.1 Pool and spa heaters. All pool heaters shall be equipped with a readily accessible on-off switch that is mounted outside the heater to allow shutting off the heater without adjusting the thermostat setting. R403.9.1.1 Gas and oil -fired pool and spa heaters. All gas- and oil -fired pool and space heaters shall have a minimum thermal efficiency of 82 percent for heaters manufactured on or after April 16, 2013 when tested in accordance with ANSI Z 21.56. Pool heaters fired by natural gas or LP gas shall not have continuously burning pilot lights. R403.9.1.2 Heat pump pool heaters. Heat pump pool heaters shall have a minimum COP of 4.0 when tested in accordance with AHRI 1160, Table 2, Standard Rating Conditions -Low Air Temperature. A test report from an independent laboratory is required to verify procedure compliance. Geothermal swimming pool heat pumps are not required to meet this standard. O R403.9.2 Time switches. Time switches or other control method that can automatically turn off and on heaters and pumps according to a preset schedule shall be installed on all heaters and pumps. Heaters, pumps and motors that have built in timers shall be deemed in compliance with this equipment. Exceptions: • 1. Where public health standards require 24-hour pump operations. 2. Where pumps are required to operate solal-.andyvQ--heat-jecoyery poQlheating systems. 3. Where pumps are powered exclusively fram on-si$ r9q*va0le gerePtiQn. O R403.9.3 Covers. Heated swimming pools and inground permanenly Mstpllgd Val sh%be equipped with a vapor -retardant cover on or at the water surface or a liquid cover or other means provet to feMce Adat As. • • • • Exception: Outdoor pools deriving over 70 percent of the energy for heating from site -recovered energy, such as a heat pump or solar energy source computed over an operatin6 sea4w. RR404.1 Lighting equipment (Mandatory). A minimum df.* p4centoAD; lamp** iq pf6r%ant*ntV installed lighting fixtures shall be high -efficacy lamps or a minimum of 75 percent of permanentV^talpm lightih94 ix%rM shall contain 4Dnly high efficacy lamps. Exception: Low -voltage lighting shall not be required to utilize high -efficacy lamps. O R404.1.1 Lighting equipment (Mandatory). Fuel jas lighting systems shall not have continuously burning pilot lights R405.2 Performance ONLY. All ducts not entirely inside the biding the4alkngelope s4II b4nsulated to a minimum of R-6. O R405.2.1 Performance ONLY. Ceilings shall have minCnun: ip%VIJti4i ar R-29. Jqu*rV Single assemby of the exposed deck and beam type or concrete deck roofs do not have sufficent space, R-10 is"8wed. • • 09* • • 9/8/2016 9:49 AM EnergyGauge® USA - FlaRes2014 - Section R405.4.1 Com Page 3 of 3 Residential System Sizing Calculation Summary Savits Residence Project Title: 1460 NE 103 ST Savits Residence Miami Shores, FL 33144 9/8/2016 Location for weather data: Miami, FL - Defaults: Latitude(25.82) Altitude(7 ft.) Temp Range(L) Humidity data: Interior RH 50% Outdoor wet bulb 77F Humidity difference 56 r. Window total 753 Winter design temperature(TMY3 99%) 49 F Summer design temperature(TMY3 99%) 92 F Winter setpoint 70 F Summer setpoint 75 F Winter temperature difference 21 F Summer temperature difference 17 F Total heating load calculation 38236 Btuh Total cooling load calculation 88455 Btuh Submitted heating capacity % of calc Btuh Submitted cooling capacity % of calc Btuh Total (Electric Strip Heat) 178.7 68320 Sensible (SHR = 0.70) 108.7 67200 38236 Btuh Ventilation Latent 108.1 28800 Btuh TOTAL HEAT LOSS 0 Total 108.5 96000 WINTER CALCULATIONS Winter Hi -Minn I nnrl (fnr dngn znftl Load component Load Load Window total Window total 753 sqft 17084 Btuh Wall total 2547 sqft 4152 Btuh Door total 21 sqft 203 Btuh Ceiling total 4020 sqft 2689 Btuh Floor total See detail report 9218 Btuh Infiltration 212 cfm 4890 Btuh Duct loss Btuh Sens. Ventilation 0 Btuh Subtotal Blower Load 38236 Btuh Ventilation 0 cfm 0 Btuh TOTAL HEAT LOSS 0 Bjdlf 38236 Btuh Si immar r.nnlinn I nnri (fnr dngn cnftl l'.ei lin gs(7.(1%} 1'alls(1s0.9%) 'Nindows(44.7% Floors(241%} SUMMER CALCULATIONS F= Load component Load Window total 753 sqft 34171 Btuh Wall total 2547 sqft 3361 Btuh Door total 21 sqft 309 Btuh Ceiling total 4020 sqft 2689 Btuh Floor total 0 Btuh Infiltration 159 cfm 2969 Btuh Internal gain 18310 Btuh Duct gain 0 Btuh Sens. Ventilation 0 cfm 0 Btuh Blower Load 0 Btuh Total sensible gain 61809 Btuh Latent gain(ducts) 0 Bjdlf Latent gain (infiltration) 6046 B%h Latent gain(ventilation) 0 Blu� Latent gain(internal/occupants/other) 20600 Btuh Total latent gain 26646 Qtu4 TOTAL HEAT GAIN 88455 !s•�tir • • • • • • • ••• •• • • • • • • :Bjuh • EnergyGa �%e®/*USRCRB Vt'indovis(38.6%j Latent int(213%j k JOSE A MARTINEZ PIE Civil Structural Engineers Lie.-.# PE -0156 STRUCTURAL CALCULATION SAVITS RESIDENCE 1460 NE 103 RD STREET MIAMI SHORES ,FLORIDA 11 1 24 L. J``1 St. Hialeah, FL 33010 ';1'llaf1*1: J'30.5)8 $7 fl 7 ..... . . • • • • • . • . . ...... . .... .... . . .... . "`,4,rl00ttr•. sz a • :Z a.;Uzi co 4 INDEX 1. DESIGN CRITERIA (PAGE #"1) 2. WIND ANALYSIS AND TRUSS REACTION (PAGES # 2 THRU # 5) 3.MASONRY WALL DESIGN. (PAGES # 6 THRU # 9) 4. CONCRETE BEAM DESIGN (PAGES # 10 THRU # 211) 5. STEEL BEAM 'DESIGN. (PAGES # 22'tHRU # 45) 6. CONCRETE SLAB DESIGN. (PAGES # 46 THRU # 48) 7. STEEL COLUMN DESIGN. (PAGES #49 THAN *51) 8. CONCRETE GRADE BEAM DESIGN. (PAGES #52 THRU # 66) 9. PILE CAPACITY. (PAGES # 67 THRU # 73) 10. CANTILIVER WALL. (PAGES # 74 THRU # 79) 11. PRESSURE WINDOW AND DOOR. (PAGES # 80 THRU # 82) .00 00: .00 .0" 0 : 0: 0 0 . 00 000 ..: 00: 11 0 0 0 0. 000 0:0 • 0 e 00 se 000 000 0: : 0 0 : : :•.0 : : 0 0 0 000 :0 000 oes ose 000 WIND LOADS (ANSUASCE 7-10) Method 2. -Analytical Procedure Basic Wind•Speed; 'V=175 mph (FBC 2014) Structural Category 2 Ekposure Category D Importance Factor I -10 (FBC 2014) Kd =0.85 By .Calculations: Desing Pressures for Components and Cladding Design Wind Pressure for Walls Roof Design Wind Pressure Doors and Windows Design Wind Pressure Design Pressure or Main Wind Force Resisting System Reactions : Gravity and Uplift of Truss and Girder truss .. ... . . . . . .. . .. . . . . ... . .. ... .. . . . .. ..... .. . .... . .. .. . .... .. .. .. . . . . . . . . . . . .. *so 000 000 000 .:.:......: : macaw:Lnd Piro V,2-112.7.3 per ASCE I 7-10 Developed by,_kjCA kriterprisis, Inc. C6pyright t mrrvx rater r sem c Date 8/11/2016 Project No. JobUo .Tnput.rs.Dirocti*nal Vrocodur!b All goi4hts suildingr ;(Ch- 27 Fart 1) Basic wind speed(v) 175.Oq -Mph D strifcturAl'C_ategory It Exposure Category t4atbral Frequency Flexible Structure w NO ka Dijectional' Factor * 0.85 IrportA66a Factor 1.00 - Alpha 11.50 Z9_ 700.00 ft 1�07 At 0.09 st 0.80 AM 0.11 Cc 0.15 1 650.00 ft Epsilon 0.13 Zra i n 7-.00 •ft Pitch of Roof 3 : 12 slope of Roof(Theta) . 14.04 Deg 24'a5 ft Type of Roof - HIPPED h: Mean Roof lit, Ehtt Eave Height . 20.25 ft RHt: Ridgd Ht 29�45 ft OH: Roof overhang at Ea7e, 2.$0 ft overhead Type . OH W/ soffit Bldg Width Across Ridge- 68- 58 ft Bldg Length Along Ridge - 108-00 ft Hip End - - Length of Hipped Ridge .: 90.00 ft Roof slope on 38-65 Deg Gust Factor Calculations Gust ractor Category I Rigid Strul:tures Simpliried method Gustl! For Rigid Structures (Nat- Frei( ->l Ht') use 0-05 = 0.05 *;est Factor t*40r,� 'a igld Structures - Complete Analysis = 14.91 ft Zm: 0. 6 *lit 0.0 588.55 ft 1+0. 63, (,(B+Ht) /Lzm.) ^0 63) 5 0.89 i'jctot St'17=ary t A F*, e,bl <je Structure use the Lessor of Gustl or Gush Table 26.11-1 Internal Pressure Coefficients for Buildings, GCPi. /-0.55 Gcpi : Internal Pressure Coefficient Reduction Factor for Large Vol, -,me Buildings, Ri .00 ft*2 AOC: Total Area of Openings in Bldg Envelope ,00 ft^3 Vi: Unpart.itioned interral value 1.000 notes: 1) +Gcpi - -0,55 Fi .Jo -es: 2) -GCpi - Wind Pressure Main Wind Force Resisting Systom,(MWFELS) Ref Figure 27.4-2. 1.12 Rh: 2.01 !.00 T000qrap1-,4C Factor (figure44.97 Psf Qh: .00256, (V) '2* -:011Y:ht*Kd 0.80 cpw,+: winn-ward Wall CPiRef F-tq C-63 8816.69 ft'2 Roof Art -,a 0.80 Reductio,j Factor �_I.Red on Roof Area KWFRS-Wall pressures for Wind Normal to 108 ft Wall (Normal to Ridge) A', e:-2! tAs��J upon IS1 L�esiqn, wio� a 'A"lad F.4ctor n,:.6 wall CP Pressure pressure +Gcpi (Psf) -GCPi (psf) --------------- ------ ----------- ----------- i,ee gar z Nal: -().so -43 85 5,62 41.q : 0, :51 02 see-,- & 0 0 0 00 0 0 * wall F"t- *r.: It: Vp. • ;z 9 Oft see 00 0 ps1.9press Press Total +r-CPi -GCPi +/-GC'Pi ------------------------------------ ------------- ---------------- 43.10 4 "7 6 W 11 wn r d 3.28 47 121 We • 1. 0 3.18 .2 & w I r • CP pressure Pressure see Ro:? L.,:Rz•• +GCpi(P9f)-GCPi(P3f) (D windward ------------------ min Cp ---------- -0:.63 : ---------- -48;82 0.65, -Windward -- Max..Cp _ 0.10 =0.48 =-28:56, --43.08 .20-191 6.39 i4iward Norfin''to Hippe'd'End Ridqe• (AO to '12.42 ft) -0.0 , 1) 1"8. 2 - -9..67 Hipped End (12.42' to 24'.:85' ft) -0.90 -0. !io -43. '85 -9.67 S. 1 6 1 2 �Hipped end Hipped End (24-85 to 49.10 ft) (49.70 to 73.50 ft) ' -0-30 -36,20 13.27 ,overhang Sot (Windward only) 0:8o 29.51 29:51 Notes 'No�ratal,,to Ridge > 10 Deg bast calcs� on Mean -HE Note. Per 'Fig 27.4-1 Note 7. Siricit Theta nOte (2) wall 6 Roof, Pressures - Oh* (G*Cp - GC?i) Press, -r.Cpi,- Negative Internal Bldg Press Note. (3) +GCpi - Positive Internal -Bldg Prei Note (4) Total Pressure - Leeward Press + windward Piess (For t Or GCPL) 'Note (5) skipped ends considered as parallel to rid4e. f - or all theta,, Note (6) Ref Fig 27.4-1, Normal to -Ridge (Theta>�FIO), Theta -14.0 Deg, h/1- 0.23 Not. (7) Overhang bottom based upon windward wall Cp.and C.Cpi, 0. Note (8) X - ,Along Building ridge, Y - Normal to Building Ridge.;: %,- Vertical Note (9) MIN - Minimum pressures on walls - 9.6 psf and Roof - 4..$ psf Note (1.0) Area* - Area of the surface projected onto a vertical plane normal to wind. MWFRS_Wall Pressures for Wind Normal to 68-58 ft wall (Along Ridge) All pressure* 311ow,,1 are ,;Voo ASD Da3igo, with a Load Factor of .6 Wall Cp ----------- ------ Leonard 1�411 -0.39 Side Walls -0.70 Pressure pressure, +C;dpi '(P' of) -Cvcpi (Psf) --34 45 -51.49 Wall Elev K% KI t Cp qz Press Press Total ft psf +GCP1 -GCpi +/-Gcpi ----------------------------------- -------------------------------- W*�rtdward 29.45 1.161.()o 0.80 46.32 6.,76 56.23 46�22 Windward 20.25 i.09 1-00 0.80 43.40 4.18 54,25 44.23 Windward 10.25 1.03 1.00 0.80 41-15 3.26 52.75 42,73 Windward 0.25 1.03 1.00 0.80 41.19 3.28 52.15 42.73 Roof - oist from Windward Edge Cp pressure pressure *C;CPi(Psf)-GCPi(Psf) ---------------------------------------_ Roof 0 O !t to 12,4 ft -0.90 -59.14 -9.67 Roof: 1 .4 ft to 24,8 ft -0.90 -59,14 -9. 67 Roof- 24.8 ft t.a 49.? ft -0.50 -43.65 5.62 F,00f: 49,7 ft to 1'.3,0 ft _0.10 -36.20 13:27 Notes - Along Ridge bete (1) Ref Fig 27.4-1, parallel to Ridge iAll), h/1- 0.23 Note (2) X- Along suilding ridge, Y - NOMal to Building Ridge, z - Vertical Roof - 4.8 psf 9.6 psf and .Note (3) cressures or, Walls Note (4) Area* Area cl the surface projected onto a vertical plane normal to w.,d, Total Base Reaction Summary Description FY Fz Mx MY Mr. K -ft K -ft Kip Kip Kip K -ft -------------------------------------------------------------------------------------- Izo 1 to R i d q e wails -Roof +Gcpi .0 99.,4 390.9 1.737., .0 0. 0 rma ,,a! tc Sjc!go walls only 4GCpi t-or�_ , 1) 1"8. 2 - 0.0 c, R;age W., 11-3 + Roof -Gcpi .0 lis'n _95�8 1068.2 .0 .0 'i ma 4 t. 0, R z d9 Walls Only -C.Cpi iG4. 112 .0 .0 41i 370,4 .0 Al fda� Walls�Roof -Gcpi .0 51.4 .0 0 Q Alora p,.dgWalls Only -GCpi0.0 11 -0 op 10 00 Al r walls -Roof 0., - ' 5, Ridgfl wails Only 0,GCp, • ••6•.4• o o i0p -222.4 .0 .0 .0 Nous App yrng to fWFRS Reactions: calculated w.th Ot pet ,Iq 27.4-1, "reate" Shear , Siding Riae, 7 Vertical X� ii; -.71orrr.a 9, - 4.8 • tr O. psi Rallks iwi!qand -c�iane t10 r. 00: & 0 0 0:0 0:0 0 Wind Pressure' ov. Compononts and Cladding . '.. j?7;Q'S6t r�4 ofi�*w-n ii.m b4te f opor. MSO(ili8" qn, witha Factor Of . 6 Width of treasure Ccefficieni�Zdrie ""a" 6.86 ft ti"ciiption• Width, Span Area Lona Max Kin Max P Min P ft ft ft^, 2 QcP �D psf psf --- -- --_ 'TRUSS -_-1� 2 00 6� -71.7 i " b..33 -1.27 --39-52 -81.95 Z{XlE .I. 2.00 5.00 .20.0 1; 0.50. -0.90 47.22 765,21 tiON 2 2'.00 5.00 10.0 2 0.50 -1.70 97.22-101.19 ZONE 3 3.00 5.00 10.0 3 0.50 -1:70 47.22'--101.19 DOOR 3.00 6.67 20.0 5 0.95 -1.29 67.31 -82.91 DOOR'. 3.00 6.67 20.0 4 0:95 -1-05 47.31: -71.81: WALL 1,00 12.00 48.0 8 0.88 -0.98 64.30. -58:79 WALL 1.00 12.00 48.0 5 0.88 -1.16 44.34 -76.88 •• ••• • • • • • •• •• ••• •• • • • •• • • • • • • • • • • • • • • • • • •• • • 000 see • •• •• • • • •• •• •••••• 0000•• • • • 0000•• 0000• 000.0• 0000•• • • a 0000•• 0 0000 • • 0000•• • •• •••. 0000 ••. • • • 0000 ••. • •001 • •0•a •00. •• • • 4 • • 0004 • 4 • 0000 Pigina I Truss Mark Q1 (Pso 02 (Psn LENGTH TRIBUTARY WIDTH TRIBUTA AREA Uprt"t Raecoon (lbs} OL RoacUon (lbs) LL Roaction (Ibs> DL+LL Roactlon (1ts) Na! Uplift (lbs) Tis.RY Meek GTI 39,6 81.95 20,58 3.5 36.015 2951 900 4080 1981 2411 1371 GT2 39.6 81.95 14.67 3.5 25.6725 2104 642 770 1412 1719 GT2 GT3 • 39.6 81.95 15,67 3,5 27.4225 2247 686 823 1508 1836 GT3 • GT4 39.6 81.95 8.75 3.5 15.3125 1255 383 459 842 1025 QT4 GTS 39.6 81.95 692 3-5 12.11 992 303 383 666 8Ii C•T6 Cil 39.6 81.95 9.58 2.5 11.975 981 299 359 659 802 Cil • CJ2 39,6 81.95 7,33 2.5 9,1625 751 229 • 275 504 613 CJ2: CJ3 39.6 81.95 8.75 2.5 10,9375 896 273 328 602 732 CJ3 Ti 39.6 81.95 20.58 2 20.58 1687 515 617 1132 1378 Ti T2 39,6 81.95 14.62 2 14.62 1198 366 439 804 979 T2 T3 39.6 81,95 15.67 2 15.67 1284 392 470 8621446 044' T3 T4 39.6 81,95 7 2 7 574 175 210 3859 T4 TS 39.6 81.95 8 2 8 656 280 480 760.88 T6 stool b 19.9 57.21 21 3.83 40,215 .2301 1408, 2413 3820458. stoat b , 4aW6h GIRDER, WALL DESIGN: Mil Height=l Z ft Wrtical Loads Roof DL 25`2 + 21= 125 T. Beam DL= 8.12.150.1 = 100 144 Total Verticat'Load= 125 + 100 = 225 Wind Load: Zone 5 Wall Pressure =76.88 psf By Calculations Annexed: Zone 5 USE 8" CONCRETE BLOCK WI #6 AT 24" O.0 .. ... . . . . . .. •• ••• •• • • • •• • • • • • • • •• • • • •• • • • • • • • • .......... a ............ .......... . Title dock.Dne i Project Tale, 11, You can change this ossa Engineer. Foiect IC3. Froietx Dew- usi, ttts �Saiigs` menti item and then using itis `Printing Title Stock` k4ection. Code References "Calculations per ACI 530-11, IBC 2012, CBC 2013; ASCE 7-10 Load Combinations Used ASCE 7-05 Cais rat iriformat on Calculations per ACI 5301-11, ISC 2012,'CBC 2013, ASCE 7-10 Cemstruction Type Grouted Nottovu Concrete Masonry For _ 1.50 ksi Nom. Wall Thickness Fy - Yield 60.0 ksi Actual Thickness Fr - Rupture - 61,0 psi Rebar'd` distance Em = fm ` - 900.0 Lower Level Rebar- eba..,Max Max% or p bal. = 0.006833 Bar Size # Bar Spacing Grout Density = 140 pcf Block Weight Normal Weight Wali Weight - 61.0 psf Watt is grouted at rebar cells only 8 in Temp Ditf,aam thickness' _ degF 7.625 in Miry Allow Out4=Ptane Deft Ratio - 0 3.750 in Minimum Vertical Steu! % - 0.0020 6 24.0 in One -Story Wail Dimensions A Clear Height - 12.0 it � 8 Parapet height = ft Wait Support Condition Top & Bottom Pinned i i A, Vertical loads `" i7 Lr • R fI� - FIM, Live . S W - ` Ln �arrirat l�ni#Orm Loads— , . , { ApRp�d Air riot tsl5tr#lr Width} .. ��s24 .—�.. Ledger Load Eccentiaty in 0.2250 kIt Concentric toad Lateral Loads Wind Loads :...-_. Seismic Loads ; Fult area WINO load 77.0 Psf waft Weight Seismic Load Input Method FP 1.0 - 0.0 Psf Seism i Wag Lateral Load •• ••• • • • • • •• • •• • • • • ••• • •• ••• •• • • • •• • • • • • • • • • • • • • • • • • •• • • •• • • • • • • • • • • • •• • • • • • • • • • • • • • • • • • • • •• •• • • • •• •• ••• • • • ••• • • Direct entry of Lateral Wall Weight Psf eta Title`. T itte,BioGle Une �l. PC ect lE} YEn 'neer"ou can change this area Prgec t Descr using the *Settings` menu item and then using the Trina ng t Tai. atir4• t?ES7GlV=5C/1lfifiMAft1'` Results reported for "Strip Width" of 12.0 in _ Governing Load Combination . Ada Values Alk wabte Values .. PA -S - Moment Capacity awck -Maximum bending 0 = 0.6386 +0.900+1.60W+1.60M Max Mu 2.252 k -ft Phi' Mn- 3.526 k -ft PASS Service Deflection Check Actual Deft, ;Ratio' L! 128a Alkywabte Deli; Rate 240. W Only Max., Deflection 0.5095 in Max Pu 1 Ag 11.6340 Max, Allow. Dell. 0.60 in PASS Axial Load Cherie Location 5.80 R 0.2' Pm 300.0 psi +1.20D+0.50Lr+0.50L+1.60W PASS Reinforcing Limit Check Co+Strdting Astbd 0.004131 AsJbdN('1t333rt10 bat 0:006833 PASS Minimum Moment Check Mtxacking 0.6129 i -t1 Minimum Phi Mr1 3,788 k -ft +1.40D Maximum Reactions ... for Load Combination..... Top Horizontal 4D+W+N 0.4636 k �Basase'Morizontai wonly 0,4620 k Vertical Reaction +?O+W--H 0.9570 k- reported for "Strip Wrath 12 in. Desn Maximum Combinations Moments Axial Load 'Moment Values 0.6 . Load Combination Pu 0.2*fm'b't Mir Mu Phi Phi Ma As As<Ratio rho bat 0,000 0.000 0.00 0.00 0.00 0:00 0.000 0.0000 0.0000 0.000 0.000 0,00 0;00 0.00 0.00 0.000' 0,0000 0.0000 0.000 0.000 0.00 0.00 02 0,00 0.006 0.0000 0.0000 0,000 0.000 0,00 0,00 0,00 0.00 0,000 0.0000 0.0000 +1.2004.1$OLr40 BOW at 5.60 to 6.00 0,738 18.720 0.47 1,13 0.90 3.57 0.220 0.0047 0.0068 0.000 0.000 0.00 0.00 0.00 0.00 0,000 0.0000 0.0000 +1,200+1.60S+0.80W at 560 to 6.00 0.738 18.720 0.47 1.13 0.90 3.57 0.220 0.0047 0.0068 +1.200+0.50Lr4,50L+1.60'+x' at 5.60 to 6.00 0,738 18.720 0.47 2.27 0.90 3.57 0.220 0.0047 0.0068 +1,200+0.501.450S+1.60 at 5.50 to 600 0.738 18.720 0.47 2.27 0.90 3.57 0..220 0.0047 0 0068 0,0000 0.000 O.ODO 0.00 OAO 0.00 0.00 0,000 0.0000 40.90D+1.60W+1.60H at 5.60 to 6.00 0.554 18320 047 2.25 0,90 3.53 0.220 0.0047 0-0068 0.000 0.000 0A0 0.00 0.00 0.00 0.000 0.0000 O,M Results reported for "Strip Width"=12 in. Desian Maximum Combinations - Deflections U g. ._..... Axial Load Moment Values Mactual I gross Stiffness I Cracked Deflections I effective Deflection Defl. Ratio Load Combination Pu Mcr .n'L V%14 0.000 0,00 0.00 0.00 0.00 0.000 0.000 0-0 0.000 0.00 0.00 0.00 0.00 0.000 0.000 0.0 0.000 0.00 0.00 0.00 0,00 0.000 0.003 00 0.000 0.00 0.00 0.00 0.00 0.000 0.000 00 0 000 0.00 0.00 0.00 0.00 0.000 0.000 00 0,000 0.00 0.00 0,00 0.00 0.000 0.000 00 600 to 6.40 0 591 047 1,41 353.60 41.21 41.555 0 506 234.4 0000 0.0 0.000 • : 0.00 :O,k . * • 0.00 ON : 1%5 • • • 35360 0,00 41.11 0.000 42.124 0.322 4..7 $ +0+0.75OU475OL+0.7 t -44 at 6.N to 6,4 0-611 • 353.60 41,11 42.114 0.322 4478 -D-O 750L +°.75OS-0 7�s�''�i at 6.00 to 6 40 05± 1 • ; ;0; : : : „5 • 0.00 ODOO y0.000 O 0 m e • • • ttw • •Opo • • 0.00 0.00 000 0.000 0 000 O C 0,D00 43.:;55 0.00 (647 . 0.00 14%9 . 353.60 4070 41048 0.507 2837 +0 600+�v+tt at 6 00 to 6.40 .. : :0,d! : : OU : : 0.00 0.00 O.Coo 0 000 010 0 .. • . . . . . O t0 . . • 0.00 0.00 0.000 O NO 00 0. • coo 0,00 0 0.00 0 ON 0 . . . . . . . . . . . .. .. . ... . . . . ... . .. .. . . You can change this am -Ned Descr and th&f using ft'Prinling ° °°° ° °° °° ° °° ° °°° ° °° ° ° ° ° ° ° ° °° ° ° °° ° ° ° ° ° ° ° ° ° ° ° °° ° ° ° ° ° ° ° ° °° ° ° ° ° ° Axial Load Moment Values ass Load Combination PU MCC Ma6w I gross 0.000 OOD OZ 0.00 '0.00 ODO 01000 0.0 W Only at'6,00 to 6.40 0,000 0,47 1.38 353.60 39.93 40,279 2821 ObDD 0,00 0.00 UO 6.00 0.000 OMO 00 Reactions .-Vertical & Horizontal Results reported for **StriO Width" 12 In. Load Combination Base Horizontal Top Horizontal vertical C Wall Base 0.00' n 0957 +".750L*OY50S+0+75OW-H 03 0.35 O957 +D+0J50L+0.75OS-oO,52S0E+H 00 0.00 k 0957 40,60D-0 70E -H 0.0 Obo O574 0,0 0.00 0,957 D Only 00 0.00 0000 S Only 0,00 0.000 H Orgy 0,0 ° °°° ° °° °° ° °° ° °°° ° °° ° ° ° ° ° ° ° °° ° ° °° ° ° ° ° ° ° ° ° ° ° ° °° ° ° ° ° ° ° ° ° °° ° ° ° ° ° RB -1 CONCRETE.BEAM DESIGN COND 1 Span =16.33' LOADS Roof DL = 25� ? +2.5 150 pif 2 ,JJJ)! Roof LL= 30.( 7 + 2.5 180 pif 2 TOTAL DL = 150 pif TOTAL LL= 180 pif .. ... . . . . . .. .... . .. . . . . ... . .. ... .. . . . .. . . . Soo ... 000 000 ... .00 . . . . . . . :00 . . . .. . . . ....... Title. Sioc Line Projekt; Titles Project Ydi can change Phis a"ri3a Engineer. using the*Settings` menu item ftjectDescr: and #fieri using tfie'Piinpng &: 'CODE,REFkR:ENC'ES _ �Calculatfons per ACt 318-11, IBC 2012, ASCE 7 -TO Load Combination Set. ASCE 7.1:0 fc 3.0 ksi Phi Values Flexures 0.90 ft = ri; ' 7,50 = 410.782 psi Shear: 0.750 W Density - 145.0 pcf" O 1 - 0.850 UWtf=actor 1.0 Elastic Modulus 3,122.0 ksi Fy - Stirrups 40.0 ksi N- fy • Main Rebar = 60.0 ksi E `Stirrups = 29,004.Oksi Stirrup Oar Size # = # 3 E -'Main Rebar =. 29,000.0 ksi 2 Number of Resisting legs Per Stirrup = Loaf Combination ASCE 7-10 Cross Section & Reinforcing Details Rectangular Section, Width = 8,0 in, Height =12.0 in Span #1 Reinforcing.... 246 at 2.0 in from Bottom, from 0.0 to 16 330 ft in this span _"'App iied L'oad�_w4.___ Beam self weight calculated and added to toads Loads on all spans... D=0;150, Lr=0.180 Uniform Load on ALL spans: D=0,150, Lr = 0,180 ktit DESIGN SUMMARY Maximum Bending Stress Ratio = 0.560: 1 Section used for this span Typical Section Mu : Applied 19.,467k -ft Mn ' Phi Allowable 34.740 k -ft Load Combination-l.20D+1.60U450L-1.60H Location of maximum on span 8.1506 Span." where maximum occurs Span 4 1 Top b Bottom references are for tension side of sec i n • • : : *Max fou (k-tt l Piu'hin (k -fl) foment of Inertia i i • Both Top Bottom Top I gross fu - Bottom • • elm 0'00 34.74 _3474 i,i52-4U 475 03 Support notation: Far left is #1 Cross Section Strength Cross Section Sar Laycut Ctesaipt�n • Sectaan , 2.4 @c=110',2- $6 d=2'. Vertical Reactions Load Combin?t!on a+eraii UAXimu."•l C+cera'! i!iP;:n3um .�.L.ti -Lt. { .C-0 75uL-0 7505-+i support 1 . • •Sti•Vv� 2 . • . 3,484 ••� 3.*484 • ••• 1208 • 1",A • • 8"w[1rh Span. 18 no R 246 at 2.0 in from Top, from 0.0 to 16.330 h in this span Service loads entered. Load Factors will be applied for calculations. Maximum Deflection Max Downward Transient Deflection Max upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection Oesl n,0K• . �r: 0.080 in Ratio = 2447 0.000 in Ratio= 0 <3PA 0.403 in Ratio= 486 0.000 in Ratio = 999<180 2 014 2 014 2 014 2 314 348.1 ••v4J4 • • • ••• • • 2014 • 20.14 • • • • • • ?.113 • 3,1•.. • �•� i • i 2014 .•92.044 • • ••• • • C inA4 i icr • Top 47503 to, We 8Una 1 Project tie Ninioc.,—, You can dwpt� area, PrOed Descr-. using ft `Settings" menu ife6i and then using th e 'Imflung & Support notation: Far lett Is #1 VeititaIR"dions —I I nM r"nbinatlon Support I Support 2 404010E*H 2.614 1014 4040.750U*0,750L--0A50W-H 3,116 3.116 +C,.4750L+0,750S--0-450W-H 2.014 2,014 *D4b,750L+0J50S40.5250E+H 2,014 2.014 --0A0D40.60W� 0.60H 1248 1.1208 -0,60D+0,70E40.60H 1,208 1208 D Oni 7-014 2014 Lr Onty 1.470 1470 L Onty 34.74 S Orq Span# 1 W Onty E Only + l,'20D-1,6OL40,50S+1,60H H Only 16.330 9,87 Betwftn 2.44 to 13,89 ft, VU Ic PhfVd2,- ReO VstNot ReqdllA.6J use stirrup3spaced At 0.0001n Between 13.92 to 16.30 fL PtuVC12 < Vu <-- PhNC, Reld Vs - Min 11.4.6.1, use sftps spaced at 5,000 in Maximum, Forces &'Wesses for Load Combinations -- - "-' �h )' - -'-' -"" ' ' -, " (ft) 'B,D-jTxg -SVmReSWfS LOCAW Segment LeNth Sparc # in Sonax N(AXimuWBIN—DING Envekpe 1 16,3 W 19.47 34,74 0L56 span # 1 -IAM-1,60H Span # 1 1 16,130 11,51 34.74 0,33 -1,20D-0.50Lr+1,60L*1,60H 1 16,330 12.87 34.74 OX Span# 1 + l,'20D-1,6OL40,50S+1,60H 1 16.330 9,87 34.74 028 Span 0 1 -1,23D+1.60Lr-0.50L+1.60H 1 16,330 19,47 34,74 OM Span # 1 +1,20D-1,60Lr4030W+1.60H 1 16.330 19,47 34.74 0,56 Span 01 -1 20D+0'54L.IL60S+1k0H 1 16230 9.87 3414 0.28 Span .' 1 -1 10D+1 .60S-0.50W+i ,60H 1 16.330 9.87 3474 0.28 Span A 1 +j.200+o.5OLr*0.50L*W+1.60H 1 16.330 1187 3474 0.37 Span # 1 .1,20D+0,50L+0 50S -W -1-60H 16.330 9.87 34.74 0.28 Span # 1 1 200+0 5OL-0-20S+E-1 .60H 1 16,330 917 3434 0.28 Span # 1 +0.90o-Vlf'-3.90H 1 16,330 7,40 34.74 0.21 Span " 1 +0 ND+E--O 90H 16130 7,40 34.74 021 Spar. 9 :0 000 0.0 6.0 0.0 000 0:0 0- RB.1 CONCRETE BEAM DESIGN *COND 2 Span =10.33" LOADS SPAN 1 Roof DL = 251 18 + 287.5 pff 2 J Roof LL= 30• t8 + 2.5 = 345 pif 2 JJJ TOTAL DL -- 287 287 Of TOTAL LL= 345, pif •• ••• • • • • • •w • •• • • • • ••• • •• ••• •• • • • •• • • • • • • • • • • • • • • • • • V. • • • •• • • • • ••• ••• 0/?7 • • • • • • • • • • • • • • • • • • • • • • TWO So(* t.)he i :� Ybu can change this area Eng€neer: Prtkect ch 'Settii►gs. menu Item Prod peso glut then using the `Printing Title Blocr selection, Tile Block Line 6. MART "561-6W..I BE � 0 , =`G i1t=t t6MA� 145Ak t t64 --1M ` Cofit. rifti-BOM • r rc, tc �,s t ?s�zs,v Description €CRETE BEAM DESIGN RB -1 GOND 2- COOE'REFEREN Maximum Bending Stress Ratio = Calculations per AC€ -.318-11, #BC 2012,-ASCE740 Section used for this span Load Combination Set: ASCE 7-10 Mu: Applied 12.655 k -ft Material Pedperties 34.740 k -ft Lug, Come+nat cn +1.20D�1.60Lr-0.50L- fc 4 _ 3.0 ksi Phi Valdes Flexure: 0.90 Span 0 where maximum occurs Spall # 1 fr= fc° ' 7.50 - 410.792 psi i 0.750 # • • 41 Density - 145.0 pd ji t - 0.850 k LtWt Factor = 1.0 Elastic Modulus = 3.122.0 ksi f y - Stirrups 40.0 ksi fY -Main Rebar = 60,0 ksi E . Stirrups= 29,000.0 ksi Stirrup Bar Size # _ # 3 E _ Main Rebar = 29,000.0 ksi Number of Resisting Legs Per Stirrup = 2 • i Load Combination ASCE 7-10 O'•xfrh sw"woa 0 k Cross Section & Reinforcing Details Rectangular Section, Width = &0 in, Height =12.0 in Span e1 Reinforcing.... 246 at 2.0 in from Bottom, from 0.0 to 16.330 ft in this span 246 at 2.0 in from Top, from 0.0 to 16.330 ft in this span A lied_LOads Service toads entered. Load Factors will be applied for calculation, Beam self weight calculated and added to loads Loads on all spans... 0 = 0.2870. Lr = 0.3450 Uniform Load on ALL spans : D = 0.2870, Lr = 0.3450 0 DESIGN SUMMARY Maximum Bending Stress Ratio = 0.364: 1 Section used for this span Typical Section Mu: Applied 12.655 k -ft Mn ' Phi: Allowable 34.740 k -ft Lug, Come+nat cn +1.20D�1.60Lr-0.50L- .609ft Location of maximum on span Span 0 where maximum occurs Spall # 1 Cross Section Strength & Inertia cress Se t;on Bar Layout D-cr=ptur? • • • • • • • Vertical Reactions Load ✓vonlb;aatan CNerali MAXimum were't hliPhrnum 1501 i =ii .�j.;;�'a3L•v 750S�1 Maximum Deflection Ratio = 5561 Max Downward Transient Deflection 0.022 in Max upward Transient Deflection 0.000 in Ratio = 0 <360 Max Downward Total Deflection 0.068 in Ratio = 1752 Max upward Total Deflection 0.000 in Ratio = 999<160 Top & Bottom references are for tension side of section ...... ....... •?11�x �"u•__� k•% � PM Mn (k•h } h4omen, of Inertia (in' ) • : B�oMtxn Top Bottom Top t gross kt - Bottom la . Top • • • .. w_ 475 03475 03 • • � 00 0.00 3x.74 34.75 .i„ 2-00 SUppon r*iation Fat left s rt? 3.643 i i :643 i l i i i• i i •• r ,• • • • • • • • • 1.151 • i. OVOO • • • • • • • • 3 54 3643 t� ••• • • • • ••• • • t • • ••• • • • 3Y, • 3' 2• • • • • • • • 1Gt8 • ? •• • • • •• •• Title Block Lkie 1 Yau'W' cue this area using the *Settings' mew Item ante then WAV the »Pdrtting & Tide Block' selection. _B@alit Description =, CONCRETE BEAM DESIGN R6.1 Tift Engineer: Prot Oescr: *0-0,70E+H 1.918 1.915 +04:750Lr+0:750L*0.450W+H . 1212 1212 +O+0,750L+0,750S+0.450W+H 1.918 1,918 +0+0.7501.4758S+0.5250E+}t 1.918 1.918 +0.60D+0.60W+0,60H 1.151 1.151 +0,60O+0.70E»0.60H 1.151 1.151 day 1.918 1.918 Lr {f 1,725 1.715 L Only S cloy W Onty E Only H Oty Shear Stirrup Requirements, Between 0.00 1.55 ft P#nV < Vu <- Phr'Vtt, Req'd Vs Min 11.d 61, use stirrups spaced at 5.000 in Between°1,57 to 8,43 ft, Vu <PhiVd2. Regd Vs = Not Regd 11,4.6,1, us6stffups spaced at 0.000 in Between 8.45 io 9.98 R P111Vct2 < Vu <, Pt1Nc, Req d Vs =Min 11:9.6,1, use_ staatps spaced at 5.000 in !maximum Forces & $tres5d5 for Load Cetr►binations _ Bending Stress Results (k -ft) Load Comtawnatiori Segment Length Span # location (ft) in Span MU Max PhMAnx _ Rata _ .._ w._ .... ... ......__ .._ .._ ., ., _. J 1A;< arm BENptNG Enrebpe 1 10.000 12.65 3434 0.36 Span # t +t.Span # t 1 1 Span 10.000 6.71 34.74 0.19 +1.20D+0.50Lr+1.60L+1,60H 1 10.000 1.91 34.74 0.23 Span 4 1 +1.20D+1.60L.-0.505+t.60H 10,004 5.75 34.14 0.17 Soan # t 1 +t 2` 1)+1.60Lr+0 50L+1,60H 1 10.000 12.65 34.74 0,36 Span # I *1.200+1.60L.r+0,50iV+1.60H 1 10.000 12,65 34,74 0.36 Span 9 1 +1.20D+0.50L+1.e0S+1.60H 10.000 5:75 34.74 0.17 Sean 9 1 1 +1.20D+1.605.0.50W +1.60H 1 10.000 515 3414 0.17 Span # 1 +1.20D-0.50Lr+0.50L+1A'+1.60H 1 10.000 T.91 34.74 0.23 Span # 1 +1.20G+0,%L+O SOS+ .'+1.60H 1 10.000 5,75 34.74 0.17 Spann 1 +1.200+0-50L-0.20S+E+1.60H 10.000 5.75 34.74 0.17 Span p 1 1 +0 94D-V1+0.90H 1 10 000 4.32 34.74 0.12 Span # 1 -0,900+E+0.90H4:32 1 10 000 3414 . 0.12 Span # 1 •• ••• • • • • ••i • • • •• i i i i i • •• • • • • ••• • • • • • • • • • • • • • • • • •• • • • • • •• • • • • • • • • • • •• • • • • ••• ••• • • • • • • • • • • • •• •• • ••• • • • • •• •• • ••• • • RB=2' CONCRETE BEAMMESIGN COND 1 Spa'n'-12:83' LOADS Roof DL = 254(! + 2.5) - 150 Of Roof LL= 30=( 7 + 2,51 - 180 pIf TOTAL DL = 1150 Of TOTAL LL= 180 pif 000 000 000 '00 000 000 000 Goo 000 l� Pged fit e - T e`8I Une f. Engifteer. ' iD; You tan change ihis area P*Ct Descr. Onithe %Wngs'menu :Item -and then using the "Prlr tu79 t_ Calculations per AC1'-3j 6-11. ISC 20121 ASCE 710 Load'Combination Sei : ASCE 7%10 " @rtles Material Prop " f TM 3.0 ksi , Phi Values Flexure; 0.90 fr= rctn ` 7,50 = 410.792 psi Shear: 0.750 ! • W Density - 145.0 pd t - 0.850 X Lim Factor 1.0 Elastic Modulus = 3.122.0 ksi Fy - Stirrups 40.0 ksi E - Stirrups = 29.000.0 ksi 60.0 ksi fy • Main Rebar Stimap Bar Size _ # 3 E - Main Rebar 29,000,0 ksi Number of Resisting Legs Per Stirrup = 2 • • Load Combination ASCE 7-10 aim. E`wxtYh So*" 12.670 8 Cross Section &>Reinforcing Details %mRectangular Section, Width = 8,0 in. Height =12.0 in Span#1 Reinforcing.... 246 at 2.0 in from Top, from 0.0 to 16.330 it in this span 246 at 2.0 in from Bottom, from 0.01016.330 it in this span calculations,, Service toads entered Load Factors will begapp `ed for calcul ,y , M � Loads _Applied Beam self weight calculated andaddedto loads Loads on all spans... D=0.150, Lr=0.180 Uniform Loan on ALL spans : 0 = 0,150. Lr = 0.180 Mt DESIGN SUMMARY Maximum Bending Stress Ratio = 0.346:1 Maximum award ra Ratio = 5047 Max Downward Transient Deflection 0.031 in Section used for this span Typical Section max upward Transient Deflection 0.000 in _Ratio = 0 <350 Mu: Applied 12.016 k -ft k -ft Max Downward Total Deflection 0.104 in Ratio- 1484 0.000 in Ratio= 999<180 Mn ' Phi: Allowable 34.740 Max upward Total Deflection Load Combination-1.20D+1.60Lr+0.50L-1.60H 6.427 fl Location of maximum on span Span # t Span # where maximum occurs Top Bottom references are for tension side of sect ion - trengih & Inertia _. Cross Section -- .. -... _ � _ ft � lAoment of Inertia . Ma�.Nu n 1 Phr't4n }t x _ ._. _ . . • . . • . . • . • . -, Boitorrl Top I gross is 9attori Icr • Too • . . �"o�L Top -,475.43 Cross Section Bar Layout DescripF n ' . ' : : : : : : . . 34 74 1,152.00 475.03 . . . 06n 3» 1, sec'" 1 2 - #6 @ d-10 2- - Eap a=2-. .. ... .. Support nolawn : Ear lett is K i Vertical Reactions support 1 Wa Loaa Cord!natcn . •�j , . . .. . • . Overafi ?JAXimum 2.13' . .2.r y • • 0 944 •��: • • • • • 0 • • • • • • • • Overall l�1itJ�murn i • • 4 • • •• • t JvL t.5ti2 C./ jt 1...'1.5=" y`..•ri 7,10t -H 2444y N`"• • • • • • • • • •• •• 1 52 •;, •• •• • . • 5105 fH =.• . i • • • • • • • • Ttte'606( 1 You can charms fids arca using the `SetwV* menu item and then using ttl6'*Nln*t.i* Blow 4066� pp rt 1 Support .1.50 1,582 2.448 2;448 1582; 1,562 1582 0582 0.949 4.949 :0:949 0.949 D 1.582 1.582 Lr 1.155 1.155 L onry S Ot* W Only E 0* H Only Shear Sog'p, Requirements Eftre m Span t.en M: Yu < Fh1Ycl2; Req Q Vs = Nat Regd t 1.4.6.1, rise siinups space4 at 0. W0 Maliiin'urn;l=arces & Stresses for,Load Combinations' t.aad Cam"bon Location (it) M" Suess Ratio lengt) Span # in Span Mu ..Segmni _......... Phi'Mn ._ _- MAxuriumDlbG Emtips w._..._ . Span k i 1 (2;830 12.02 34.74 0.35 +1.400-1,60H Span a 1 1 12.830 7.11 34.74 0,20 .1,200+0.50Lr+ ML+1.60H 12.830 7.94 34.74 0.23 Span # 1 1 +1.20D+1.60L+0.50S+1.60H 1 12,830 6.09 34.74 0.18 Span # 1 .1.20D+1.60Lr+0.50L *1.60H 1 '12.830 12.02 34.74 0.35 Span 9 1 +1.20D+1,601r+0.50W+1,60H 1 12.830 12A2 34.74 4.35 Span a 1 +1.200+0.50L+1,605+1.60H 1 12.830 6.09 34.74 0.18 Span # 1 +i ,20D+160S+0,50W+1,60H i 12.830 6.09 34.74 0,18 Span # 1 +1,20D+O-%Lr+0.50L+W*1.60H 12.8 0 7.44 34.74 0.23 Span # 1 1 +1,200+0.50L+0.50S+W+1,60H 1 12.830 6.09 34.74 0.i8 span #1 +1.20D450L+0,20S+E+1,60H 12.B30 6.04 34.74 0,18 Span # 1 1 40.96D+W+0 90H0,13 1 12.830 4.57 34,74 Span # 1 +0.90D.E+0.90H 1 12.830 4.57 34.74 0.13 Span # 1 • •• • • • • ••• • •• ••• •• • • • •• • ••• • • .• • • • • • • • • • • • • • • • • • •• • • •• • • • • • • • • • • RB -2 CONCRETE BEAM DESIGN COW 2 Span =.10:33' LOA05 `SP'AN 1 Roof DL = 25• t 2..832 + 1 - 185.375 Of Roof LL= 30,{ l!, + 1 _ 222.45 pif l 2 JJJ TOTAL DL = 185 = 185 Of TOTAL LL= 222 plf .. ... . . . . . . . . ......... . .. ... .. . . . .. . . . . . . . . . . .. . .... .. .. .. . . . ....... . .. see 000 *so *00 t°� Ned 7'#Je:; TtOe,Bk)dkLIr*1 project a. y;u qrichange.this ar.ea Engineer Rtiect Descr using th6 mew Item and then using tW 'Prinfing Calculations per *ACI4318-11_1, IBC 2012, ASdE 7-10 Load Combination Set-: ASCE 7-10 Wteriitl?"ro Ortl es, Rectangular Section, Width = 8.0 in, Height =12.0 in rc 3.0 ksi Phi Values Flexure: 0.90 Span 41 Reinforcing.— 2.46 at 2,0 in from Bottom, from 0;0 to 16.330 If in this span 750 = 4i0192 psi Sfiear: 0:750 kii Density 145,0 pd P'i s iL LtWt FaCto( = 1.0 Elastic Modulus = 3,122.0 ksi Fy - Stirrups 40,0 ksi ni Loads on all spans... fy -Main Rebar 60.0 Its'. E - Stirrups- z Stirrup Bar Size # = 29,000.0 ksi 3 D = 0, 1850, Lr z 0.2220 E -Main Re.baf = 29,000.ksl Num0ber of Resisting Legs Per Stirrup = 2 Lead Combination ASCE 7-10 Irw I 12'h am Cross Section & Reinforcing Details Rectangular Section, Width = 8.0 in, Height =12.0 in Span 41 Reinforcing.— 2.46 at 2,0 in from Bottom, from 0;0 to 16.330 If in this span 246 at 2,0 in from Top, from 0,0 to 16.330 It in this span Service toads entered. Load Factors will be applied for calculations, s Beam self weight calculated and added to loads Loads on all spans... D = 0, 1850, Lr z 0.2220 Uniform Load on ALL spans: D = 0.1850. Lr z 0,2220 Of DESIGN SUMMARY 0,266: 1 Maximum Bending Stress Ratio = maximum Deflection n 0.016 in Ratio = 7840 max Downward Transient Deflectio Section used for this span Typical Section Max Upward Transient DeRection 0,000 in Ratio = 0 <360 Mu Applied 9.246 kft Max Downward Total Deflection 0,036 in Ratio = 3417 999 <180 Mn Phi . Allowable 34.740 k -ft Max Upward Total Deflection 0.000 in Ratio= Load Combination -1,200-1 6OLr-,0.50L-1.60H 5.174ft Location of maximum on span Span # 1 Span # where maximim occurs Top & Bottom references are for tension side of section -- -1ki;ent Cross Section Strength & Inertia . ... ... 1:' _:__ * of Inertia (iwi) : • 0 00 • .0. 9 0 : Bottom Top igross 1cr-Bottom 1cr-Top 'fop Cass Se -non Bar Laycut Description 0 .10% 47503 4115,03 6�14• 000 34 74 34 T4 1,152 06 Section a 1T 2. Z6 d=2`. Support riotatson, Fat ieft is #1 Vertical Reactions L'xia co'nDinat,on suppw_ 0 1 Avera M-4xiMum 2,601 • *2,606 0.873 00.0.87:. C}re II NAIN'mum 11 4�rl 00 145! 1,455 1.455 2 601 2 6iD I S•H 1.455 2 '.5 1 fFjS 11455** 0•0 You can dwge this area pr*ct DOM using 111e `Settings' menu item and tt# us�9 ttle'Prirstn9 *D+0,75QLr+0.750i.+0.450W+H 2.315 2315 +D+0.75O:«0.750S+0.450W+H 1,455 1.455 +D+0.75OL40.150S+0.525OE4H 1,455 '1:455 +0.600+0,6OW+0,60H 0,673 0473 +0,600+0.70E+0.60H 0,673 0.613 D Only 1,455 1,455 Lr onry 1.147 1.147 L Onry .1.20D+0,50Lr+1.6QC +1,60H S Spry 5.99 34.14 w only Span # 1 1 E Only H onry •1.240+1,60L+0.50S+# 60H Shear Stirrup. Requirements rase m Span lens3 u < ph" fV-O, Rep Vs z NNot Rego 11.4.6.i, Mairimum'Farces & Stresses for.Load Comt inatlorts Load GWIXnal= Segment Length Span Lowow (ft) In Span Mu, Max Phi -MU Suess Rabo MAX1rtwm 6Ei�[}1NG Envelope 1 10.330 5.25 34.74 0.27 Span 9 1 +1.400*1.60H Span # 1 1 10,330 5.26 34.74 0.#5 .1.20D+0,50Lr+1.6QC +1,60H 10.330 5.99 34.14 0.17 Span # 1 1 •1.240+1,60L+0.50S+# 60H 14.330 4;51 34.74 0,13 Span 1 1 +1.200+1,60Lr+0.50L+1.60H 1 10.330 9,25 34.14 0.27 Span 4 1 .1.200+1,60Lr+0.50W+1.64H 1 10.330 9.25 34.14 0.27 Span # 1 +1.20D+0.50L+#.60S+1.6dH 1 10.330 4.51 34.74 0.13 Span #.1 1.200+1.60S+0.50w+1.60N 1 10.330 4.57 34.74 0.13 Span 4 1 +1.20D+0.50Lr+0,50L+Nt+1.60H 1 10.330 5,99 34,74 0,17 Span r 1 * 2OD+0.50L-0.50S+wOMH 1 14.330 4.51 34,14 0.13 Stan # 1 •1.l,Q:+0.50L+0.20S+E+1.60H 10..330 4.51 34,74 0.13 Span 4 1 1 +0.900+w+O.94H 1 10,330 338 34.74 0.10 Span # 1 +0.90D+t+O-%9 H 1 10.330 3.36 34.74 4.10 Span # 1 .. ... . . . . . .. . ......... . .. ... .. . . . .. ..... . . . . . .. . . . . . . . . . . . .. . . .. . . . . . . . . . . . .. .... .... 0 STB-1STEEL.' BEAM DESIGN SUPPORT TRELL" IS Span =13.67' LOADS SPAN 1 Roof DL = 14.(4) = 60 ptf Roof LL- 30-(4) = 120 ptf TOTAL DL.= 60=60 plf TOTAL LL= 120 plf' .. ... . . . . . . . . .. . . . . ... . .. ... .. . . . .. . . . . . . . . . . .. . .... .. .. .. . . . ....... . . . . . . . . . . . .. .. . . . .. .. ... . . . ... . . r►ae�.. Ya,'can r this mea Engineer. using the'Seitings' menuitem Pcolecl,0esa d uslf the'PtinGng &; _CODE REFERENCES Catculations per AI C 360-10, ISC1012, ASCE.7-10. Load Combination Set : ASCE 7-i O u:.•'�.sR1; :.:naw �� � __..-..�,.�___, Analysis Method : Allowable Strength Design Beam Bracing': 8@a m i5 Fully Braced against lateral -torsional bucWiing Bending Axis Major Axis Bending Load Canbination ASCE 7.10 sp*A • 13,670 n AOIled seam stiff weight calculated and added to kfinq Loads on all spans.,. Uniform Load or, ALL spans : D =+3.060. Lr = 0.120 klft DESIGN SUMMARY Maximum Bending Stress Ratio 0.108:1 Section used for this span HSS10x4x114 Ma : Applied 4.728 k -ft Mn / Omega: Allowabte 43,613 k -ft Load Combination Location of maximum on span Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection +D+Lr+H 6.835ft Span # 1 NssrcwAlm Fy. : Steel Yb E: Modulus 46.0 ksl 29,000.0 ksi Service toads entered Load Factors will be applied for calculations: Maximum Shear Stiess Ratio Section used for this span Va : Applied Vn/bmega : Allowable Load Combination Location of maximum on span Span # where maximum occurs 0.044 in Ratio= 3,751 0.000 in Ratio = 0 <360 0,074 in Ratio= 2224 0.000 in Ratio = 0 <180 0.019: 1 HSS10x4x114 1.384 k 71.632 k +D+Lr+H 13.670 !t Span # 1 Maximum Farces & Stresses for Load Combinations Suin of St>ear Vales `�",.�-----`-� t,�3x Stress ttafkas Load Sumrmary of Ntoment Values Mt 9a via . w - Vnx V a Segmnt LengLh Span # Mma f�a Aa __ ,- -6�1,93 72.83 43,61 1,00 1.00 0.56 119.63 71.63 Dsgn. L = 13.67 ft 1 0.044 0.008 1.93 +D+1.,H1.93 0.008 193 72.83 43.61 1.00 1.00 0.56 119.63 71.63 Dsgn. L = 13,67 ft 1 40+1-1`4H473 0.044 72.83 43.61 1.00 1.00 1.38 119.63 71.63 Dsgn. L = 13.67 4 1 0.108 0.019 4.73 +O+S+H1.93 72.83 43.61 1.00 1.00 0.56 119.63 71.63 Dsgn. L = 13.67 ft t 0.044 0008 1.93 1.18 11963 7163 +0+0.750Lr+0 750L+H • @,016.• : 4 ai ; off : : 4.03 72.83 43.61 1.00 1.00 Nn L= 13.51 ft 1 .0+0 750L-0,750S+H 0092 ' • • • `. • ••• • ` : : ..� 93 72.83 43 61 100 100 0 56 119 63 71.63 Dsgn L = 13 67 " 1 0.044 3 dJ8 ..: 14Z; 7 t 63 +0+0.60W+H 0.008 193 193 72.83 43.61 1.00 1 00 4 56 t 19.63 Dsgn. L = 13 61 tt 1 +0+0.702+H 0 044 • ••• • • • • • • • • •• • • • 13• T2.83 43 61 1.00 1.00 O Sfi 1 t9 63 7163 Dsgn L= 13.67tt 1 0.04 • �• 1.33• • • • • •. • ♦ • • • 18 119 63 7163 +0.0 750Lr•0 75,%-0 45 -T,'+• -H• • •• 016• • • 405 • • 401 1283 4361 1.00 160 1 Dsgn L= 1367 » n� 501.•4 7505-0 4450W -H 00, 19, 7283 4364 100 100 0,6 119 6 3 111163 Osgn L-0.044 +0 -750L-0 7502-4).5250E -H, 67» 1 A 0044 r< _ 4fee ' J i-' * �3 ; .` 3: i • • : • : : 113 • • • 0 7283 4361 1.00 1.06 5a 119 63 71,63 DSgn L 7 13 • • T'itie 8ioetr Line 1., You can di this area using the'Settiry menu item' ,and SB6 using the "P69ng & TiOe Bloch' s 6WM. (:n$OW. Ned Descr: Desaiow ; STEEL SEAM St1PPORi TRELLIS COND 1 Max'Stress Ratios. Summary of Moment Vales Sdmryry of Shear Vak►es .a - -- Load Cori'ib&rati ` � Mme.. V r Mmax • Mmax • Ma Max Mnx Mnxlbrriega Cb Rm + Ya Max Vnx Vn�tOmega n# S n Segment Length Spa M 9.t6. 7283 43.61 t00 1.00 03�' 119.63 71..63 13:67 ft: 1 02& 0.005 1.1 +0,60b.oO,70E+0;60H 0,026 0.005 1.16 1;16 72,63 43.61 1:00 9.00 0:31: i t9.63 71.63 Ds91: L = 13.67 It 1 OitBr81t.M8xitnUiri`E3efiedi0ns~- " " _` ..,..M Load Combinafw Span Max •= Def! Location in Span Load CambhlbO ► Max.'+' Defl Location in $pm �,..__.:.•--_-- Q.0738 6:871 0000 0.000 VeRicai f2P.8Cti0tt5' support notation : far left is 81 Vakm In KIPS w Lo�i'Combrnatan $ Su� 2 � ,�,__,_..� �. �,�..."'._..w`.`"" Ovew fANtmum 0:336 0.338 +D+H 0.563 0.563 +D,1•.R 0.563 0.563 +OAr4H 1.384 1,384 +0+5+11 0.563 a.563 +D0:15OLr+0.750L+Fi 1:178 7,t78 +0+0.7501+0 750S+H 0.563 0$63 +{?+0AW—H O;%3 6.563 +0+0.70EA4 6.563 0S63 +D.o, 5W 0,751ft„+0.45OW4H 1.178 1.178 +D+0.750.+0,150S+OASDW+kl 0.563 0.563 +D+0.750L+O,750S+O.5M+N 0,563 0.563 +0.60D+0.60YY+060H 0.338 0.338 +0,60D+O.70E460fi 0.338 0.338 D Only 0.563 0,563 Lr Only 0.820 0,820 L Onyx S Only wont' E 0* N Only • •• • • • • ••• • • • • • • • • • • • • • • • • • • •• • • •• • • • • • • • • • • • •• • • • • ••• ••• • •• •• • • • •• •• ••• • • • ••• • • ST64 STEEL SEAM DESIGN SUPPORT. TRELLIS :Span =8' LOADS SPAN I Roof DL = 1$(!3.67) = 205.05 PI Roof LL= 30,{ 13.6"7} = 410.1 Pif TOTAL DL ` 205 = 205 Plf TOTAL LL= 410 plf .. ... . . . . . .. .. ... .. . . . .. . . . . . . . . . . .. . .... .. .. .. . . . ....... . .. . . . . . . . . ZS Title, 816& Line I 0miedUle: %u can diarige this. area, Prosect ID: using the 'SeWV* menu hem Project Desd_.'. and # lw� ushV_ ft *knting'& `Tifle 81a' Win. CODE REFERENCES• Calculations per RISC 360-10, ISC 20,11, ASCE, ?-'1,0 Load Combination Set :ASCE T-10 ' Analysis I Method., Allowable flowable 8tre;h4ffi Detigri Fy: Steel Yield BeamBracing,, Beam is Fully &a6lid against Design buckling E: Modulus: Bending Axis Major Axis Bending Load Combination ASCE 7-10 Beam self weight calculated and added to 103d!nQ Loads on all soans�,, Uniform Load on ALL span$: D = 0.2050, Lr z 0.410 k1ft DESIGN SUMMARY Maximum Sending Stress Ratio = 0.117: I Section used for this span HSS10x4x1/4 Ma Applied 5.099 k -ft Mn t Omega: Allowable 43.613 k -ft Load Combination 4)4tr-H Location of maximum on span 000ft Span # where maximum Occurs Span # I Maximum Deflection Max Downward Total Deflection ,soon - to 11 T 46.0 ksli 29,000.0 ksi Service loads entered. Load Factors will be applied for calculations. Maximum Shear Stress Ratio = Section used for this span Va: Applied Vn/Omega -, Allowable Load Combination Location of maximum on span Span 0 where maximum occurs Max Downward Transient Deflection 11963 0,018 in Ratio= 5,478 11963 71,63 0,91 Max Upward Transient Deflection 71,63 2,14 0.000 in Ratio= 0 <360 0,91 11963 711 63 Max Downward Total Deflection 119 63 7163 0.027 in Ratio= 3524 11 63 14 11963 Max Upward Total Deflection 0,000 in Ratio= 0 <180 Maximum Forces &,Stresses for Load Combinations Load Combination ---Max Stress - ------ _ W_ t Values ­ -I-.--- th Span Segment length � V Mmax + Kmax - Ma Max Mnx MrWOmega Cb Rm — ---- --- ------- Dsgn. L = 8.00 It 1 0,042 0.013 1.82 1.82 7243 43,61 1,00 1.00 *O+L+H Dsgn, L z 8.00 It 1 0,042 0.013 1.82 1,62 7213 43,61 00 00 -D*Lr-H Nn'l_= 800ft 1 0.117 H36 5,10 5,10 7183 43,61 1.00 100 -0-S-44 Dsgn. L = 8,00 ft 1 0,042 0.013 1.82 1,82 • 72,83 0 0 * 4161 100 100 +0*0.75OU-0,75OL-H z 8.00 It 1 0,098 0.030 0* 00• 4.28: 0 4�8 1) *_8: 4361 1.00 100 O's9n, L . • 00 +0-0,750L-0)50S+H10 Dsgn, L = 800 ft 1 0042 0013 1,82.-* •: •: 18# NH- 4361 1.00 100 0+0 60W -H Dsg,,) L 800 ft *1 O.N2 00!3 1 4 V 182 72.83 43 61 00 100 -0470E--- 4-1• Dsgn, L = 8,04 11 1 0.0,42 0,013 1; 2; 122 7::• 3 :0 :361 100 100 '0-0 750Lt-0 750L4450'N-+i Dsgn. L z 8.40 ft I 0 098 0:0 30, -4 :tri4 12,4 7243 - 4161 100 Dj -0-) 7501_+O 75CS-0 4501W -H H42 0 0 13 812 1. 82 72 83 43 6' 1.00 1 N Nn L � 8 00 ft -0--3 7 50L +0. 7 50S 45 250E +H 0 Oz2 0 013 182 :': 2 7 63 4361 1:0 11 00 Dsgn L z 8 C 11 � -00-0 ;Av, -3 6CH 0.036 :1 HSS10x4x1I4 2.550 k 71,632 k +{)+U+H OZO ft Span # 1 Summary of Shear Values Va Max Vnx Vnx/Omega 0,91 11963 71,63 091 11963 7163 2.55 11963 71,63 0,91 119.63 71,63 2,14 II9.63 71.63 0,91 11963 711 63 091 119 63 7163 91 119.63 11 63 14 11963 7163 3 71 T+tile Block fine 1 You can change4ws area Using the `Settings' menu item and then using tfie'Printing & Tltle.BIOW selection. Description, STEEL BEAM SUPPORT TRELLIS CO.N0 2 Load Combination Enginek-.' p iii: ftled o IF Summary Of $hear vaates Va Max. Vnx Vmoroega +0,606*0JOE+0.60H Ds9n, L = 8.00 tt 1 0.625 0,008 1.09 1.09 7283 43.61 1.00 1.00 0.55 119.63 71.63 overall Maximum Deflections._- Load Corot nation Max. •-' Dell' Loce0on in Span Load CanWnaGon Max *e Def! Location in Span m +{}+Lr++ --- �_f 0.0272" 023 �.� eD.OQ4p 0.400 Ye ical Reaction'sSupW notation: Far left is #1 Values in KIPS Load Combination Support Support 2 _ .n. ._....... C)veiap MR wtiw Ovmn MINimum 0.546 0.546 -D-H 0,910 0.910 ,D+{.+H 0.910 0.910 +D+Lr+H 2.550 2,550 *f1.S+H 0,910 0.910 +D+0.75OLr+O.750L+H 2:140 2,140 *D+o.750L+0,750S+H 0,910 0;910 +D•0,60W*H 0.910 0.910 +D+030E+H 0,910 0.910 .0.0.750Lr+0.750L+0.450W*H 2.140 2.140 +D*0.750L+0.7WS*0.450W*H 01910 0.910 40*o.75oL4o.750S+0.5250E+H 0.910 0,910 +0.60D*0.60W+0,60H 0.546 0.546 4().60D+0.70E+00.60H 0,546 0546 D Only 0.910 0.910 Lr Only 1,640 1,640 L Only S Only W Only E Only H Only STS -2 STEEL 6EAM DESIGN SUPPORT ROOF AT GAGEBO Span =17.75' LOADS SPAN 1 11.61 Roof DL = 25 Z - 195.815 plf Roof LL= 30.11-67 + 2 = 235.05 pif 2 TOTAL DL = 196 - 196 plf' TOTAL LL= 235 pif UPLIFT = 9'1.11,67 +'2 1.66 = 1.184 x 103 2 .. ... . . . . . . . .. ... .. . . . .. . . . . . . . . . . .. . .... .. .. . . . . . . . . . . ... . . . ... . o--Zlvl P1.1c)*t Tft 'Tift BlotkLine 1 606 Prow yw.m charge this area PrqW Descr' using the 'Settinge menu itern and.therl using the '06;iiing i -CODE REFERENCES Calculations per AISC.360-10, IBC 2012, ASCE 7.10 Load Combination 'Set : AS&E 7-10 Analysis Method: Allowable Streno,Design': Beam Wacing 7 Beam is Fully Braced against lateral -torsional bucMing Bending'Axis: Major Axis Sending Load combination ASCE 7-10 Fy : Steell Yield b 46.0 ksi E, Modulus, 29,000.0 ksi Applied Loads - Service loads entered, Load Factors will t);-% applied for calculations, Beam self weiqht calculated and added to loadinq Loads on all spans... Uniform Load on ALL spans, D=0.1960, Lr=0.2350loft DESIGN SUMMARY Stress Ratio 0.026 :1 Ma Maximum Bending Stress Ratio 0.176:1 X)murn Shear 9Section used for this span HSS12x4xl/2 Section used for this span HSS12x4xl/2 Va : Applied 4.259 k Ma: Applied 1&898 k -ft Vniorriega : Allowable 162,999 k Mn / Omega: Allowable 107.196 k -ft Load Combination +D-,Lr*H 8,875ft Load Combination Location of maximum on span Location of maximum on span Span 41 Span # 1 9 where maximum occurs summary of vakies Span # where maximum Occurs Va Max -vnx vnVOnlega 1.00 2.17 Maximum Deflection Max Downward Transient Deftedon 163.00 0.087 in Ratio= 2,460 27221 Max Upward Transient Deflection 100 0,000 in Ratio= 0 <360 163,00 Max Downward Total Deflection 217 0, 177 in Ratio= 1205 0 <180 1,00 Max Upward Total Deflection 27221 0,000 in Ratio= 1,00 2 17 Maximum Forces & Stresses for Load Combinations 163,00 100 Stress Kailas 27221 @ Moment Values - -----M­n­X-­ 00 load CAdax Span 272 21 Whax + Mmax - Ma Max Cb intent Length 16300 100 217 .;221 Dsgn,L= 17,75ft 0,0W 0013 9.64 9,64 179.02 10720 1.00 -D' -H9,64 Dsgn, L = 17 75 ft 1 0,090 0.013 9.64 179.02 10720 1,00 +C)+U+H 0.176 0,026 18.90 18.90 179.02 107,20 1,00 Dsgm L z 1715 1, +O+G*H9.64 1 0090 0.013 9.64 179{02 10720 100 Dsgn- L z 17.75 If 0 0 0 00 -D-0 750U -0,750L *+I••••• 1 0.155 0.023 16,54 0• o 107,20 100 Dsqn L r 17 75 It -D-.o 750L-�v 7o0-S-H,0� 0,0W 0.013 IV* :159-?.' 10T20 100 N,., L = 17 75 It 1 .0+0.601Y -H 0,0W 0-013 9.64 9,64 179.02 107.20 1.00 Dsgil L - 17 75 It -0 YO 70E -H1 0 ON 0013 024!07,20 100 Nil, L = 17,751 ,0,0 75Z1r-0 750L -0 450".741 01 155 0023 41; • ;07 20 100 Disgn L - 17 75I -D-0 't 50-+0 7505 -0 450W -?t 0M 0013 964 q 64 17902 107 20 1 Ck" Ds�g n L = 17 7511 -0F0.7501. -O -150S-0 5250E -}i49.02 • • 107,20 00 Ngn L � 17 75 ft 1 0040 0013 '.3 60D-0 60ti" .43 60'H 0.000 ft Span 41 summary of vakies Rm Va Max -vnx vnVOnlega 1.00 2.17 272,21 163.00 1,00 2,17 27221 163,00 100 4,26 27221 163,00 100 217 27221 !6300 1,00 3 74 27221 16300 1,00 2 17 27221 163,00 100 21, 27221 163 00 00 2 17 272 21 16300 C'l 3 4 27221 16300 100 217 .;221 16300 00 17 2722' 163CX) 0 Title Stock i"Project Tide: ineer. proiest ID* You can dta V this yea Proled flew:, o0v fitie'Sett'tngs' menu Item us -arMeya,t. 6'�rP.. —t:hBbWre�-i wihCAe %IlVlTMrTiO0�1�2C1181A�t-i1tSABEc-a'M7(!3iT �ff r64*1 =11bisa,nec5 ;Steell- eam, a +" = ENiRCA}GfNC19B324� 9 4575128,Yek515i29 r.+ DesaP1 ; STEEL BEAM SUPPORT GACESO COND 1 Load Contlnabon Max Stress R85W Summary of Monrem Vatues Summary of Sheat Vakm Went Lo" SPS Y Mmaz'+ Mmax • Me twiax Mnx MrvttQlnega Cb Rm Va Max Vnx YnxlOmega .. Dsgra. t tt 17,7511 1' 4.454 0,008 5.79 5,19 =119.02 Q%2tt 1.00 1,00 1.30 2722.1 163:00 ,+0,60D40J0E+0.WH :Osgn L = 17.75 R 1 4.054 0.008 5.79 5.79 179.02 107:.20 1.00 1.00 1,30 272.21 163.00 ov ralt IWaximum Cteflections Load Combs Miw spa,Mafc. += Def Location In Span Load Combinatlon Max .-*+' fl Location in $pan v7ti8 Medica{ Reactions: ...,.� _� Support notation: Far M is #1 Vakres in KIPS Load Combination support 1 support bwera" m Overall MiNimum 1.304 1.304 +D+H 2.173 2.173 404L+H 2,173 2,173 +D+Lr+H 4.259 4,259 40+s+{ 2.173 2.173 +0+0.75 40.750L+H 3.737 3,737 - •0+0.750L+0;750$ -H, 2.173 2.173 +0+0.60W+t 2.173 2.173 +0+0.70E+H 2.173 2.173 -17+0 75Mr4750L+0 45MV*H 1737 3.737 +O+O750L+0.750S+0.450W-H 2173 2.173 +0.0,750L+0.750S+0.5250E+H 2.173 2.173 -0.60D*0VW*0.60H 1,304 1304 +0.60D•0.70E+0.i 0H 1.304 1.304 0 Only 2.173 2.173 Lr Only 2.086 2.086 L Only S Only w Only E Only H Only •• ••• • • • • • •• •• ••• •• • • • •• • • • • • • • • • • •• • •000 0.0 • • • • i 000 Title'816ck Line 1 You canthis area using the'Seit rtt#s` menu hem and then U tg lite" Printing title ftdt selection, GE80 UPLIFT Calculations per RISC 360-10, ISC 2012, ASCE 7-1.0' Load Combination Set : ASCE 7.10 Pirdoct W Engineer. Protect Desai Analysis Method ; Allowable Strength Design Fy: Steel Yield,' t Beam &aang ; Beam is Fully Braced against laterel-torsional bucking E: Modulus : 29,000,0.ksi Sending Axis. Major Axis Bending; Low Combination ASCE 7-10 x _ d .17?10a toss 1Zz411,* Serves toads entered Load Factors will be applied for calculations, Applied Loads Beam self welqht calculated and added to loadinq Loads bn all spans - Uniform toad on ALL spans W = 1,20 k/ft t7EStGN SUMMARY Maximum Bending Stress Ratio = 0.260: 1 Maximum Shear Stress Ratio = 0,039 : 1 Section used for this span HSS12x4x1/2 Section used for this span HSS12x4x1/2 6.824 k Ma . Applied 30.279k -ft Va : applied VnIomega : Allowable 177.173 k Mn ! Omega : Allowable 116.517 k -ft +0+0.60W+H Load Combination +p4.0.60W+H 8.875ft Load Combination Location maximum on span 0,000 ft Location of maximum at span Span # 1 Span K where maximum txxxirs h Span 1 Span d where maximum occurs Maximum Deflection Max Downward Transient Deflection 0.442 in Ratio 481 Max Upward Transient Deflection 0.000 in Ratio= 0 <360 Max Downward Total Deflection 0.283 in Ratio= 752 Max Upward Total Deflection 0.000 in Ratio= 0 <180 _. -� Maximum Forces & Stresses for Load CombinationsStn _lues vnary of Shear Val load Carrrbiriation tAax Stress Ratios 'R1 - of Moment Vales Mnx RtnlJQmega Cb fire _ Max -- Vnx Vnx a Segment Length Span p Segment ._..- V R R .6+N___ ___.._._ 0.017 0.002 1.92 1.92 194.58 116,52 1.00 1.00 0.43 295,88 177,17 Dsgn L = 17,75 it 1 +0+L 1.92 1.92 194.58 116.52 1.00 1.00 043 29588 171,17 Dsgn; L = 17 75 It 1 0.017 0002 4�4u+a 0.017 0.002 192 #_92 194 58 116.52 1.00 1.Q0 0.43 295.88 171.17 Dsgn. L -- 17,75 ft .0+S+H 1 �?2 194.58 116.52 1.00 1.00 0.43 295.88 177.17 Dsgn,L= 7.75ft 1 0.017 4.750Lr+0.750L+H 040 4002 1.92 •. ••• • • • • • •• •: 1�92i 154.98 116.52 1.00 1.00 0.43 295.88 171,17 Dsgn. L = 17 75 It 1 0,017 0.002 1.92' • .. . • • . • • • • • • • 40+0.750L+0,750S+H1.00 0.002 19200* • • • • • • • • • • t T2• 134.18• XJ 116.52 i C 0.43 295 38 17717 Dsgn.L= 17.75h v�* -0+0 60W -H �^ 30.2$ 194.58 116 52 1.00 100 6.82 295.88 ,771,7 � Dsgn. L = 17 75 tt 1 ? _07 0.70E+H � 9 v 03 30 ti *92• • • • : :1:92: 1 58 416-52 1.00 1 C00 043 29588 117 17 Dsgn L= 17.75 It 1 00'7 0002 •• • • • • • • • • • • • • • • ' Z .L' O 1S0L,4750L+L' 450Wti 4 • • • • r • 2_.: • • • • • 23 194'58 • 11652 100 1.00 S Z 4 .95 M 1,77 <` usgn. L = 17,75h 1 0199 •D<0 7501+0 750S-0 450%V � 01 C29 d 23 19 194 58 116 52 100 100 523 295 33 17 � 1 r D<gn L= 11 75 ft 1 31� .0 7505.0 52`OE -H L.i;'SC hh uuil "029 "••• • • • • • • • • ••• • • • • • ••.?2 19458 • 11652 100 tot 0 43 29588 177.' j • •• •• • • • •• •• -0 60D+i, fi0'7r+0.6011 • • • 0 0 0 • • • 0 • i tt 't3tock t itte 1 PiojW litfe: ptojeCl t�} You tan d*nge t area Engineer using the `Settings' menu iiem Prr�ed Deism, and then using the *Pr inlirrg & T�U, cum+"tet , Load Combkl* n Max stress Ratios Sumn+ary of Moment Vexes Stimmary Of Sti ff Wkjes seamentlengtfsseen 0 M V W=1 + mmax - Me Max Mruc e9e `CD. Rm Na fd3ic viu VruJOmega Dsgn.L- 17.75n 1 u.ca+f u.Wo ".aI ..mow... ...1-W ,,__ --- - .+0.600.0.70E40,60H Dsgn."L = 17.75ft 1 0.010 0,001 1,15 1.15 19458 16.52 1.00 1.00 0.26 295.88 177:17 Overall Max murn Ddlections . _Mm Load Cambtnatioa Span _ _. Maz, =* Dett L4Cation In Span Load CornGinatfan Y..Dfl Location an Span -.a .� WOnly 1 o ss6 0 000 Vertical Reactions support natation : Far left is 01 ,.._ Vetoes in KIPS _.. Load Combination support 1 support 2 b eral w imum 10.65b 10.$x' Overd to Wnum 0.260 0.260 +D+H 0,434 0.434 +0*L+H 0.434 0.434 +O+Lr+H 0.434 0.434 +D+S+H 0.434 0.434 4040,75W+0,750L+H 4.434 0.434 ,O+0.750L40,750SM 0.434 0.434 *D+0,60W+H 6.824 6.824 +D40.70E+H 0.434 0.434 +D+0.750Lr+0.750L+0.45d1W+H 5.226 5 226 +0+0.750L40.750S+0:d50W+H 5.226 5.226 +D+0.750L+0,7505+0.5250E+H 0.434 0,434 40.60D+0.60W40.60H 6.650 6.650 •0.600+0.70E+0.60H 0.260 0.260 D On y 0,434 0.434 Lr Ony L Only S Only w Ony 10.650 10.650 E Ony H Onty .. ... . . . . . .. .. ... .. . . . .. .. . .... . .. •• • • • • . • t i 000 •• 0 • • • • ••• • • • ••• • 01- STB -3 STEEL BEAM DESIGN.SUPPORT ROOF AT GACE!30 Span' =11.6T LOADS SPAN 1. Roof DL 25,(i +2= 137.5 p!f 2 )j Roof LL= 30• ' + 2 - 165 plf 2 TOTAL DL = 137 = 137 p(f TOTAL LL-` 165 pif .. ... . . . . . .. .. ... .. . . . .. .. .. . .... . .. .. .. . .... • . ... ...... . ...: .. ":o . . ... . 0-32� To Bic(Une-i Project Tide, 7 You can change this area Engineer Prolect 0 using the 'Settings' mend iterh ProtectDesw and filen using 04 'Printing & WDE REFERENCES Calculations per AISC 36(t�16, IBC 2012, ASCE 7-1-0 Load Combination Set - ASCE 7-10 material Ptoovirfies Analytis'Method . Allowable Strength Design Fy ` Ste6Y)e1d:; 46.0 kSi BemLBradng. Bemis Fully Braced agalristtaterai-torsionai buckling E: Modulus: 29!0W.0 ksl Bending rAXiS: Major Axis Bending Load Corribination ASCE 7-10 W'Imufo Igo v v T Span -liG7011 Ser.4ce leads entered, Load Factors will be applied for calculations. Beam self weight calculated and added to loading Loads on all spans Uniform Load or, ALL spans ; 0 = 0. 1380, Lr = 0.1650 k1ft DESIGN SUMMARYr Maximum Bending Stress Ratio 0.056: 1 Maximum Shea Stress Ratio 0.013 Section used for this span HSS12x4x1/2 Section used for M span HSS12x4x112 2.053 k Me: Applied 5.990 k -ft 107.196 k -ft Va: Applied Vn/Omega: Allowable 162,999 k Mn I Omega: Allowable -*D-Lr�H Load Combination -D+Lt+H 5.835ft Load Combination Location of maximum an span 0.000 ft Location of maximum on span Span # 1 Span # where maximum occurs Span 91 Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection 0.011 in Ratio - 12,329 Max Upward Transient Deflection 0,000 ir, Ratio = 0 <360 Max Downward Total Deflection 0.024 in Ratio = 5782 Max Upward Total Deflection 0,000 in Ratio= 0 <180 Maximum Forces & Stresses for Load Combinations - -ii- - ---- '-8 urJMry of Shear Values . ..... . - ------ Sur Load cornt"nawn Of mo(�iva�� Wx Mrixton"a Cb Rm Val Max Segment Length Soan # M V Mmax - Kmax - Ma Max 1-111 - I-,-- - -Vnx -V=Or-*ga 444C, 1 0,030 O�007 318 3.18 179.02 107,20 1.00 1,00 1,09 27221 16300 Dsgn- L = 11,67 ft -0-L-H1,00 0.030 0.007 3.18 318 179,02 10720 1.00 log 27221 163,00 Dsgn,L= 11.61 ft 1 +0+ r-"4.00 5.99 5,99 179,02 107,20 1 1 2.05 272.21 163.001 Dsqn L = 1, 1,67 ft 1 0,056 0.013 +().S.H'00 1 0030 0007 3.18 3.18 17S,02 107.20 1 1.00 109 27221 16300 Dsgn L= 11,67 ft -".750Lr+0,750L441, * * * •5*. ;q •: : • . . 0 0 0 179,02 10720 . 1.00 00 1,81 272.21 63100 Dsgn, L = 1167 t 1 0.049 0,0110 :5,2:0 -D-0.750L +0 75OS-H 0030 0.007..9 *.: 0. 03 1� 0 179,02 1; 07 20 . . * 100 100 C;9 272 21 16300 Nn, L = 1167 ft .040.6ow-H .1:3 3.18 179.02 !0T20 1,0A 00 10 272 21. 163 00 Ds,gn L = 1167 0030 r3 t 70EIH 0007 3 18 8 •'+7902 107n 1.x3 1G0 L 109 27211 16", 00 Dsgn L z 1167 ft O�030 1 .0 0 '7501,r-0 750L,0 4-1,0W+H ', 1 0-049 00 ;. 0 0�11- :5 29• -5,71 • �79 02 10,- 20 1,00 It X! 272 21 1,6300 Dsgn L = 1167 -D-0 7501. +0-75OS40 456W -t{ 118 3 18 17902 107.20 i.00 100- 019 )72 21 i'13 00 C-ogn. L - 1167 ft 11 0030 0007 3 +0-0 f50L+0,7,,0S+0,5250E-H 0030 57 ft 0 007* :3 '18 17902 10720 100 100 �';9 272 21 6-100 rifle Block Lire 1 Y'ou Can flange'this area Engineer: ,, i eCt V., using -the `Settings' menu item prow and then using the'Prirdng Tttte SbX selection. Title Block tine 8 �- A^tyS1t3eaa�s;eaisn8 #> .I -Beam < � � t Des pb6n: 'STEgk BEAM SUPPORT GAGEBO GOND 2 Load Combination Max Stress Ratios Sununary of Vaka Summary of Shear. Vak)es Secment Lenoth Span M V hitn<ix • Mmax - Max MaxM x Mrtiz k#rx ga :C4 Rm Va Max vnx VMdOrW _. LL �. Dsyn, L =' 11,671# 1 0.018 0.004 1.91 1.91 179,02 107.0 1.00 1,100 4.65 272.21 163.00 -%Vetall Milo ttt m DeflectonS Load Combination. Span Max. *-'Dell Location in Span Load Combination Max. `+` N t. L6mbw k1 Span 0.-0242,--"-,---5,868 0.001111 4.000 Vertical i2e8ctions Support notation-, Far tett is 81 ValvesIn KIPS Load Combination support 1 Support 2 Joe Overall wNimum 0.654 0.654 +G.H 1.090 1.090 4{3+{,4}1 1.090 1.090 4D+L.r+H 2053 2.053 40+S+H 1.090 1,090 +M.750Lr+0.750L+tt 1.812 1.812 +D+0:75MA,750S+H 1.090 1.090 - tD*O 60VW+H 1.090 1.090 40+070E+H 1.090 1.090 40+0.750Lt+0:750L+0.450W+H 1.812 1.812 +O+0J50L+0J50S+0.450W-#H 1.090 1.090 +D+0.750L+0.750S+0,5250E+#4 1.090 1.090 +0.60D460W44.60H 0654 0.654 +0.6OD40,70E+0,60H 0.654 0.654 D Only 1.090 1.090 Lr Onty 0,963 0.963 L Only S Only W Only E Only H Only STB -2 STEEL BEAM DESIGN SUPPORT' R106F AT GACEBO Span =12.25 LOADSSPAN1 Roof DL = 25-(_11.67 + 2) = 195.875 p1f 2 Roof LL= 30.1 1.67 + 2 = 235.05 p{f 2 TOTAL DL = 196 = 1.96 plf TOTAL LL= 235 Of UPLIFT= gi.( 11.61 + 21 1.66 = 1.184 x 103 2 J .. ... . . . . . .. . ......... . .. ... .. . . . .. . . . . . . . . . . . . . . . . . .. . . .. . . . . . . . . . . . .. .... .... 0 • • Title &a Lim I Prow 11); ;Y6ucan d"this aW Eng1heer : using the *Se@6gs7 menu item Protect Descr and then using " 'I"Onting Title BloW selection, Title U6 Line 6-kftd, i i Art 'vd� 4-i CWARTAM-, IWI sted(beam, c.crrcW&IS.1019.V Description: STEEL BEAM SUPPORT GACE80 COND 3 CODE REFERENCES - Calculations per AI SC 3MI0, IBC 2012, ASCE 7-10 Load Combination Set; ASCE 7-10 Matedii'lOmperties. 7-- Anaiysis Method: Allowable Strength Design Fy -Steel Yield: 46.0 ksi Beam Bracing: Beam is Fully (Braced against lateral -torsional Wdftg E. Modulus : 29.000.06 Sending MIS Major Axis Bending Load Combination ASCE .7-10 Sp"- 122W A Applied Loads 0.020 in Ratio = Beam self weight calculated and added to loadinq 0.000 in Ratio � Loads on all spans.., 0.040 in Ratio = Uniform Load on ALL spans, D = 0.1960, Lr z 0.2350 k/11 DESIGN SUMMARY Vaws Maximum Bending Stress Ratio = 0.084:1 Section used for this span HSS12x4xII2 Ma: Applied 9,001 k -ft Mn / Omega , Allowable 107.196 k -ft Load Combination +()+Lr+H Location of maximum on span 6.125ft Span # where maximum occurs Span Maximum Deflection Cb Rm 11"12PIX14 Service loads entered, Load Factors will be applied for calculations. Maximum Shear Stress Ratio Section used for this span Va: Applied Vn/Omega :Allowable Load Combination Location of maximum on span Span # where maximum occurs Max Downward Transient Deflection 0.020 in Ratio = Max Upward Transient Deflection 0.000 in Ratio � Max Downward Total Deflection 0.040 in Ratio = Max Upward Total Deflection 0.000 in Ratio = 7,484 0 <360 3665 0 <180 •FMRT.Iej� 0.018: 1 HSS12x4xI/2 2.939 k 162.999 k +D+Lr+H H00 ft Span # I Maximum Forces & Stresses for Load Combinations . .... . Summary of Shear Vaws hoax Stress RatiosMa SWWWry of Moment vajues -Vn Lone � M v Wax + mmax. Max Cb Rm Va Max Segment Length Span 9 +.D+H 0043 0.W9 4,59 4.59 179,02 107,20 1.00 1.00 1,50 272.21 163,00 Nan Lz !225ft 1 10+L -H Dsgn, L T 12,25 ft 1 0.043 0.009 4.59 4.59 179.02 107,20 1.00 1.00 1.50 272.21 16300 +D-Lr+H 1 0084 0.018 9.00 900 17902 10710 1,00 1,00 2.94 272.21 16300 Dsg,n L = 12,25 ft ,().S.H 0,043 0009 4.59 4-59 17H2 107,20 1,00 1.00 1.50 272,21 163,00 Dsgn L - 12,25ft 1 �D -0 7 50LI -0 7 501, -H 00 0 * 0 7.� 0 6 0 cA 179,02 10720 100 100 158 272,21 163.00 Dsgn L = 12 25 ft 1 0,074 0.016: 09 . -D-0,7501-(1 505-H 0043 • 0 00q- *•• iJ ;,59.• 179,02 107.20 100 1-00 150 272.21 16300 Ds'gn L - 2 25!1 -0-0 6ON-H 0,043 0.009 4.59 459 17902 107.20 100 1.00 150 272,21 16300 r��-n L = 12 25 ft *18'9.02 -0+0,70E-H 004-14 - • 4.59 •• 10T20 1.00 100 i,5�3 272,21 163 00 Csgn L = Q 25 N 0 -[�-o 75OLr�O 750L -345,0'N -+i 6 0 0 • e,*7q 01 10720 1 272 21 161,100 sw 12 25 rl 0 0 G. .-D' 5,IL 40 75OS-0 -1501' -H 4 4.59 !7902 107 X 100 1 W 5i7 2, 2 21 163 00 1'. 25 0043 v -G 5250E 12258 t 0 043 see 0009 : 050 15Q •0 0 0 i 59 17902 107 20 1 00 100 1 212 21 1163 00 00 Go* 0 0: 00 00 00 . You, w dwige this sea STEEL BEAM SUPPORT-GACEBOCOND 3 /u%meMLerpm' Span w w_ V , bk26 O�6 �7 3J0 n8�/ %n� 1.00 1,00 ON 272.21�1uu max. W Location in Span 6,160 Vak*s in KIPS 40*0.75OLr+OY50L*H 2.579 Z579 +D470E+H 1,500 1.500 +0-0.75OU+Ol5OL-0A50VV4H 2.579 2,579 +".750L+0.75OS40A50W+H 1,5w 1'500 +D+0,750L+0.75OS40.5250E+H 1.500 40.6W460W+0.60H 0.900 +0.60D+0JOE40.6DH 0.9m 0.900 1) Ofl� 1,500 1500 Lr Onl� 1.439 1.439 LOnly 8[mly W On� EOoh x0"� ° °= °°° °° °°°°° ° ° =° ° °° ° °° °° °°°° ° °° ° ° ° ° ° ° ° °° ° ° °~ ° ° ° ° ° ° ° ° ° ° ° = °°°° °°°° °° ° ° ° ° ° 'Title EPOCk, Line I Engineer' 10: You can dtange "*6a Fiojact Desicr angthe *~ meou item and then U$ft We'Plinfing & TWA 01-4,- -1-41- Calculations per AISC 360-10, IBC 2012, ASCE 7-10 Load Combination Set: ASCE 7-10 -Material Properties Fy - Steel yield: Analysis Method: Allowable Strength Design E; Modulus: 29,OW-O ksi Beam Bracing: Beam is Fully Braced against laterakorsionai buckling &6nding Axis: Major Axis Betiding Load combination ASCE 7-10 V V01 2M T v Service toads entered. Load Factors will be applied for calculations. Applied Loads Beam self weight calculated and added to loading Loads on all spans... Uniform Load on ALL spans, W = 1.20 k/ft DESIGN SUMMARY., 0.136: 1 Maximum Shear Stress Ratio 0.029 :1 Maximum Bending Stress Ratio HSS12x4xl/2 Section used for this span HSS12x4x112 Section used for this span 14�611 k -ft Va : Applied 4,740 k Ma: Applied Mn / omega : Allowable 107.196 k -ft W/Ornega. Allowable 162,999 k Load combination +046OW-H Load Combination Location of maximum on span O -0.60W4+1 0.000 ft Location of maximum on span 6.165ft Span # 1 Span # wtwe . maximum occurs Span 0 1 Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection 0.103 in Ratio = 1,437 Max Upward Transient Deflection 0,000 in Ratio = 0 <360 Max Downward Total Deflection 0.066 in Ratio = 0,000 in Ratio = 2243 0 <180 Max Upward Total Deflection Maximum Forces & Stresses for Load Combinations turnary of Shear values Load CorriWaWn Sum Ratios Summa G Ma Max Mn��a Cb F6 va NW- Vnx--VnYJOmega Segment Length Span N M v mmax + mm" - 0.009 0,002 0,93 0�93 179,02 107.20 1,00 1,00 0.30 272,21 163.00 Dsgn, L - 12.33't 1 +04t+H 0,93 0.93 17 9.02 10720 1.00 1,00 030 27221 163.00 Dsgn. L 12.33 ft O.Wg +D+4 -H179.02 0002 0.93 107,20 1 Z 100 030 2' 72 21 16300 -r Dsgn. L 12 33 fl 0009 -D+S*,4 0002 0.93 17 9,02 107,20 1Z 1.00 030 27221, 00 Dsgn L 12.33 ft 0.009 -0+0 , 75OU40 75OL-H 0,002* .. 179.02 107,20 100 1,00 o �10 - 27221 16300 Dsqn L = 12.3311 1 0009 -D-0 75OL475()Si4H-091- 0,002' . 0 17902 10710 100 1,00 0,30 272 21 3 Dsgn. L = 12,33 f! O.Wq +D-0 60w -H 0.002" 14.61 179.02 107,20 100 1,00 4 74 27221 '163 W Dsgn, L 12,33 ft 0.136 -04 l0 7CE -H 0,02,9 14 61 000 0 * * �9,02 10720 1.00 100 0,30 21-12 21 6 C4) L 12,33 ft 0 D09 091 272 21 163 +D-0 7 n; r+; 750L -4) 450 W -+4 ! 179 02 !07210 100 100 DW 112 33 ft 1 01,19 Hy '503,0 450W44 0 J!,• 1119 1-�9 02 v1-7 200 100 100 'k - 2112 21 i-. C-Sgi.l L 12 33 1 0 1�04 75C;L -0 75�S-O 52%E-44 2 33 ft 1 1009 00211... 0002 0 9. : 17902 1,07 20 100 100 27,221 15, 3 DIIQ 0 -3 &OD .0 60W +0 60H 0** 000 T#IegoCkik.el You can chane tft area using the `SettiWmettu iters aKd#ten usuv ttte'-Nnong & ��;. M:::d.• etileurtinn Project 7riie:, Eng' De ROW [pct: Load Canbana�+ar Max S"m Ratios Summary 01 Moment V $iATW11aly ut Shear Valdes $agmant St it 1�J+� Mrria�c + Mma�c Ma MM f uc MnxlQmega CD RM Va Max Vnx VAXOrM8 `arra nn + m A m d 92 27221 163.00 +0.606+0.7OE-460H 1 0.005 0.001 0.56 0.56 179.02 107.20 1.00 1.00 O.tB 272.21 163.00 Nn. L • 12:33 ft >A - `oVersfl�Ntaximum Deflections .. _ . «w —• Span Mai-Dd location in Spaa Load CiHs�inatbn peQ` Loudon n Sean _M Load Wobbabon ._ ._ +y"qty 1 0.1029 6 2eQ Yetiical .Reactldns Support natation Far left is Al yskras haps Load Combination Support 1 Support 2 Overaia hekimum 0.181 0.181 +D+H 0.301 0:301 40 L -H 0.301 0.301 +O++,r+H 0.301 0.301 ;D*S+H o.301 0.301 +0+0150Lr475OL++i 0101 0.301 +0+0.750L•0.750S+H 0.301 0.301 +D+0,6OW++i 4,740 4.740 +0+0.70E•+4 0,301 0.301 +D+0,75OLr+O,750L+0.450VV++1 3.630 1630 *0•0,750L+0.15OS+0.450w+H 3.630 3.630 *040.750L*0,750S+0.5250E+H 0.301 0.301 40.600+0.60W+0.60+t 4.619 4.619 +0.60047OE-0.60+1 0.181 0,181 0 Onty 0.301 0.301 Lr Onty L Onty S Onty w Onty 7.398 7.398 E Oni H Only .. ••. • • . • • •. .• • • • • ••. .. • . • . . . . . . . . • . • . . • •. . . . .. .. . . • •• .• ••• . • . ••. • . lid wWw.htkLus Profis Anchor 2.4.9 Ciamparsy: Page: 1 Proled: Addiessv' sa.�-PrcjeGt t t?is No.. Phone I Fax { filets. 8ti112018 &Ma t SpecHtees comments, 1 Input data Anchor type'and diameter, Effective embedment depth: Material: Proof: Stand-off installation: Anchor plate: Profile. Base material: Reinforcement;, Seismic loads (cat.. C: 6, E,, or F) Geometry On.) &loading Iib, in.1b) AWS 01.1 GR 8 314 N, - 4:724 in. design method ACI 318-38 t CIP ee 0.000 In (no stand -oft); t x 0.500 in. 1, x t, x t - 18:000 In, x 8.000 in. x 0,500 In.; (Recommended plate ttddMSS: not calculated) Rectangular HSS (AISC), (t. x W x T) - 12,000 in. x 4.000 in. x 0.250 in. cracked concrete, 2500. f,* s 2500 psi; h a 8,000 In. tension: edition A, shear: edition A: anchor r+emforoement: tension, shear edge reinforcement none or <No. 4, bar no ;Z X .r),. data w ' revxs rx.s Ce .i4Kr @d X sy »:• ea' .,'4 W s,v ',x'.., e Si't7 ^ar Na✓s2 s'Y _.__�� �rCh. is :..w ar t c i ?QCJ .00a r[.ri< AG . 3..c'A ° CrAA" -.-�^. s a dui w- gGDawme 4 Ali i"V i • • • • • • • • • • • • •• •• • • • •• •• ••• • • • ••• • • 't I X .r),. data w ' revxs rx.s Ce .i4Kr @d X sy »:• ea' .,'4 W s,v ',x'.., e Si't7 ^ar Na✓s2 s'Y _.__�� �rCh. is :..w ar t c i ?QCJ .00a r[.ri< AG . 3..c'A ° CrAA" -.-�^. s a dui w- gGDawme 4 Ali i"V i • • • • • • • • • • • • •• •• • • • •• •• ••• • • • ••• • • 1—NOW I I =-a Ind I wWWAtidt.us Profis Anchor 2.4.9 NOT. 2 Project: Address; Sub-Projed i Pos. No.: Phot)i t Fax; 1 Date: 8/1112016 E -Mai 2 Proof i Utilization (Governing Cases) Design values Etbj Utltizatjon Loadfrig Proof Load Gipactty f lXj status Shear Steel -Strength 3985 18674 -122 OK Loading. UUttzat3on_,v M-1 Status m n tension and s ar s ' 3 Warnings • Please consider all details and hintstwamings given in the detailed report! Fastening meets the design criteria! 4 Remarks-, Your Cooperation Duties • Airy and all information and data contained in the Software concern sotety the use of Hit products and are based on the principles, form las and security regulations in accordance with HitWs technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use -specific tests are to be conducted prior to using the relevant Hidti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moredver. you bear sole responsibility for having the results of Use catculation cherf and hared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility, The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors. the correctness and the relevance of the results or suitability for a specific application, • You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. to particular, you must arrange for the regular backup of programs and data and. It applicable. carry out the updates of the Software offered by Hitti on a regular basis if you do not use the AutoUpxdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilt! Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or programs, arising from a culpable breach of duty by you, •• ••• • • • • • •• • •• • • • • ••• •• •• ••• •• • • • •• • • • • • • • • • • • •• • • • • • • • • ?,A KWh dw res•A S Ce clvcpec Qx 8; L—* a a S 3 WE's w7 t:x ,'%.k.5ebe P, T -- �RJr'f5 A.�usx 9 c ! 20�3TJ69 iah� aG • �� � • • • • • • • • • • • • • • • • • •• •• • • • •• •• 000 • • • ••• • • STB -3 STEEL. BEAM DESIGN FOR WIND LOADS Span =17.75' LOADS SPAN 1 Wind= 88•(I.5)=1.66 = 219.12 ptf ME Pr*ct,T1de:; rp BkA Line i Engineer Psdec ID You can change this area Pry Ddsw. using 9)6 *Settings*, menu iter and ihen using the Ainting & ,WbtREFER&CES Calculations per AISC 360-10, IBC 2012, ASCE 7-10 Load Combination Set: ASCE 7-10 Analysis Method: Allowable Strength Design Fy: Steel Yield: Beam Bracing,: Beam is, Fully Braced against 6teral -torsional buckling E: Modulus: Bending Axis: Minor Axis Bending Load combination ASCE 7-10 __Applied led Loads - 1-1-- 0.574 in Ratio = Beam W. weight calculated and added to loeing Loads on all spans.., UniformLoad on ALL sparls: W = 02190 k/ft DESIGN SUMMARY Max Upward Transient Deflection Maximum Bending Stress Ratio = 0.169: 1 Section used for this span HSS10x4x112 Ma: Applied 6.831 k -ft Mn I Omega ; Allowable 40.399 k -ft Load Combination +0-0,60W+H Location of maximum on span 8,875ft Span # where maximum occurs Span # 1 46.0 ksi 29,000.0 W Service loads entered, Load FaLtors will be applied for calculations. Maximum Shear Stress Ratio = Section used for this span Va: Applied vniomega: Allowable Load Combination Location of maximum on span Span # where maximum occurs . '-6.038 HSS1100012 1.539 k 40,039 k +040.60W -H 0.000 ft Span # 1 Maximum Deflection Max Downward Transient Deflection 0.574 in Ratio = 370 Max Upward Transient Deflection 0:000 in Ratio= 0 <360 Max Downward Total Deflection 0.455 in Ratio = 468 Max Upward Total Deflection 0.000 in Ratio= 0 <180 Maximum Forces& Stresses for Load Combinations Summary of Shear values toad - ----- S'um"ryo momentva - hies —­—­�W� t��i a Cb Rm va Max Vny VnylOiTtega Segment Length Span # M v htnax + Mmax - ma tviax -D-4- 0.041 0009 1.66 1,66 67,47 40,40 1,00 t00 0.37 66,87 40,04 Csgn L z 171' , ft 1 -0-t-H1 0kD9 1.66 1,66 67,47 4040 1,00 .00 037 6687 40.04 Dsgn L= -0-Lt-H 0,041 1,66 67.47 4040 1,00 100 0,37 66.87 40.04 0sqn. L z 17.75 ft. 1 0,041 0.009 1.66 -O�S-H1,00 0.009 1.66 1�66 6T47 40,40 1,00 0.37 66-87 40.04 Dsgn� L z 17,75 ft +0-0.75OU-035OL-H0 0.041 0 0 1.66 67,47 40,40 1,00 1.00 037 66,87 40N Dsqn,L= 17.751t0.041 o. .0* 750L -O 750S4i 0M •••000 V�60 00 : 166 67,47 40,110 1-00 1 N 037 6687 4004 [)$gn L z 17 75h ' 0041:. 0 0 -0-060'.7-H 0 000 0038 6.83 6,83 6747 4040 1.00 1,00 1.54 66.87 4004 17 15 ft 1 70E -H 0169 W9 00 •:0 0 00 •1,66 6747 4040 1 100 100 - 03 7 6687 40 D4 r,ks,jn L = 17 75 �t 7 5W-3 75OL-0 4' K'N-H 01 0AI 0 0 • 0 0 0 . .0 00 0 0 0 • 0 0 o 0 : 00-554 67,4t 4040 100 100 125 6687 4C, (�4 Dvin L 17 75'! 0 , 9- 0 � to o 0 5 *A 0 oo 00 05.54554 6747 4040 100 100 125 9, s 87 400-1 01-,n L .7 75 t -0 7 50 k 5150E 17 75 0. 13� C," 00 0 0 000 00 0 0 0 166 0 67.47 4040 1,00 100 0,37 6C�, E, 7 4004 �Joo -o 60v; -Pi 00 0 0 00 0 o • 00 0 T.Oie Block Line 4 Project 'Title . You can change this area Engineer,, a using the "Settings' merul item PrcqDescr . am then usirng thi TrintIN & TM. Moi 61 eatarCrA Load Combatafio�t 'Max Stress Ratios, Summary o4 Momma# Valm 4 Simtniaty of Shear Vakm t Span # Seg—f06-1 M _ V W= + Ww - _. Ma Max 1+h MrtrJ ;-Cor Rm Va Max Vnz vnKoft e a Dsgn. �. = 17.75 It , �� ­ 1"'0,153 _ 0.035 .il w...6.77 67:47<0.40 M00 1.00 139-6687 40.04 -0.60D+0.70t:+0:60H Qsgn L = 17,75 ft 1 025 0.006 0.99 ' 0.99 67.47 40.40 00 1.00 0.22 66.$7 X0.04 Overall_Mlaximum NO' tions _ _ Load Carnba+a Span Mat".* Deft Location in Spit Load Combination Max '+ 0ek1. LocaSon in Span _ W of* ._,._:„..�__..�.,,....._, i15T44....-..._.__e g.g26' Vertical Reactions Support notation: Far left is 01 Varves in KIPS Load Combination Support 1 Support 2 0%ran MINimum 0.224 0:224 .O+H 0.373 0.373 +.O+L+H 0.373 4:373 +O-Lr+H 0.373 0:373 +O+S+H 0.373 0.373 +0+0,750Lr+0.750L+Fi 0.373 0.373 +0+0.750L+0.750S+:i 0,373 0.31`3 +0+0.60W4H 1.539 1.539` +0.0.70E+H 0:373 0,373 +" 750Lr+0.750L+0.450W1+H 1,248 1.248 +0+0,750L+0.750S+0.450W+H 1.248 1.248 +0+0.750L+0.150S+0.52WE:+H 0.373 0.373 +0.600+0,60W+0,601 -t 1.390 1.390 +0.600+0,70E+0.60H 0.224 0.224 0 Only 11.373 0,373 Lr 0* L Only S Ona W 0" 1.944 1.944 E Omny H Ony Goo 0 0 o 40 0 CONCRETE SLAB DESIGN Span =,12' LOADS Floor'DL= 8 150.(1) = 100 plf 12 Floor DL = 25,(1) = 25 pIf Floor LL= l00•(I ) = 100. ;pif TOTAL DL = 100 + 25 = 125 pif TOTAL LL= 100=100 pif roe Btodt tine 1 • Pit j t'Title. YOU --M dWW this area �N�7n;;Prosect osect 10: using the "Settings' menu iters and `then -using the'Printing & •CODE REFERENCES Caieutations per ACI 318-11, IBC•2012; ASCE 7-10 Load Combination Set ASCE 7-10 Mateiriai Properties to _ 3.0 ksl Phi Values Flexure: 0•:90 an fr = fc ' 7.50 = 410.792 psi Shear 0.750 i 4r Density = 145.0 pcf 11 t - 0:850 LtWt Factor - 1.0 Mn ` Phi: Allowable 6.551 k -ft Elastic Modulus = 3,122.0 ksi Fy - Stirrups 40.0 ksi p. fy, •Main Rebar = 60.0 ksi E - Stirrups = 29,000.0 ksi Stirrup $ Size ft = # 3 E - Main Rebar = 29,000.0 ksi Number of Resisting Legs Per Stirrup = 2 Load Combination ASCE 7-10 12`wx8'R spww 12,0 R Cross Section & Reinforcing Details Rectangular Section, Width = 12-0 in, Height = 8,0 in Span 91 Reinforcing.... 145 at 3,0 in from Bottom, from 0.0 to 12,0 ft In this span Service loads entered. Load Factors will be applied for calculations. Applied Loads Loadson all spans... 4935 D=01250, L=0.10 0 <360 Unifo m Load on ALL spans : D = 0. 1250, L = 0,10 kttl DESIGN SUMMARY 999<180 Maximum Bending Stress Ratio = 0.852; 1 Section used for this span Typical Section Mu . Applied 5.580 k -ft Mn ` Phi: Allowable 6.551 k -ft Load Corm nation +1.20D-0.5OLr+1.60L+1,60H Location of rnaxi�rm on span 6 ft Span 9 where rnaxirne}rn occurs 0 1 Span « 1 Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection tlesi n t}K. 0,029 in Ratio= 4935 0.000 in Ratio = 0 <360 0.066 in Ratio = 2193 0.000 in Ratio = 999<180 Cross Section Strength &Inertia Top b Bottom referensss are for tension side of section _. .. _ _ Max ti f k ft } Pht`Mn ( k -h Moment of Inertia (1n"4 ) Cress Section Oar Layout t5escnptkan section 1 t. * @ d -5 - Vertical Reactions Load Corvbmaeon .erall 1v , imulm 7rera'I NiNtmum -0, -L -11 ♦civ s� -0 «0 7'0Lr-0.7SOL,H �•.n7;01 ;�«y f.ONt-ri . • • • • • �o«am Top Bottom Top I gross fu • 801,0M icr -Fop • • • • . • • i i • • • •" 000 0.00 5.55 ... 0.00 512.00 48.21 1552 • • • • • • • � � : �uptat notation ,Far felt is # 1 • • • � i • • • suopo't 1 Support 2 35O 1 3500 • • • 04��• •x•0+50••• ••� i• i i C, W, • • 0 r _f0••• i • • • ' • • •• • t , • • •1 35101 • • • • • 0 5`• 0750 u "5O 'S0 • •-200 • • • ••� • 12N ••• i4� • X200 � ••• • � � 0;50 i ��•i i i • �•••i Title titoClt Une t. Ned:. H16: You cavi change this area fnglneer• w using the "$ett nW mgnu item and.then using the`PdnOrrg_& Su000rt n6l . F0 idt 1S 01 *40 • • • .. • .•: • , .:: ; ;• :.. •{•. 00 0 •0-0,7WU+0.750L40,45OW-H 1.200 1200 +D+0,75M+0.7505+0AWW+H 1,200 1;200 4)+0,75OL+0.750S40.5250E+H 1.200 1200 4600+0.60W460H 0,450 0.450 +0.60D+0.70E460H 0.450 0.450 Dong 0,750 0.,750, Lr Ong L 01* 0.600 0:600 S Ony W or* E Onty H Ong Shear Stirrup RdOlremerits . Entire Wrn Span Length: Vu >.PhNc, Rema Vs = Vs > Vs max per 1 i AT9, use stlnups spaced at 0.000 in Maximum Farces &•Wessas for Load CombinadonsY load'Gom�na1W-n-- - - gending'SUMResutls���� Segment Length Span loca5on (ftj in sw mu; Max. phy y ..�.-_.....,...._._,�.,,....�.... S#ress Ratio ts1A:Xmum9ENOiNGEnr� Span# 1 1 12.000 5.56 6.55 045 +1,40D -1,60H Spm d 1 1 12.000 3.15 6.55 0,48 +120D+0.5OLr+4.601.+1,60H 5.58 6.55 0.85 Span # 1 1 12,006 +1.200+1.60L+0,50S+1.60H 12.000 5.58 6.55 0:85 Span z 1 1 +1.2OD+1,6ftr-0>501+1 SOH 3.60 6.55 0.55 Span # 1 1 12.000 +1,200+1.a{�.U-45W+1.60H 1 12,000 2,70 6.55 4A1 Span# 1 +1.200+0.501+160S+l MH, 12.000 3,60 6.55 0.55 Span 4 1 1 +1.20D+1.60S+0.50W+1.60H 12.000 270 6.55 0.41 Span # 1 1 +1.20D+0.SOU+0.50L+W+1.60H 1 12.000 3.60 6.55 0.55 Span # 1 +1, 20D+0.5OL+0.50S+VP-1.60H 12.000 3.60 6.55 0.55 Span # 1 1 +1.200.0.501+0 20S+E+1.60H 1 12.000 160 6.55 0.55 Span # 1 -490D+W+0.9OH Span e 1 1 12.000 2.02 6.55 0.31 +0 900+£+0,90H Span # 1 1 12.000 2.02 6.55 031 *40 • • • .. • .•: • , .:: ; ;• :.. •{•. 00 0 STEEL COLUMN DESIGN WORST GOND W4 LOADS STB -2 DL = 2.11 K LL = 209 K STB -2 DL = 1.05 K LL = (3.96 K STB -1 DL =0.70 K LL =.0.82 K TOTAL OL = 2.11 + 1.05 + 'VO = 3.86 TOTAL LL= 209 + 0.96 + 0.82 = 3.87 .. ... . . . . . .. •. .:. 40 • • T#10 aba Line I You can change this area usin 'Settings" menu item, Description STEEL COLUMN Ned Tik, Desw- 6de References MaximyM Axial -#- Caldulatiorisper AISC 360-10, IBC 2012. CBC 20 7-10 Maximum �hear Ra Load Combinations Used: ASCE 7-10 oad ss Ratio Status Location Steel Section Name: HSS6x6xl/4 Analysis Method: Allowable Strength 0�erell Column Height 13.0 it Top & Boftom Fb* Top & Bofforn Pinned Steel Stress Grade Brace cordtion for deflection oWing) along columns: Fy - Steel Yield 36.0 ksi X4X (width) axis: E : Elastic Bending Modulus 2§,000.0 ksi "°" +o~w Load Combination: ASCE 7-10 PASS Y-Uyng"Pw'h�L'6'%jstf for Y -Y Axis bud* = 13 fL K - 1 .0 Service loads entered. Load Factors vvill be appitec for catculatfons, Column self weight Included, 247.260 lbs - Dead Load Oactor +D -L -H OO89 AXIAL LOADS. O�0k Axial Load 6\130it, D=3,8bV LM=3,870k PASS 8,00h 'DESIGN SUMMARY ' O�4� PASS Sending & Shear Check Results PASS Max. Axial-liending Stress Ratio 0.68924 1 maximum SEWdE Load Aeactions - PASS ''~- � ODOh - ' 0,0 k Location of max,above base 0.0 ft Bottom along X -X 0.0 k' At maximum 10Ca!JiW values ate... 00]O O' TOP a" Y -Y 0.0 k Pa: Axial 7.917 k Boom along Y -Y PASS OO�O ' D0Oh �oou OODO . in at O.Oft above base wn.x/Cmvgm:8muwa� � wuf: Applied un-y/Omega: AlloxmWe PASS Maximum Shear Stress Ratio= Load Cornbination uuxionmxmxooveuum At maximum bmmmv3mMare ... vu:»pplied Load Combination Results 01� ~~~ �12O�� �k4t ~—--`' 20.120k -ft Along X -X 040inat for load con-briation: 0,011 above base NO MaximyM Axial -#- Maximum �hear Ra oad ss Ratio Status Location StressRabo --= - - - O(�G PASS 0.00 ft uuu 0.000� r^cS "°" +o~w 0l48 PASS 0-00ItOlK%} PASS 0.00 ft +D -L -H OO89 PASS O�0k �I%D0 PASS 8,00h ^B^U~* ' O�4� PASS n88k --'' U�UO ' PASS ''~- � ODOh - ' -D-S-H ~O°UJ5UL�0/5OL~H � 0��78 p�SS O�8UM 00]O O' PASS PASS 080 h � 0.00 it ~D.�7��^�7�G~H � U04� � PASS OO�O ' D0Oh �oou OODO PASS 0.00 it +D~BG0VV^N O046 � 0,046 PASS °4AS%° � -O 0,000 PASS OO0 h 40-0.70E~H ~087501-/�O7881-0453w4H 0.078 PASS° ° °-0 OO00 0000 P�8G PASS 0'0O ft O.UU it -^O750L~7150S~O:5OW~H 0.046 °PAS ° °q'uf O�""" -.-- .| -0~075OL~0750S-85250E~H 0046 PASV �.00 0OOk 0000 ''~` p*»u ouun -O50D~O{��^Q�68H O828 � O�028° PASS ���G 0.00k 0000 PASS 0.00 ft ~8,6OD-O.TOE^O6GH ° Maximum Deflections for Load �umUiuot|ono — -- -- ua,'xxQe�c�0°° ~ ��m� ° �m�,�[�0��� ° ° ° u�mnw LonoComW,qm,n V0TA in 0 W 0O0 NT n�� n umm in V00* x omm in n0s x NO Title iatoc)'Une i pmiect la You can change this area Engineer. using the Settings` enu'item Pro}esft Descr. and then using.the'Printing & Vtxg _ 0,000 in .. ... . . . . . .. . .. . . . . ... . .. ... .. . . . .. . . . . . . . . . . . . . . . . . .. . . .. . . . . . . . . . . . .. Goo 000 Goo 000 ... . . . . ... . . . . . . . . . . . . . .. .. . . . .. .. ... . . . ... . . x,0000 In 0.000 ft O.00O in a.0oo 4040. 750Lr40.750L.H 010000 in 0.000 ft 0.000 in 0.000 0000 tt ft +D40.75OL40.750S+H 0.04aa in 0.000 K 0.000 0.000 In in 0.000 ft +".60W+H 0,0000 0.0000 in in 0.000 0.000 ft ft 0.000. In O,OOU ft 4 )40.70E+H +"j5 0.0000 in 0.000 R 0.000 to 0,000 ft .r{aJ50L+0.450W+H .D40,75OL40,75OS40-450W+H 0.0000 in 0.000 ft 0,000 In 0.000 0.000 (t ft +046,7501.+0.75OS+0.5250E-H 0.0000 in 0.000 ft 0.000 0.000 In in 0.000 ft 40.60D40.6OW40.60H 0,0000 in 0.000 oboo ft ft 0.000 in 0.000 ft +0.600+0.70E46011 0.0000 OA000 in in 0.000 ft0.000 in 0:000 It D Only uCmiy 0.0000 in 0.000 fl 0.000 01040 h L Only 0.0000 in 0.000 ft 0.000 in 0:000 ft ft S of* 0.0000 in Hoo ft 0.000 0.004 in In 0.000 0.000 ft w Only 0.0000 0.0000 in in 0.000 0.000 ft ft 0.000 in 0.060 ft E Only H Only 4.00d0 in 0,000 ft 0.000 in 0.000 ft. Steef$S ction Properties . HSS6x6xit4 Deth fi.000 in ! xtc 28.60 W4p Sxx = 9.54 W3 Width 6.000 in R xx = 2,340 in Wag Thick - 0.250 in & 11.200 W3 D 15 400 in"3 Area - 5240 in -2 i yy - 28.600 104 Weight 19 020 Of S yy - 9.540 inl,3 R yy _ 2.340 in Vtxg _ 0,000 in .. ... . . . . . .. . .. . . . . ... . .. ... .. . . . .. . . . . . . . . . . . . . . . . . .. . . .. . . . . . . . . . . . .. Goo 000 Goo 000 ... . . . . ... . . . . . . . . . . . . . .. .. . . . .. .. ... . . . ... . . 604A CONCRETE BEAM DESIGN LOADS 1 Span =6+6.42'+5.83'+•3` Roof DL = 25•(11.7 + 2)= 195.8' plf Roof LL = 30 11.7 + 2 = 235.05 pif Wali DL= 55.16 = 880 plf Floor DL = ±. f11.67l _ 583.5 pif 12 2 Floor bL = 2$.11.67) = 145.875 pif 2 JI Floor LL= 100. 17.67 = 583.5 pif r TOTAL DL = 196 + 880 + 584 + 146 = 1.806 x 103 plf TOTALLL= 235+ 583 =818 pif LOADS 2 Wall DL= 55.9 = 495 pif Floor DL = 8 .150.(11.67'] = 583.5 pif 12 , IjI Floor DL = 2411 = 145.875 pif Floor LL= 100• ( 11.67 _ 583.5 plf TOTAL DL = 495 + 584 + 146 = 1.225 x 103 pif TOTAL LL= 583 = 583 pif .. ... . . . . . .. . .. . . . . ... . .. ... .. . . . .. . . . . . . . . . . . . . . . . . .. . . .. . . . . . . . . . . . .. 000 000 000 000 Tits ilk Line 1 Project Title: Yoti can change this area Engineer: Prot 10 using the "Settings' menu item Psolect Gest r and then using the `Printing & This, ALrrt' tal0kro XtM • Maximum Sending Stress Ratio Calculations; parr AGI 318-11 ISC 20.12..ASCE 7710 Section used for this span Load Combination Set: ASGE7-101 Mu Applied 13.561 f -fit. Matr3rfal Pro erties _ 84;97 k -jt -�M..��,. rc _ 3.0 ksi .Ptd Values Flexure 0:90 st)an whet_ maxtr?um occurs fr. = f"c' ` 7.60 = 410.7920 Shear : 0.750 ' • y Density = 145.0 pal 01 - 0.850 X LIMt factor - 1.0 Elastic Modulus = 3,122:0.IW Fy - Stirrups 60.0 ksi f' fy - Main Rebar = 60.0 ksi E'- Stirrups = 29,000.0 ksi Stirrup Bar Site # = # 3 E - Main Rebar = 29,000:0 ksi Number of Resisting Legs Per Stirrup = 2 Loci Combination ASCE 7-10 a»b 9r W.2<'A sw*4 0 ft SW -6 420 ft Cross Section S Reinforcing Details -Rectangular Section, Width =12.0 in, Height = 24.0 in Span #1 Reinforcing - 3 -45 at 3,0 in from Bottom, from 0.0 to 6.0 It in this span Span #2 Reinforcing.... 3-45 at 3.0 in from Bottom, from 0.0 to 6.420 ft in this span Span #3 Reinfordng.... 345 at 3.0 in from Bottom, from 0.0 to 6,0 it in this span Span #4 Reinfo►dng..- 345 at 3.0 in from Bottom, from 0.0 to 6.0 it in this span A IieLoad5 PP .� Beam self weight calculated and added to loads Load for Span Number 1 Utiif ml Load ' D =1.80, L = 0.820 0, Tributary Width =1.0 ft Load for Span Number 2 Uniform Load . D = 1.220,. L = 0,580 Mt, Tributary Width = 1.0 It Load for Span Number 3 Uniform Load : D =1.220, L = 0.580 klft, Tributary Width = 1.0 ft Load for Span Number 4 • • • • • Uniform Load , D=1,220, L=0-5800, Tributary Wdth = 1.: h DESIGN SUMMARY • Maximum Sending Stress Ratio = 0.16 • 1 • • • Section used for this span Typical Section Mu Applied 13.561 f -fit. Mn ' Phi: Allowable 84;97 k -jt Load Combination�.H •- • .. 1 xa.' Cn of maximum on span st)an whet_ maxtr?um occurs sp•n' S 930 ft spwn 3.0 it 345 at 3.0 in from Top, from 0.0 to 6.0 ft in this span 3-#5 at 3.0 in from top, from 0.0 to 6.420 it in this span 345 at 3.0 in from Top, from 0.0 to 6.0 ft in this span 1#5 at 3.0 in from Top, from 0.0 to 6.0 It in this span Service loads entered. Load Factors will be applied for calculations. MaximUtn C7eflect�c+n Max Downward Transient Deflection Max Upward Transient Defle lion • %ax Ccrnwar 'Tot ai'Deflectien ••M14axoeijoward ural Iflocteon • • • • • Oesign OK 0.000 in Ratio = 0 <360 0.000 in Ratio = 0 <361) 0.002 in Ratio= 46900 0.000 in Ratio = 999 <i 80 Tti%'Biack Line 1, R*� Prow lid You r5 dtange tts area using ft 'Settings! mertu item aru then using the Tinting Cross Section 8trengtfi & inertia' Top & Boitiom m%mr+ces ate br'Wnsion side of section _ - - -- Wlf uu lk-ftl Pbi'w (k -ft) Mi rrtent of tnerb t InNI 1 Cross Section , Bar Layout Seclioit 11 -,a o5 d Bottom Top SODOM Top 1 gross kx Bottom kx -Top Section 2 3 :k5 d=21'.3 #5 d=3', hdA)Cimum 9ENOING Envebpe__._� . 0.00: 0,00 84.96 84.96: 13.824,00 2,732.46 2.732:46 Section 3 3- #5 @ d=21',3- #5 @ t�3% Span # 3 3 0.40 0.00 8496 84,96 13,824.U0 2,732 46 2,732,46 Section 4 3- #5 @ d=21',3• 95 @ d=3', span't 1 1 0;00 0.00 84.96 84.96 13,824,06 2.732.46 2.732.46 Vertical Reactions Span # 4 4 Support nofatio n . Far ieftis #1 0.13 Load Conbination Support t Support 2 SupW 3 Support 4 Support 5 3 bvaratlAXKnvm __ 6,957_,. f5, "� `"�,3 5 6.000 Span 10 1 {}"ml MINIrnum 1.963 5:075 3.078 3.649 3 Span # 4 404H 4.994 13.040 8.038 9.496 + Swn 4 2 404L+H 6.957 18.115 11.116 13.148 4 +O+Lr+H 4.994 13.040 6,038 9;496 5 630 . 11.n 84.95' +O -S -H 4.994 13.040 8.038 9.496 • •04 • • • • +0+0.750tr+0,750L+H 6.466 16.847 10.346 12.233 6,000 -1002 • 84 9 +040.7501..40150S+H 6.466 16847 10;346 12.233 3 13 40+0.601W+i' f 4.994 13,040 8,036 9.496 3 0 7 .9,46 • . 84 9i • +040.70E -H 4.994 13,040 8.038 9.496 :0+0.750Lr40.750L+0 450W+H 6.466 16.847 10.346 12.233 6 420 .9 19 844 +0+0.750L+0.750S+0.45OW4H 6.466 16,847 10.346 12.233 +0+0.750L40.750S+0.5250E4H 6.466 16,847 10.346 12.233 +0.600+0.W,V40.64N 2.996 7.824 4.823 5.697 46040.70E +0.60H 2.996 7.824 ;4,823 5:697 0 Onty 4.994 13.040 8.038 9.496 Lr Only L Only 1.963 5.075 3.078 3.649 S Only W Only E Only H Only Shear Stirrup Requirements -- Between 0.00 to 5.1$ tl Vu < PhNcf2, Rei dfVs =Not REQ 15.4.6.:1 use sfirrups spaced af. 0,400 in Between 5,24 to 5 94 ft PhiVc/2 < Vu <= PhiVe. RWd Vs = Man 11.4.6.1, use stirrups spaced at 10.000 0 Between 6.00 to 2112 ft. Vu < PhNd2, Req`d Vs = Not Reqd 11.6 8.1, use SWUM spaced at 0.040 in Maximum Forces & Stresses for Load Combinations Segment LeNth Span # hdA)Cimum 9ENOING Envebpe__._� . Span # 1 1 Span # 2 2 Span # 3 3 Span # 4 4 +1400+1.60H 3.000 span't 1 1 Span 4 2 2 Span # 3 3 Span # 4 4 +1.200+0.50Lr+i .60L+1.60 H 0.13 Span # 1 1 Span K 2 2 Span 4 3 3 Span » 4 4 +1 200+160L K7.50S+160H 6.000 Span 10 1 1 Span #2 2 Span 9 3 3 Span # 4 4 •t.2CC.1 i ,-O 50"-41 h- : :0-A.: • Spa r. -=1 + Swn 4 2 4 S✓�%? 6.000 Span 4 4 6420 SP , 2 Spar,tt2 5 630 LocaWn (h) Mu . Suess Ratio a1 Span Ptu`Mnx 6.000 -13.10 64.96 0.15 6.420 •13.96 64.96 0.16 5 830 .11.78 64.96 0.14 3.000 •12.33 84.96 0.15 6.000 •10.06 84.96 0.12 6.420 •10.72 84.96 0.13 5.830 -9.09 84.96 0.11 3.000 •9,51 84,96 0.11 6.000 -13.10 .. ..%96. . 0.15. .. 6420 •13.96 • 84+96. . • .01: . . 5.830 •11.78 �. � •: : :0-A.: • . 3.000 � 12.33 .. . �.96' • • • • . • • . 6.000 -13.10 84.96 015 6420 •13.96. ... 84.E 0,16 5 630 . 11.n 84.95' . .. 14 i• . i i 3 000 12 he • • 8,1.95• • • •04 • • • • 6,000 -1002 • 84 9 V 12 • • 6 420 -10.68 84 Go 3 13 5 elIX •9,04 • • . . 0 11 • *' 3 0 7 .9,46 • . 84 9i • • i • • 6Wo 862 ••. •• • • • N 10.. •' 1 t • •• • 6 420 .9 19 844 ThisBlock line 1 Pr*d Yc,u can change this area EPFciWqinoer Rojo ID� Dow. ushv the'Settings' menu item and On using the 'NoOrg & Tftk--Rlo&"kekdon. Load Corea rOW Segment Length Span* 4 4 +1,200400L+1.60S,+1.60H Span # I I Span # 2 2 Span 0 3 3 Span 0 4 -1,200+t60S450W+1.60H Span 0 1 1 Span # 2 2 Span # 3 3 Span # 4 4 .1 .200 -0,5(9j -06%+W-1 .60H Span # 1 1 Span # 2 2 Span # 3 3 Span 4 4 4 +1,200+0.50L4#0,50S+W+1.60H Span # I I Span # 2 .2 Span # 3 3 Span 4 4 4 +1 200450L40,20S+E+t60H Span # I I Span # 2 2 Span 4 3 3 Span # 4 4 +0.900+W+0,90H Span # I I Span 0 2 2 Span# 3 3 Span M 4 4 +0,900+E -0-90H Span 9 1 1 Span # 2 2 Span 9 3 3 Span # 4 4 0 L ft, COOD 6,42D SIM 3.000 6M0 6,420 SMO 3,000 6.000 6.420 5.830 IODO 6,000 6.420 5.830 3.000 6.000 6.420 5.&v 3.000 6.000 6.420 5.830 3,000 6,000 6A20 5.830 3.000 ,Bending Stress Rmft (k4t) Mu : Max sum Ratio WN 049 A15 84,96 OAO 10M 84,96 0,12 4048 $4,96 0,13 404 64,96 Olil -9.46 84.196 OAI -8,62 84,96 0.10 .9 A9 84,96 0.11 -7.79 $4.96 0.09 -8.15 84,96 0.10 -10M 84,96 0.12 -10.68 84,96 0A3 w9.04 84.96 0.11 -946 84,96 0.11 -10M 84,96 0.112 -10.68 64.96 013 -9.04 84.96 0,11 -9.46 806 0.11 -10.02 84.96 012 -10.68 84.96 0113 -9.04 84.96 0,11 -9.46 84,96 0,11 -6A7 806 0.08 -6,89 84.96 OM -5.84 806 0,07 .6,12 84.96 OW .6A7 84,96 OM -6,89 84,96 0,08 -5,84 806 0,07 -6,12 84.96 0.07 : •: V: GS -1B CONCRETE BEAM DESIGN LOADS Span =9.25'+9.25,+•3, Floor bL 150 583.5 Of 12 Floor DL = 2S`.(11 ? jJJ267) = 145.875 pir Floor LL= wo.(1167 583.5 plf 2 TOTAL DL;- 584 + 146 = 730 plf TOTAL LL= 583 = 583 plf .. ... . . . . . .. 2222...• ,,2222• .. ... .. . . . .. fdle Block Line 1 ftiec t,Title, You can change this area: Engineer: Piroject ID: using the ;Settltrgs' menu item Prit+ct Descr and there using the'Prfriting & Thta MaV selection: CODE REFERENCE`S . Top R Bottom mlerenoes are for tens>on We of section µ 4y Calculations�per ACI 318-'l1; tBC'2012, ASCE 7-10 Seamon used for this span Load Combination Set: ASCE 7;10 Mu Ap;,hed -22.181 k -ft Materia#t:Propertes 84.957 k -ft Load Combination 1Y20LtQ5QLr- 6(i!•0 � ••• • fc _ 3.0 ksi Phi Values Flexure: 0,90 • • •• •• fr = fct ' 7.50` = 410.792 psi Shear : 0.750 • 2,73246 W Density = 145.0 pcf It t - 0.850 % 13,824 M, 2 •32 46 X LtWt Factor = 1.0 0-00 000 84 96 8A,96 Elastic Modulus = 3,122.0 ksi Fy - Stirrups 60.0 ksf c fy - Main Rebar = 60.0 ksi E ` Slinps = 29,000.0 ksi Stirrup Par Size# _ # 3 E - Main Rebar = 29,000.0 ksi Number of Resisting Legs Per Stirrup= 2 Load Combinabon ASCE 7-10 12m t2'wx2�"n 2s^n f _ 1rwz24"++ `_. Cross Section & Reinforcing Details -_.Rectangular Section, Width = 12.0 in, Height = 24,0 in Span #1 Reinforcing.... 345 at 3.0 in from Bottom, from 0.0 to 9.50 It in this span Span #2 Reinforcing.... 345 at 3.0 in from Bottom, from 0.0 to 9.50 it in this spit Span #3 Reinforcing..., 345 at 3.0 in from Bottom, from 0.0 to 6.0 It in this span Applied Loads __.._. Beam self weight calculated and added to loads Loads on all spans... D=0.730, L=0.60 Uniform Load o: ALL spans : D = 0.730, L = 0.60 kfft DESIGN SUMMARY Top R Bottom mlerenoes are for tens>on We of section Maximum Bending Stress Ratio = 0.261:1 Seamon used for this span Typical Section Mu Ap;,hed -22.181 k -ft Mn ' Phi ; Atlowable 84.957 k -ft Load Combination 1Y20LtQ5QLr- 6(i!•0 � ••• • LOCV,rOn of maximum on span • • span r 2: • • Span # where maxirnum occurs • • • •• •• ••• •• Y Cross Section Strength & Inertia 84.96 Cross SeCN)n Seaton 2 Secuen 3 3-#5 at 3.0 in from Top, from 0.0 to 9,50 ft in this span 345 at 3.0 in from Top, from 0.0 to 9.50 P, in this span 345 at 3.0 in from Top, from 0.0 to 6.0 It in this span Service toads entered. Load Factors will be applied for calculations. Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection Bar Layout Ce5+a"'FPx, rj • • • • • • • • • • 3-15 -,(, 3- PS (3"3`, • • • • • i i Y i i i . •• • • . • 3. 1=21- 3• V-5 • 3.45 k�? =21'.3• =5 C=3'. Vertical Reactions Y • .94':. :'',te.uVi`A!4tTU"! •.2.19• • 0.5`;9 i)esign OK 0.001 in Ratio= 95201 0.000 in Ratio= 0 <360 0.003 in Ratio = 35259 0.000 in Ratio = 999 <180 Su R notation F ar Wt is g1 •Y• • • PPo Sujvri 3 : Sumon 4 Y•• 12,3 • Top R Bottom mlerenoes are for tens>on We of section Max Mu (k•6 j Phi*fAn (k -ft) moment at inertia ( in^4 1 Bottorn Top Born Top i grc6s icr • Bottom lcr • Top 0.00 0.00 &1 96 84.96 13,824.040 2.73246 2,73246 ODO 0.00 8A 96 % 13,824 M, 2 •32 46 2.732 46 0-00 000 84 96 8A,96 �.h? '� 2.73246 2.732.46 Su R notation F ar Wt is g1 •Y• • • PPo Sujvri 3 : Sumon 4 Y•• 12,3 • Tt I ft Stock Une 1: You can change this area us" the 'Settings! menu item arid -then using the 'PtintINA, Tille Block' selection, CONCRETE GRADE, BEAM GS -1 8 40+L+H +04U+H *D+S1H *040.750Lr40.750L-+H 4040.750L40.750S+H +04U0W*H +".70E*H 4040,750Lr+0.750L+0,450W+H +0+0.750L+0.750S445-3W+H +D40.750L40.750S-40,5250E+H 40,60040-60W40k0H 4600,40J0E460H D Onk Lf Only L Only -S Onty W Onty E Only H Ont 5.963 180" 11590 3,755 11,388 7.298 3.755 11.388 7.296 5.411 16,412 10617 5411 16.412 10,517 3,755 11.388 7.298 3,755 11,388 7,298 5,411 16.412 10,517 sAll 16,412 10.517 5,411 16,412 10.517 2,253 6.833 4,379 2-253 6833 .4,379 3.755 11.388 7.298 2.209 6.699 4:293 Pr0jW TdW Engineer , Prolect ID: PmiW Descr FM - tWARtAWlWli5W EN�RCALQ IONWXC, I Support notation: Far lett is, #1 $hear Stunt p��uirements - - --------- - - Between 0.00 ii 8.55 ft. Vu ZPQW2, -Re�d VsTQt­R 11,441, UW-St�i-"-7jpjo- �aj 0.000 in Between 8,61 to 9.88 tL PhVrj2,, Vu <= Ptift, Reqd Vs = Min 11*61, use stirrups spa6ed at 10.000 in Between 9,94 to 21.98 It, Vu < PhiVc/2, Req'd Vs = Not Reqd 11.4,6,1, use stamps spaced at 0,000 in Maximum Forces & Stresses for Load Combinations Load Comoina'Ja+Location Bending StreweResins-it) Segment Length Span # (ft) in Span Mu :Max p Stress Ratio 1 9.500 41.38 84,96 0.25 Span # 1 Span 9 2 2 9.500 -2216 84.96 026 Span 9 3 3 3.000 -913 64,96 0,12 +1.400-1.60H Span # 1 1 9.500 13.98 8416 016 Span 9 2 2 9.500 .14,50 $4,96 0,17 Span 0 3 3 3.000 .6.43 64.98 0.08 +1.230-0 50Lr+1ML-1V1'1 1 9,500 -21,38 84.96 0.25 Span 9 1 Span # 2 2 9.500 -22A8 84,96 0.26 Span ft 3 3 3,000 -9,83 84,96 012 -1.200+1,60L +0.50S+l .60H 1 9.500 -21.38 806 0.25 Span # 1 Span # 2 2 9.500 -22.18 84.96 0.26 Span 9 3 3 3.000 -9.83 806 0.12 +1.200+1,60Lr+0.50L+1.60H 1 9.500 .14.92 84.96 0.18 Span N 1 Span # 2 2 9500 -15,48 84.96 0.18 Span i: 3 3 3.000 -686 84.96 0.08 +I.200+1,60Lr40,50W-1.6)H 1 9;5w -11-98 84,496 0.14 Span A 1 Span 2 2 9500 V.9696. 0.15 Span 3 3 3,000 :,5,5 $4, . 00 0 .1.200+0 50L+l 60S+1 60H 'I 1 9500 0 00 •il.4 IS2 : 0 0 0% 0 •0. • 0 0180 * SDan 1 Span : 2 2 9,500 . . 15,48 E 96' 0*19 Span v 3 3 3 OW 6 86 84,96 008 200-I KS --0 50V; 1 9 KOO qi*• e 00*14 * 0 • :�an : 1 Span 2 9• 500 :12,4: •:%5: Scan = 2 , I 'TIJ -55j Span, :t 3 - 66 .1200-0 50Lr--3 9500 92 018 2 - +680• 441 sc'an z 1 1 S'n an P] ,1tle Block Line; Project rd sneer, En You earl change this area � Oesw using the `Seiiiegs' menu item Prot and #tten,Wtng it* 'N ng &. 'title Block' selection. 'title Block Line 6 Concrete, Beam _ KW -06011133 . Description. CONCRETE GRADE BEAN! GB -i B Load Cmg*w6on Location (ft) Bendkt Stress Resales' (k -ft) Segmnt Length Span # in Span W, Max pW%u Sinus Ratio Span # 2 2 9:500 _15:48 .96 0.18 Span M 3 '3 3.000 -6.86 84.96 6,08 +i.2OD40 50t.420S+E+1.60H Span 0 1 1 9.500 •14.92 84.96 0.18 Span.#2 Z 9:500 •15.48 84,96 0.18 -Span# 3 3 3.000 .6,86 84A 0:08 +0.90D+W40-90H Span # i 1 4,500 .819 84.96 0;11 Span # 2 2 9.500 -3:32 84.96 0:11 Span # 3 3 3:000 -1.13 84.96 0.05 .0.+f+0 90H Span 41 1 9.500 -8.99 84.96. 01 Span # 2 2 9.500 9.32 84.96 0.11 Span # 3 3 3.000 .4,13 84.96 0,05 ••• . • .• 000 0*0 000 000 Go* Project ID: AUGM610 beat GS -1C +CONCRETE BEAM7bESIGN LOADS 1 Roof -IDL = 254(2 + 2) =:1373. pif Roof LL= 30,? + 2 16S plf 2 Wall DL= 55.16 = 880 plf. Floor DL .= 8 .150.(3) = 300 plf 12 Floor DL = a 25.(3) = 75 plf Floor LL= 100•(3) ='300 -plf TOTAL DL = 137 + 880 + 300 + 75 = 1.392 x 103 pif TOTAL LL= 165 + 300'= 465 plf LOADS 2 Floor DL = a150-(3)1= 300 plf i? Floor DL = 25-(3) = 75 plf Floor LL= 100.(3) = 300 plf TOTAL DL = 300 + 75 = 375 plf TOTAL LL= 300 = 300 plf .. ... . . . . . .. . .. . . . . ... . • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 0 0 • • • Y • title BlackLine 1. ;Title; � IE} You can chaingie M area En9tlt$er usitrg the `Settings' menu Item ll ` and ttten usfr�j;t?ie'i'riuitln9 & Title 81W setectiat. c4.� t#ili3?ass.+rpi Description CMCRETE GRADE BEAM G8 -1C CODE REFERENCES Maximum Bending Stress Ratio = Calculations per ACI -318-11. IBC 2012; ASCE 7-10 Section used for this span Load Combination Set: ASCE 7-10 Mu Applied -9.036 k -ft Material'propperties 84.957 k -ft N rc _ 3.0 ksl 6 ` phi Values Flexure: 0.90' • : • • • • Section Strength & Inertia 12 fr = rct ' 7.50 = 410:792 psi Shear,: 0.750 • wad Combination Support 1 tV Density = 145.0 pcf 1 - 0,860 Ovemil NAAXimum 5 115 11 5 ••• AW X LtWI Facia 1.0 • • • • ?,eralll.tSttEmum 1 200 315 • 8' Su. � • .•.215 • . . .. Elastic Modulus = 3,122.0 W Fy - Stimrps 60.0 ks •• • w • ..31`s•• •• •• • • fy -Main Rebar = 60.0 ksi E - Stirrups=' 29,000.0 ksi Stirrup Bas Size = # 3 . E Main Rebar = 29,000O Numbersof Resisting Legs per Stirrup = 2 Load Combination ASCE 7-10 sow+ Ioe Cross Section & Reinforcing Details �Rectangular Section,. Width = 12.0 in, Height = 24.0 in Span #1 Reinforcing.... 345 at 3.0 in from Bottom, from 0.0 to 6.420 it in this span Span #2 Reinforcing.... 3-45 at 3.0 in from Bottom, from 0.0 to 6.0 It in this spare __App lied Loads Beam self weight calculated and added to loads Load for Span Number 1 Uniform Load : 0 = 130, L = 0,50 loft, Tributary Width =1.0 ft Load for Span Number 2 Uniform Load: D = 0,40, L = 0.30 klft, Tributary Width =1.0 f1 DESIGN SUMMARY Maximum Bending Stress Ratio = 0.106: 1 Section used for this span Typical Section Mu Applied -9.036 k -ft Mn " Phi ; Allowable 84.957 k -ft Load Combination-1.20D+0.50Lr+1.60L+1.60H Location of max "num on span 0.000 ft • • • •�P� �2 • • Span # where maxirnurn Occurs.00 : • • • • Section Strength & Inertia • Cross . .' SuQccn I ,. sr..x`n spae•a a a 3-95 at 3.0 in from Top, from 0.0 to 6.420 it in tris span 345 at 3.0 in from Top, from 0.0 to 6.0 ft in this span Service bads entered. Load Factors will be applied for calculations. .Design OK Maximum Deflection Ratio = 0 <360 Max Downward Transient Deflection 0.000 in Max upward Transient Deflection 0.000 in Ratio 0 - 999 <t6 Max Downward Total Deflection 0.000 in Max upward Total Deflection 0.000 in Ratio = 999 <180 . . •• . • Too 8 Bottom references are for tension side of sedan • .• • • r.raz fwxu (k -ft) Phj`atn i k.'+ 1 rlbment o! ine, �a Top l gross era - 5ottom !;a . Top 54196 13.82400 32 a, 2,732 46 a4%. .3 82; Oi t.:"_2 ?,732 46 P) Bottom Top 3o"om C,toss Semn Sar LayW Leesc7iQtY-011 • • 0.00 84.% se"C uj t 3- ++5 @ d=21`.3• "�5 @ d-3'. .' •• • '•� : :�• 01 0.00 SA.1-6 Suct)on2 3•w5@d=21`,3.45@d=3', •.: . • • : • • • • far sett is 01 Vertical Reactions__ •• • • . .' SuQccn n0'.4on . wad Combination Support 1 Suptxtrt 2 Support 3 Ovemil NAAXimum 5 115 11 5 ••• AW S 315 ••• • • • • WE) • • • • • ?,eralll.tSttEmum 1 200 315 • 8' Su. � • .•.215 • . . .. • • . . . 5115 • •• • w • ..31`s•• •• •• • • ��*k! •i•tt•� . Top l gross era - 5ottom !;a . Top 54196 13.82400 32 a, 2,732 46 a4%. .3 82; Oi t.:"_2 ?,732 46 P) TiUe ot* tine;1 You can d." this area using the'Setfings' menu item and then using the'ft6rig & Arpjet Title: Engineer; R(je 1rcai "ftectivn>y Support notation: Far left is 01 Load Combs -dw Support S Support 2 Support 3 .$.! 3.915 8.550 1.215 +)+O:75OLt+O.750L+H 4.815 10.800. 1.665 0+0J50L+0,750S+H 4:815 10,800 1.665 +0+0.60W+H 3,915 8.5% 1.215 +0+0.70E+H 1915 8:550 i.215 +D+0.75OLr+0,75OL40.450W+H 4,815 %600 1.665 +0.0.75OL+0.75OS+0,450W+H 4.815 10,800 1.665 •0+0.750L+0350S«0.5250E+H 4;815 10.800 1.665 «0.600+0.60W+0.60H 2.349 5t3O 0.729 +0.6OD+0.70E+O.60H 2.349 5,130 0.729 D Onry 3,915 8,550 1.215 Lr Only L qty 1.200 3.000 0.600 S Only w OAtp E:Or+1y H {3n1y: Shut Stirrup Requir rents n__� Enft Beam Spars Length , Vu < K VC(2, IReQ'd Vs = Nof Read 11.4.6.i, use Stlrrt Spaced at O:(&W Maximum Forces & Stresses tOr toad COn1tlinations --((i- Load Combinali�l Location (l1) BeiGi;J Stress Results k Segment Segmlent length Span in SpanMu : Max phi -Mm Stress Rasa MAXmium BENDING Enver Span # 1 1 6.000 -8.80 84.96 0.10 Span # 2 2 6.000 •9.04 84.96 0.11 +1.40D+1,60H Span # 1 1 6.000 -6.99 84.96 0.08 Span #2 2 6.040 -7.18 84.96 0.08 •1.200+0.501r+1,60.+i.64H Span # 1 1 6,000 -8.80 84.96 0.10 Span # 2 2 6.000 -9.04 84,96 0.11 +1:200+1.60(.450S+1.60H Span # 1 1 6.000 -8.80 64.96 0.10 Span # 2 2 6.000 -9.04 84.96 0.11 +1,200+16OLr+0.50L+1.60H 1 6.000 -6.87 84.96 0.08 Span ti 1 Span # 2 2 6.000 •7:06 84.96 0.08 +i .20D+1.6OLr+O.50W+1,60H 1 6.000 -5,99 84.96 0.07 Span # 1 Span : 2 2 6.000 :6.16 84.E 0.07 +1.200«0.50!-+1.60S+1.60H 1 6.000 -6.87 84.96 0.08 Span f€1 Span # 2 2 6.000 -7.06 84.96 0:08 +1.200.1.60S450W+1RH 1 6.040 -5.99 84.96 007 Span # 1 Span 5 2 2 6.000 -66.16 84.96 0.01 +1.200+4.50Lr «0.50L +W • 1 60H 6.000 -6.87 84.96 0.08 Span 91 1 Span # 2 2 6.000 •7.06 84.96 • • • • • 0.08 t , . 6 +1.200+0.501.0.�OS«1d+�.nON • 6044 • • • • • • . . . •6 87.. . • . . 6j�yC- • 0.08 Span # 1 1 Span K 2 2 600 • • •:71 : 8Z 86: • • . . • .. 0.06 +1 20D-0 5i L-0 2GS +1 6;� 1 . • 6.000 • • • . • •6.87 84.96 008 Span # 1 Span »2 2 6000 •7.06 • 84.90 008 Q9 00.W -0.90H 1 • 6,0t : ••• : -4.4$ • 84.96; • • V.45 Span #1 Span„ 2 2 6w: :. *i.6; • • • • .: : : 96• • • 8 • • 4,05 • 09011 •• 1 6 000 X14 cwt 005 ?. < 62 84 % 0.05 000 0 6000 . • • • • • • • • • • ••• • • • • 0 0 *00 • • CO- Tittle Block L114.1 You can change this area using the'Seftings` menu item and then using the `Printing & Title i31ac!'t' Sele i6n. Description, CONCRETE GRADE BEAMG8-1C E- iAW project Desa:. 'CODE REFEREIttCE" -KK Calculations per ACI _318-11, IBC 2012, ASCE 7-10 A -2;o •. • 5270STP .•. Load Combination Set: ASCE 7-10 �.. ••• • RAateriai fro a ...�... f'C = 3.0 ksi 6 Phi Values Flexure: 0.90 • fr'= fctn ' 7.50 _ 410.792 psi Shear: 0.750 y Density - 145,0 pcf 01 - 0.850 X UWt Factor - 1.0 Elastic Modulus = 3,122.0 ksi Fy -- Stirrups 60,0 ksi • fy - Main Rebar ti0.0 ksi E - Stirrups = 29,000.0 ksi Stirrup Bar Size # _ # 3 . . • E - Maln Rebar = 29,000.0 ksl Number of Resisting Legs Per Stirrup = 2 .. 4 itu ... '01'0 • Load Combination ASCE 7-10 .. . t..D • K. fYL 5 ' A fiwx2eh .._.... Cross Section& Reinforcing Details Rectangular Section, Width = 12.0 in, Height = 24.0 in Span #1 Reinforcing.... 345 at 3.0 in from Bottom, from 0.0 to 6.420 ft in this span Applied Loads Beam self weight calculated and added to loads Load for Span Number 1 Uniform Load: D =1.30, L = 0.50 loft, Tributary Width =1.0 It DES16H SUMMARY Maximum Bending Stress Ratio = 0.143: 1 Section used for this span Typical Section Mu : Applied 12.186 k -f1 Mn ' Phi • Allowable 84.957 k -ft Loan Combination «1.20D40.50Lr-1.60L-1 WH Location of maximum on span 2.995ft Span # where maximum occurs Span f t Cross Section Strength & Inertia .. .. • . . • Cross Sec`,ion Bat Laycut I> Pbon .0 • • • • • ;e4r?t 3Sd 2,`.3 r5d=3`. �• •i i i i i Vertical Reactions Load Combination erall MAY,:mum Overatl WNlmum +Lr •+i «1 CLI i50L-H spaweb o t 345 at 3.0 in from Top, from 0,0 to 6.420 it in this span Service loads entered. Load Factors will be applied for calculations, VIM.- • Maximum Deflection Max Downward Transient Deflection 0,000 in Ratio= 0 <360 Max Upward Transient Deflection 0.000 in Ratio = 0 <360 Max Downward Total Deflection 0.001 in Ratio= 51004 Max Upward Total Deflection 0.000 in Ratio= 999<180 Top & Bottom references are for tension side of section Moment of Inertia (W4) Max t>4u t k -I } Pk?r�Mn t k -ft i --- :.: . Botlom Top Bottom Top I gross to - Bottom kx - lop ..0.00 0.00 84.96 84.96 13,524 00 2,732.46 2.73 .40 • 5uppor notation : Far left is # 1 SUOD041 Support 2 A -2;o •. • 5270STP .•. .•. �.. ••• • • • 1 500 • • • 4.'70 •� i4770 • • • • • • • ••. • 627(! 16.2!0 • 4 7?0 4.770 'r 0 ''0 • • • ... • • 5 895 • � 895 • . . • . .. 4 itu ... '01'0 • • ... .. . t..D • Title Block Una You.can dww'this.area usln,q the ISetlingi'rne6u item and then using the Trinfing & Title i3Iwv seiectim, i .11). testi: Support notal -Far tWft is #1 .. k ,750Lr+0.75%4450*}4 5195 5.895 40.0.750L4750S+0.45GW+H 5.895 5.895 -D-0,750t.+0.750540,5250E+H $.895 5.895 4600+0.60W+0.60H 2.862 2.861 40.60fl+0,70E+0.60H 2.862 2.862 0 Ong 4370 4.770 Lr Only 84.96 0.12 L Ori 1.500 1.500 S Only, W Only 1 6.000 E Only 84.96 0.14 H Only 6.000 Shear Stirrup Requirements Entire Beam span Length: Vu < PhiVd2, Req'd Vs = No1 Regd 11.4:6,1, use s&rjps spaced at 0.000 in LoanL,on,omau Segment Length Span # Location (4) in Span ,.,3,,....n........._._ , ", M,....-�.�---�--.-_-_� .�. tAu : MU Phr"t�tu� 5ttess Ratio h3AXimumBEN NG'Envelep•.. _. "_„-- Span 91 1 6.000 12.19 84,96 0.14 +1.400+1.60H Span # 1 1 6.000 10.02 84.96 0.12 +1,20D+0.50Lr+i .60L+1,60H Span # 1 1 6.000 12.19 84.96 0.14 +1.20D+1.60L+0.50S+1.60H 6.000 12.19 84.96 0.i4 Span 4 1 1 +1.20D+1.60Lr+0.50L+1.60H Span # 1 1 6.000 9:71 84.96 0.11 +1.200+1.60Lr+0.50W+1.60H Span # 1 1 6.000 8.59 84.96 0,10 +1.20D+0.50L+1.60S+160H Span # 1 1 6.000 9.71 84.96 0.11 +1.200-1.60S+0.50W+1.60H 6.000 8.59 84.96 0.10 Span '# 1 i +1.20D+0,50Lr+0.50L+W+1.60H Span It 1 1 6.000 9.11 84.96 0.11 +1.20D-0.50E+0.50S+W+1.60H 6.000 911 84.96 011 Span # 1 1 .l .200.0.501.+0.20S+E+1.60H 6.000 9.71 84.96 0,11 Span #1 1 +0.900+Vi+0,90H Span # 1 1 6.000 6.40 84.96 0,08 .0,9004E 40 90H Span 4 1 1 6,000 6,44 84.96 0.08 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 'Citta #3fod 'uhe t, ft -ed , Tidi3: You can change this area, Engineer. V Project Descr-. using the'Settings" menu item and then using the'Piinting ortspr'+ W7=- Cross Section & Reinforcing Details Rectangular Section, Width =12.0 in, Height = 24:0 in Span 91 Reinforcing.... 345 at 3.0 in from Bottom, from 0.0 to 12 0 ft in this span Applied Loads _.....__._ .._. ,... Beam self weight calculated and added to loads Load for Span Number 1 Uniform Load: D = 0.40, L = 0.30 kM, Tributary Width = 1.0 ft DESIGN SUMMARY Maximum Bending Stress Ratio = 0.277: 1 Section used for this span GWcufations;per ACI 318-11 1BC,2012, ASCE 7-10 Mu; Applied load Combination Set: ASCE 7-10 Mn - Phi - Allowable 84.957 k -ft Load Combination-i.20D+0.50Lr+1.60L-1,60H Location of maximum on span 5 989f rc= 3.0 ksi: , Phi Values Flexure': 0.90 :Bo lour Top Bottom Top 'fr'- fcw. • 7,50 410.792 psI Shear : 0.750 • 141 Density = -145.0 pcf Its - 0,850 • • X LiAlt Factor = 1.0 5 941• • •_ Elastic Modulus = 3.122.0 ksi Fy - Stirrups 60.0 ksl c: 4 140 4 t40 fy -!,lain Rebar= 60.0 ksi E - Stirrups = 29,000:0 ksi . Stirrup Bar Size 3 E -Main Rebar = 29,000.0 ksi 2 • Number of Resisting Legs Per Stirrup = ••• • load Combination ASCE 7-10 5494 � `'��''= i i•i i � • • • • Cross Section & Reinforcing Details Rectangular Section, Width =12.0 in, Height = 24:0 in Span 91 Reinforcing.... 345 at 3.0 in from Bottom, from 0.0 to 12 0 ft in this span Applied Loads _.....__._ .._. ,... Beam self weight calculated and added to loads Load for Span Number 1 Uniform Load: D = 0.40, L = 0.30 kM, Tributary Width = 1.0 ft DESIGN SUMMARY Maximum Bending Stress Ratio = 0.277: 1 Section used for this span Typical Section Mu; Applied 23.544 k -ft Mn - Phi - Allowable 84.957 k -ft Load Combination-i.20D+0.50Lr+1.60L-1,60H Location of maximum on span 5 989f Span k where maximum occurs Spank t Cross Section Strength & inertia :Bo lour Top Bottom Top •• ••• •• s Cross $eC1w Bar Layout DeswPti-n • • • i • • : i i Semn1 3."5@d=21'.3»5gd=3`, ••• ••i ••i ••• Vertical Reactions Load Combination Overall MAXimum Overall M;Nimum -+D-3'KA7 -H Ir—Wh so*, 12.0 it 345 at 3.0 in from Top, from 0.0 to 12.0 it in this span Service toads entered, Load Factors will be applied for calculations.. Design OK Maximum Deflection Max Downward Transient Deflection 0.0031n Ratio= 44416 Max Upward Transient Deflection 0.000 in Ratio = 0 <360 Max Downward Total Deflection 0.011 in Ratio = 13459 Max Upward Total Deflection 0,000 In Ratio= 999 <180 Top & Bottom references are for tension side of sectron d Mu { Ir _ -ft) of Inertia :Bo lour Top Bottom Top I gross Icr - Bottom to - Top • • 000 84,96 84.96 13.824.00 2,732.45 2,7324 Support notatbn . Far left is #1 •• • Supfo;'t 1 suppor, 2 5946••• 005111 0 ••• • • • • • . t 800• • •1 s . . . . .. . •• • • • • • 5 941• • •_ 4 140 4 t40 ¢ 4' • • •C(pC2) ••• • • 5494 � `'��''= i i•i i � • • • • 4 u? • •; - i ••• • • • • • • • •• •• • 1140 ••• 4:14` • • ••• • Tide Mock Lite f You can change this aiea using the'Settings' menu item aril they► usirtg:ttie'Ptittting & 'Citta t3iack''iial isn. Title:: Engineer Vertical Reactions. - Support notadoa : Far left i3 11 Load Ccrpbination Support t , S!NW 2 4.140 ,. .4,140 +t}+0.750Lt+0,75&4.450W4H 5.49(1 $A90 +0+0,?5OL40.75OS+0.450W+H 5;490 5,490 +D+0.750i.+0.75OS4OV50E++3 5.490 5.490. 460D46DW40$0H 2.484 2.484 46OD+0.70E+0.60H 2.484 2.484 D -O my 4,14.0 4.140 Lt Onty L Onfy 1.800 1,800 S Onty W Onty E Only H Oniy Shear Stiff Requirements----- -,____�._____. Entlte Beam Span Length: vu <f -v' 2, P Relo i = Not Recd 11,4.6,1 , use stimtps spaced at 0.000 in Max l lUt't1'i:CPddsS a &riss" dr Load Com11i9gSns .._,�.,. .»-.___ , .. . Load Conitrinatkxl _mWoVSuess Fiesub (k-)_ Segment Length Span # Location {fl) in Span -. Mu : Max Ptri'Mnx �. Stress Ratio Span # 1 1 12.000 23.54 84.96 0.28 +1 AOD+1,64H Span # 1 1 12,000 17.39 84.96 0.20 420D-0.5W+1,6OL+1.60H Span a 1 1 12.000 23.54 84.96 0,28 +1.200+1.60L40.50S+1 hOf f Span # 1 1 12,000 2154 84.96 028 +1.20D}1,f OLr4O.50t +1.60H Span # 1 1 12.000 17.60 84.96 0.21 +1.200+1.6OLr-0.5OW+1,60H Span 9 1 1 12.000 14.90 84.96 0.18 +1.200+0.501.+1.60S+1.60H Span 01 1 12.000 17.60 84.96 0.21 +1.200+1.60S+0.50W+1.60H Span A t 1 12.000 14.90 64,96 0.18 420D+0.5OLr•0.501.+W-1.60H' 17.60 84.96 0.21 Sparc 41 1 12000 +1.200+0.50L+O.SOS+W+1.60H 12.000 17.60 84.96 0.21 Span 41 1 +1.20D+0.50L-420S+E+1,60H 12.000 1760 B4.96 0.21 Span 4 1 1 +0,90D+W+0.90H Span # 1 1 12.000 11.18 84.96 0.13 -49OD4490H Span # 1 1 12.000 11.18 84.96 0.13 •• ••• • • • • • •• • •• • • • • ••• •• •• ••• •• • • • •• • • • • • • • •• • • • • • • • • • • • • �01 Mull 1 fo�3- tGJHW CONc. u SLAB 1H Gazebo .. .... . . .. .. . ......... . .. ... .. . . . .. .. • . . . • .. . .... . .. . . . . . . . :0. • . . .. . . . ....... . .. 000 Goo 000 000 .... ....... . . . . . . . . . . . . .. .. . . . .. .. ... . . . ... . . `l STC- m HP 0 HP V EXPAN5ION JOINT (1) sA D Q I X w 4a1 Trallic '...' '...Oovered .....Terrace .:.. ...... 4a1 Trallic • 1 • � � � � 1 • • � � � � 1 • • • •����1 •��il • i •�• � • 1 • � � � � • 1 x»G'r STS Z;;� - /, a -r 7 p( /a ILA r� tf �� _ /ry `„, '� ,�,•�,��3` �„, �''�' ,� 5� �•� ,�- - J"J 3 r.4, G �� �- t�+,r�. ice. , '-• • • • r`.,r•^ •' • • • • • • ••• • • • ••• • • i 0"p AD r,A pz . !r •• ••• • • • • • • •• ••• •• • • • •• • • • • • • • • • • • • • • • • • •• • • •• • • • • • • • • • • • •• • • • • • • • • i oe1 4 v� ' 7 '?, g -j- 0-*' �5 ,. 0 44-- -; ,6, c i 1 -1 > ,. -014, -, b jB 4A_ } I F.4,7 .a..: Z- /U b jB 4A_ } •�'w- • • • • • • • • • •• • • • • • • • • • • ••• • • • • ••• • • • • • • • • • • • • • •• •• • • • •• •• ••• • • • ••• • • eoaWind Pro v2.2.7_5 -tier ASCE '710 Developed by MECA'Enterprises, '16t. Copyright ar cr, paenterr�r ses.ccm Date. 8fs1t20.1b .Project No. Jobuo & Building MWrRS (Ch 29) Input Parameters: Other Structures .Appurtances Basic Winn Speed (V) 175.00 m�oh D Structural, Category it _ exposure Category No Natural Frequency = IIIA Flexit6le Structure Kd Directional Factor 0.85 1mxi�rtance Factor d a, 06 = 11.50 � Zg 700'.00 ft Alpha = 0.09 Bw = 1.07 At` 0.11. Ba = 0,80 = "' = P•T'S i �: 650,00 ft. Cc Epsilon = 0,13 17.00 ft zrnin Ht- Grade to Top Of Sign= 7.00 6,00 ft ft - B - 110rizontal. Dim. = = 0.67 ft S - Vertical Sign Dim. � 1..00 ft 4 - Sign Beeth. / S = 2.83 gh- Aatio.'of S l.Ht 00 Bs- Ratio Of B E - solidity` Ratio 100:00.1 elb - Ba3e'Elevation = .00 ft Gust Factor Calculations Gust Tactor Category r Rigid Structures - Sioplif"ied Method Cuss,- : For Rigid Structures (Plat. Fzeq.>1 HI) use 0:85 0.85 Gust :actor Category 1: F{igid St:`ucturps - Complete Analysis = 7.00 ft. Zm 0..6•Ht .. 0,24 lzm: Cc1133/Zm) 0.167 � 535.47 ft I,zm: 1' (Zr,.133)^Epsiiort . 0.96 ,>: ,I/(1*0.63.1(8♦Ht11Lzm)"0.63)1^0.5 0.91 Gust?: .425'{f1+L.?'1zm•3. `01�il+l.i"3.4"lzm)1 Sus:rary Tint a Flexible Structure use,the Lessor of Gust, or Gustz 0.85 Dej;5ign Wind Pressure - Other structures W prss_Cf( 1.38) Ilev Ks Kzt qz ft psf psf ---- __�_ - __- ---- - 1.03 1.00 41.193 96.32 t:o*e: *4 Pres (:f is wind Pressure based On Cf(FOfCe coefficient' Figure 29.4-1: Wind Loads for Solid Signs i Freestanding Walls Cf - Force r-oef€iGient 1.00 Rfl - Reduction Factor Kzt .11.14 psf. Wind Pressure at viezatinn 6 ft Nrtes: 1) S -91's with openings comprising c 301 of gross area are considered sos 2', 7orce Coefficients for solid signs with openings shall he mutt p=ied tv Rd 3, Case r only applies when Bs >- 2 Distance from Cf Kt Kit Qh Wind -Pressure @ Distance laading edge ft Force Co•ff. psf psf----------- -_ _ ------------ so to 6.0 _C 0---- --2-03---'"1 03 1.0041-l- 1003 .00.la 5, to •.t•• • 9.34*• 1.03 •s3.0 v'_.1 c 7W ) ,C too 17.0 • •r -P• • • 0 • •• • • • • ••• • • • • • • • • ! e 8 G3 fr. t>.? Them; C: r .,., ..ust be _ __. by Pd(*, • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • ••• • • • ••• • • its -'- by .. ... . . . . . .. ` . .. . • • . . . • ... . . . . ... . . . . . . . . . . . . . .. .. . . . .. .. ... . . . ... . . ■ DI gb-1a Input Data 12.0 Beam width [in] 24.0 Beam depth [in] 5,0 fc [ksi] 13.5 Vu, Ultimate Shear [k] 4.5 Tu, Ultimate Torsion [k=ft] 21.30 d [in] 3 Size of Stirrup 2 No. Tags .:G.S• L. Span (ft) • • � •R Mu,eUltimate Moment [k-ftj P.92 ;:50*"Asb, maximum reinforcement [in^ 0000. -00g0 As*- nIn, minimum reinforcement [inA21 • V15 As, required flexural reinforcement [in' 0000 00 •1.32 Aes.provided reinforcement [in A21 • 0121.9 • flat, moment capacity (k -ft] 0000 0000 00 0 5.1 0.259ffcri Cracking Torque/4 [k-ftj, 20.4 6-tcr, Redistributed Torsion [k -ft] 27.1 - Vc, Shear Strength of Concrete.•Section [k] '530 45(Vc1bW*d+8•(f4 0.6) [psi] 79((Vu/bw•d)^2+(Tu-ph11.7AohA2)"2}"0.5 (psq 0:K. Check Section Size Adequacy (F8>F9) NR - Av,;Rcqulred Area of Transversal Reinforcement [in^2M) .NR Av min 0.00 At, Required Area of Transversal Reinforcement [in" 21ftj- no,Tu ' At min, infiri]te sv, Required Stirrup Spacing Based on Shear [in]; 28:0- st, Required Stirrup Spacing Sated"on Torsion[n] 28,0 s, Required Stirrup Spacing Based'on Strength [in) -2.2.:1, Maximum Stirrup Spacing; 50.bw,s/fy [ini ° 10.6 1Maximum,Stirrup Spacing for Shear, d/2' jin] "N/A _ Maximum Spacing of Stirrups for Toesion� [in] . "10:6 s, Required Stirrup Spacing [in] - no'Tu Al min, Minimum Area of Longitudinal Reinforcement [in^2] no'Tu AI, Area, of Longitudinal Reinf. Based on. Strength Urt.^2] no'Tu Al, Required Area of Longitudinal Relnfom6ment,[in12]. 1.} Stirrup orientation assumed vertical. 2.J Analysis not valid for pre -stressed or hollow -core concrete members. 3.) Analysis not valid for light weight concrete members. "N/A Distance to placeAv (in) 'N, Distancelo place At (in) r "dile Block Cine 1 Project Title,, proloct ID. Code Reterences _ -- Phi' Mn ,Calculations per'AC $30-1I JBC 2012, CBC 2013 ASCE 7.10 +1.20D+0.50i.ra-0,50L+1.60W Load Combinations Used : ASCE 7-05 -2.051 351 Allowable Dell, Ratio 240 Calculations per ACI '53o-11, IBC 2012. CBC 2013, ASCE 7-10 General Information _ Construction Type *Grouted Hollow Concrete Masonry 1.50 ksi Nam. Watt Thickness = 8 in Temp Diff across thickness deg F Fy - Yield - 60.0 ks€ Actual Thickness 7.625 in Min Allow Out -of -plane Reit Ratio = 0 Ft - Rupture = 61.0 psi Rebar `cr distance 3.750 in Min€mum Vertical Steel % 0:0020 Ern = fm • 900.0 Lower Level Rebar. , . # 6Bar Max %of p bol, = 0.006833 Bar Size Spacing 24 in Grout Density - 140 pcf Bieck Weight Normal Weight Wali Weight = 61.0 psf Wali is grouted at rebar cells only One -Story Wail"Dimensions A Clear Height 6.0 fl • 8 Parapet height - Wait Support Condition Top Free, Bottom Fix — Lateral Loads +Wind Loads, Full area WIND toad Fo 1,0 DESIGN SUMMARY 71.0 psf 0.0 lsf A Seismic Loads: .� Wal Weight Seism* Load input Method: Seismic Wall Lateral Load FbXAKn hMKt. Direct entry of Lateral Wall Weight psf Results reportedfor"Strip Width" of 12.0 in Adual Values , , . Allowable Values Governing Load Combination ..__. _ . w , , - .Sir Pati^ 0 8016 _ PASS %foment Capacity Check Maxtnlutn Bending ess k -ft Phi' Mn 3.409 k -h +1.20D+0.50i.ra-0,50L+1.60W Max Mu -2.051 351 Allowable Dell, Ratio 240 Actual Deli, Ratio Li W Onlv Max, Deflection 0.2054 in 6.801 psi Max. Allow. Deft. 0.30 PASS Axial Loci ChK-k Max Pu t Ag • • • • • • Loc i% : : . •' 0.10 n 0.2 ' fm 300.0 +1 20D+0.50Lr+0.50L+ l .60W PASS Reir-fc-rdng+_IMIIChea ~ASS lrt,r,rn'm Moment Check + 1.40D .... . ........ . ..::antro«?g �s a:l .. -0.004731 iacracking 0.6129 k -ft Aslbd006833 rho bal 0.006833 Minimum Phi Mn 3.788 k ff . ... Maxiamlim Reach .. I for Load : : : : : :+�i"of ti �ltal :• : Combination.. a • W Only.. . r • 00 0 W 0 0 �. 0.4260. 0 3660 %�te'_Biock Line i ProjeclTttte tact ID You can change this area Enginw, using the'Settings' rims item Prger Oesa and them using the Printing & T:rti..15t..w!.�.. rnl.�w4;nw . Resutts reported for "Strip Width" = 12 In.. Design Maximum 6mbinattons'• Moritents:' Axial Load Moment Values 0;6' Load' Combination Pu 0.2'fm`b't Mcr' Mu Phi Phi Mn ° As As Ratio rho bat 1 101 x-,1 . .fl O.00D 0:000 0,00 0.00 0.00 0.00 0.000 Q.QQQQ O,ww 0.000 0.000 0.00 0.00 0.00 0.00 0.000 0.0000 0.0090 0.000 0.000 Q.QO 0.00 0.00 0.00 0.000 0.0000 0.0000 0,000 0.000 0.00 0.00 0.00 000 0.000 0.0000 0.0000 +1,200+1.6OLr40.84W at 0.00 to 0.20 0.000 18.720 0.47 1,02 0.90 3.41 0.220 00047 0.0068 0.000 0.040 0.00 0.00 0.00 0.00 0.000 0.0000 0.0000 �1.201)41.60S+0 BOW at 0.00 to 0.20 0.000 18120 0,47 1.02 0.90 3.41 0.220 0.0047 0.0068 +1,20D+0.54Lr44:54L+1,60W at 0.00 to 020 0.000 18.720 O 7 2-05 0.90 3.41 0.220 0:0047 O, +1,200.o,50t.+0,50S-1.6QW at 0,00 to 0,20 0.000 18,720 0,47 2.05 0,90 3.41 0.220 00047 0,0068 0.000 0.000 0,00 0:00 0.00 0.00 0,000 0.0000 00000 44.900+1.60W+1,60H at 0.00 io 0.20 0:000 18,720 0,47 2.05 0.90 3.41 0.220 O,W47 0.0068 4.000 0.000 0.00 0.00 0.00 0,00 0.000 0,0000 0.0009 De's n Maximum Combinations •`Defiections. Results reported tor'•'strtp width" =12 In. Axial Load Moment Values I Stiffness I cracked Deflections I effective Deflection Defl, Ratio Load Combination Pu Mer Mactuai gross ""^a •n h J;.tt y,rt =n-4 m,4 0.000 0.00 0.00 0.00 0:00 0.000 0000 0.0 OZO 0.00 0.00 0.00 0.00 0.000 0.000 0.0 0.000 0.00 0.00 0.00 ODD 0.000 0.000 00 0.000 0.00 0.00 0.00 0.00 0.000 0.000 OD 0.000 0.00 0,00 0.00 000 0.000 0.000 0.0 0.000 0.00 0.00 0.00 0.00 0,000 0.000 0.0 +D+W+H at 5.80 to 6.00 0,013 0.47 0.00 353,60 39.95 353,600 0,204 353,4 0.0 0,000 0.00 O.00 0.00 O.QO 0.000 0.000 +D+0,750Lr+0.750.+0.750W+H at 5.80 to 6.0 0.013 0.47 000 353,60 39.95 353.600 0,114 634,0 634,0 +0•0.750L+0 750S+O 750W+H at 5.80 to 6.00 0.013 0,47 0.00 353.60 39.95 353.600 0,114 00 00 0= 0,00 O.00 0,00 0.00 0.000 0.0 0.000 0,00 0.00 0.00 0.00 0.000 0000 0.0 O.W8 0.47 0.00 353.60 39.94 353.600 0.21 « 3522 •O.66D+v,'+H at 5.80 to 6.00 OZ 0.00 0.000 0.000 0 0 0.000 0.00 0.00 0.00 0.00 0.00 O.4tw O OOO 0.0 0.000 0.00 0.00 4.00 0.00 0.00 0.000 0,000 U0.004 0.000 0.00 HO 0.00 0.00 O i OO 0,000 4.4 0.040 0.00 0.40 0.00 0,00 O,OOO 0.000 0,0 0.001 0.47 0.00 353.60 39.93 353.600 0.205 350.5 � d Cxay a; 5 8, to 6.03 0.00 0.00 0.00 0 000 0.040 O.0 0.000 000 4,40 0.00 0.000 0.444 0.0 O.ODO 0.90 000 'dh"=12 in Reactions • Vertical & Horizontal Load Combination Base Horizortijal� 0.0 Results reported for Strip Wt t - ..r-• . • • ."' •. Top Horizontal Vertical � Wall Base • : .' : : : :.: ' . 440 • . . ... .. . . • .. 000 t 0.366 0.0 00.. vv .......... 0.00 0 366 • • . 0.04 0 366 • 000 r 4366 .0. .. 0000.36s` Tj%Siod Lite tPmOd Tittta You can change this area EEn neer I ; 6d Clescr using tiie `Settings' menu'ttern' ' aod'then using ttie "Printing & ` itle B166selection: Title Block :Ure 6 tt uG r < a y fie= Il}�h1S20#6Wt�tV�11I416hiiGLCtNet6 'Masnriry Stellar Watt, w,, �;r,zaie�na6,s,xs:v�sts29, tescriptton hI%SONR, Y WALL CANMLIVER WALL Reactions,; Vertical & Horizontal Results reported for "Strip VYidth" s 12 in. LoadCominnation µ Base Horizontal Top Horizontal Vertical gwall Base +0•WI4H 0.4 r 0.00 a, 0.366` k +0+010E4+1 0A s 0.00 035& +D+0.750Lr+0.750I..•07541N+H 0.3 Q.00 0.366 +D7 0.7501.4750S;0.750 -H 0.3 0.00 0:366 +04750Lr40150L 0250E -H 0.0 =: 0,00 0.356 4040.750L•0.750S+0,5250E+1 0.0 k 0.00 I< 0.355 ;. •0.60744-H 0.4 0.00 F 0.220 . +0.60D -0.70E -H U *: 0.00 4 0.220 D Only 0.0 0.00 0. 66 Lr OnF 04 0.00 0400 }. L only 0.0 0.00 ;. 0.000 a. S Only 0.0 0.00 0.000 : w' Ony 0.4 040 0.000 ; E Only 00 0.00 0;000 'k H Owy 0,0 004 0.000 b • • • • • • • • • • • •• ••• •• • • • •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • MecaWl nd. Pro v2.2,,.,7.. 5 per ASCE. 7-10 aeveloped by.MECA Enterprises,- Inc. copyright etaerterrr33<es:doa Daze : 8/11/206 Project No, : JcsbNo Input Parameters: Directional. Procedure All Heights Building (dh 27 Part it Basic Wind Speed(V) 175.00 mph Structural Category 11 Exposure Category D Natural Frequency N/A Flexible ,Structure No Importance Factor 1:00 Fd Directional Factor 0:85 „'.de Wails Alpha g 11.50' Zg 700.00 ft: At 0.09 St 1:07 Kzt Asa 0.11 Sm 0.80 Cc 0.15 1 650.00 ft Epsilon 0.13 Zmin 7,00 ft Pitch of Roof a 3 : 12 Slope of Roof(Theta) s 14.04 Deg h: Mean Roof Ht 24.71 ft Type of Roof - HIPPED 1 *_ RHt: Ridge Ht 28.99 ft F:ht: £ave,Height 20.42 ft ON: Roof Overhang at Ease= .06 ft Overhead Type m No Overhang Bldg Length Along Ridge - 81..63 ft Bldg Width Across Ridge; M56 ft Length of Nipped Ridge - 59.00 ft Roof Slope on Hip End . 36.91 Deg Gust Factor Calculations Gust Factor Category : Rigid Structures - Simplified Method Gustl: For Rigid Structures (Nat: Freq.>l Hx) use 0.85 * 0.85 ;Gust Factor Category 1.1 Rigid Structures- Complete Analysis Z, -n: 0.6'Ht • :1.4;62 ft lam: Cc'03/Zmi1'0.167 0.17 Lx:;,,,: 1• (Zt./33) ^Epsilon - 588.12 ft C"; L €*0.s`(tBiiit}/Lzm)"O.b3)f"4.5 0.91 Gw* ?: 0.e9 Not, a Flexible Structure use the Lessor of Gust1 or Gust2 0.85 Table 26,11-1 Internal Pressure Coefficients for Buildings, GCpi CCP: . :internal Pressure Coefficient Wind Pressurs Main Wind Force Resisting System (MWFRS) - Ref Figure 27,4-1 Kh- 2.01•(HL/Zg)"(2/Alpha) 1..F.2 Kht: Topographic FaCtor (Figure 6-4) x 1,00 Qh: .00256•(v)'2*I*Fh`Kht`Kd . 44,93 psf Cpww: windward wall Cp(Ref Fig 6-61 0.80 Poof Area - 5973.06 ft12 Peduction Factor based on Roof Area 0,80 MWFRS-Wall Pressures for Wind Normal to 81.83 ft Wall (Normal to Ridge) AFD Di!sig: , with a Load Factor rlf wall CP Pressure Pressure +GCpi (psf) -GCpi (,psf) _! Le! war?was' ___ . -050 -..18-- -27.18 -11.01 „'.de Wails --0.70 -34.82 -18.64 Wall Elev Kz Kzt CP qz Press Press Total ft Fat +GCpi -GCPi ---- +/-GCpi - ---------------------------------- a n a d 20.42 1.09 1.00 0.80 43,4f _--- ----- 37.64 -- .5 -dwa: d 10.42 !.03 1.00 0.80 41-:4 1 *_ 36,10 0.42. 1.�i 1.14 0.85 4J. 190 19,9j. 36, 10 41..il • Roof Loiatioe• • •• • • . • • . . • • ••• Cp Pressure Pressure • • • • • • • • • +GCpi(psf)-Gcpi(psf) • ••• • . •• -x0411 -26 +1.. :0 . .. .• . • . .• .. 4 Hipped End:(49.41 to 68.58 ft) -0:30. .-19:59 3.37 Notes - Normal to Ridge Note.(i) Per'Fig 27.4-1 Tdte 7, Since'Theta > 10 Deg base ceics on Mean At Note (2) Wall 6, Roof Pressures, ` Ohl(G'Cp - kPi) Note (3) +.GCpi: > Positive )nternai-Bldg Press; -GCP1 - Negative rnternal.Sldg Press il6te (4) TotaL Pressure • leeward Rres's + Windward Press (For + or, - GCPi) store (5) Hipped ends considered 'ns para1:7e1 to ridge for all. theta. Note (6) Ref Fig' V.4-1, Hormal,to Ridge •(TheEa> l0), Theti- 14.0 Deg, hal= 4.30 Nate (7) Xm Along Building,ridge!, Y . Normal to Building Ridge, '2 Vercicel Note (S) MIN - Minimum pressures on Wails - 9.6'gst. and Roof - 4.8 psf' Note (9) Area- Area of the surface piojected onto a vertical plane normal to wind, MWkS-Wail Pressures for`wiad'Normal to 68.58 ft wall (Along Ridge) All pressure: shown are baned upon A5D (ksiun, with a toad Factor of 6 wall CP Leeward Wall -0.46 Side Walls -0.70 Pressure Pressure +GCpi (psf) -Gcpi (psf) -25.71 -9.53 -34.82 -18.64 wall Elav Ks Kzt CP qz Press Press 'total ft psf +GCPi -Gcpi +/-Gcpi ---- Windward 28.99 1.16 1,00 0.80 46.19 23.33 39 50 49,03 Windward 20.42 1.09 .1.00 0,80 43.46 21:47 37.64 47.17 Windward 10,42 1.03 1.00 0.80 41.399 19.92 `36.10 45_63 Windward 0.42 1:03'1.00 6,80 41.19 19.92 36.101 45.63 Roof - Dist from Windward 9dge Cp Pressure Pressure +GCpi(psf)-GCpi(psf) Roof: 0.0 ft to 12.4 ft. -0.90 -42.46 -26.28 Roof: 12.4 ft to 24.7 ft -0.90 -42.46 -26.28 Roof: 24.7 ft to 49.4 ft -0.50 -27.18 -11.01 Roof: 49.4 ft to 81,48 ft -0.30 -14.54 -3.37 Notes - Along Ridge Note (11 Ref Fig 27.4-1, Parallel to Ridge (Ali), h/1- 0.30 *lore 121 Rn Along Building ridge, Y - Normal to Building Ridge, Z - Vertical 'dote (3l M1N - yinirfun pressures on Walls - 9.6 psf and Roof - 4.8 psf t7"te ra) Areal - Area of the surface projected onto a vertical plane nornal to wind. Total Base Reaction Summary Description Fx ry Fz Mx My Mz Kip Kip Kip K -ft K -ft X -ft c ra Y _asl.s+1;W f GCp;__ __,.0 f6_5>--165 3 ---1052.3 0 t:or;al to Ridge wa.ls=,POof -GCP1 .0 $8.7 25.4 516.5 :sa rmai to RlIqe Walls 0%1. -GCpi .0 80.0 .0 923.1 G ,Niar ,aI to Rid -le w: ,ls+Foot MIN 0 21.8 .0 307.0 Along Ridge lwa.:._ +z".ocf -GCP, 58._ .0 161.4 .0 -1670.7 Alor, R1;.'ge Walls only GCpi 65.0 .0 .0 .0 -6668;7 Atony Rick, Walls R.of ,C'pi 58.2 .0 70.7 .0 -1_670.7 Along Ridge kills only -GCpi 6510 .0 .0 .0 -668.7 Along Ridge «alts+€zoof MIN 36.3 .0 .0 .0 -203.0 .0 Hetes Applying to btWFRS Reactions: tdete (`_1 ?er Use 2'X.+1-1, Note 9, se greater o. Shear calculated with or without roof. B t?1(!inq ridge, 1' - Normal to Building P.idge, Z vertical +o_e ( ) :ilii_ '::.'? ^.^ presrures on walls - 9.6 psf and Roof - 4.8 ;psf ;2c;_r i47 :.`-`: area ss tate aifaa of the surface onto a vertical plane normal to a::tic.'•. -e i5i ^o ;tl ?acs Are.i (i '1•;aF? 4•r) r ipS7. OP•sq• ft** wind Pressure on Components and Cladding•(Oh •30•Parts ii •• • 1111• ,•. • • •,..•,,. • ,,. �r.:-• :. .. ., .., ,.., •s .� a•j• .,,.�•,%':1•:111 •• i •�'. Description Width 5psn 4crea 3t% 4.R N A-- P Min P ft •fJ. :rt-; • • • �in iGC • G:$. i's; psf -__-__----------------------t--l-•___-J_.-•_!_..a----a,•--•.-•----------- •• • •. � 57. - ••• • • • • ••• • s • • • • • • • • • • • •• •• • • • •• •• ••• • • • ••• • • 4 6 wmDowZ.06 5.00 io.o 5 DOOR 2.50 6.67' MI 4= WOR 2:$O 6.67 16.7 5 Khcc:bomp. & Clad. Table 6-3 Cases 1, Ghcc:.06256'v'S2*Khcc*Kht*Kd 1:00 -1.40 53.01. =70.99 0.96 -1.06 31,25 -55.75 0,.,96: -1.32 51.25 -61.46 •• ••• • • • • • •• • •• • • • • ••• • •• ••• •• • • • •• • • • • • • • • • • • • • • • • • •• • • •• • • • • • • • • • • • •• • • • • • • • • • • • • • • • • • • • •• •• • • • •• •• ••• • • • ••• • • 1.7.2 44.93 psf