Loading...
RC-9-16-2500_1460 NE 103 St Part 4',!_T_"!_ I � r T��T1 -" r r General Notes Notas Generales Trusses are not marked in any way to identify the Los trusses no estan marcados de nini modo que frequency or location of temporary lateral restraint identiffque la frecuencia o localizaci6n de restriccion and diagonal bracing. Follow the recommendations lateral y arriostre diagonal temporales, Use las for handling,installing and temporary restraining recomendaciones de manejo instalacion restriccion 9 P ry 9 / , B I - arriostre temporal de los trusses. Vea el folleto SCSI and bracing of trusses. Refer to CS Guide to 9 Y P in In t llin Restrainin - Gula de Buena I'Mctica ara e/ M ne'o Insta/aclon Good Practice for Hand a. s a a. a a a I. & Bracina of Metal Plate Connected Wood Restriccion v Arriostre de los Trusses de Madera Trusses**' for more detailed information. Conectados con Placas de Metal"' para informacion Truss Design Drawings may specify locations of mas detallada. permanent lateral restraint or reinforcement for Los dibujos de diseno de los trusses effecter, especificar individual truss members. Refer to the BCSI-B3**" las localizactones de restriccion lateral permanente o for more information. All other permanent bracing refuerzo an los miembros individuales del truss. Vea design is the responsibility of the building designer. la hoja resumen SCSI-B.',*** para mas informacion. El resto de los disenos de arriostres permanentes son la responsabilidad del disenador del edificio. DANGER The consequences of improper handling, erecting, installing, restraining and bracing can result in a collapse of the structure, or worse, serious personal injury or death. iPELIGRO! E/ resultado de Lin manejo, levanta- miento, instalacion, restriccion y arriostre incorrecto puede ser la caida de la estructura o ailn peor, heridos o muertos. ArG'G.l�i 00o GJ Exercise care when remov- ing banding and handling trusses to avoid damaging trusses and prevent injury. Wear personal protective equipment for the eyes, feet, hands and head when working with trusses. J92U7fQZ9 Ublice cautela a/ quitar las ataduras o los pedazos de metal de sujetar para evitar dano a los trusses y prevenir /a herida personal. Lleve el equipo protective personal para ojos, M-1111 .I III pies, manos y cabeza cuando traballa con A g 1Oo C Use d N i LL1 trusses. special care in Utilice cuidado windy weather or especial an near power lines dias ventosos o Handling - Manejo and airports, cerca de cables el6ctricos of de CI• aeropuertos. Avoid lateral bending. Spreader bar Evite la flexion lateral. for trussFiripi \' The contractor i is responsible for properly receiving, unloading and storing m O O the trusses at the jobsite. Unload trusses to smooth surface to prevent damage. Use proper rig- Use equipo apropiado El contratista Irene /a responsabilidad de recibir, ging and hoisting para levantar e descargar y almacenar adecuadamente los equipment. improvisar trusses en la obra. Descargue los trusses an Is tierra liso para prevenir at dano, i. , Trusses may be unloaded directly on the ground at (S) DO NOT store the time of delivery or stored temporarily in contact unbraced bundles with the ground after delivery. If trusses are to be upright. stored for more than one week, place blocking of sufficient height beneath the stack of trusses at 8' (2.4 m) to 10' (3 m) on -center (o.c.). Los trusses pueden ser descargados directa- mente an at suelo an aquel momento de entrega o almacenados lemporalmente an contacto con el suelo despuas de entrega. Si los trusses estaran guardados para mas de una semana, ponga bloqueando de altura suficiente detras de la pila de los trusses a 8 hasta 10 pies en Centro e.c.). 0 If trusses are to be stored for more than one week, cover bundles to protect from the environment. DO NOT store or Para trusses guardados per mas de una semana, uneven ground. cubra los paquetes para protegerlos del ambiente. Refer to BCSI**' for more detailed information per- taining to handling and jobsite storage of trusses. Vea el folleto BCSI'*' para informacion mas detal-"_� lada sobre e/ manejo y almacenado de los trusses en area de trabajo. NO a/macene vertica/mente los trusses sue/tos. almacene en tierra desigual. Hoisting and Placement of Truss Bundles Recomendaciones Para Levantar Paquetes de Trusses DON'T overload the crane. NO sobrecargue la grba. NEVER use banding to lift a bundle. NUNCA use las ataduras para levantar un paquete. Y� A single lift point may be used for bundles of top chord pitch trusses up to 45' (13.7 m) and parallel chord trusses up to 30' (9.1 m). Use at least two lift points for bundles of top A chord pitch trusses up to 60' (18.3 m) and paral- Do not overload supporting lel chord trusses up to 45' (13.7 IT). Use at least structure with truss bundle. three lift points for bundles of top chord pitch trusses >60' (18.3m) and parallel chord trusses No sobrecargue la >45' (13.7 m). estructura apoyada con at paquete de trusses. Puede usar un solo lugar de levantar para paquetes de trusses de la cuerda superior hasta Place truss bundles in stable position. 45' y trusses de cuerdas paralelas de 30' o Puse paquetes de trusses en Una menos. posici6n estable. Use per to menos dos puntos de levantar con grupos de trusses de cuerda superior inclinada haste 60' y trusses de cuerdas paralelas hasta 45'. Use por to manes dos puntos de levantar con grupos de trusses de cuerda superior inclinada mas de 60' y trusses de cuerdas paralelas mas de 45'. Mechanical Hoisting Recommendations for Single Trusses Recomendaciones Para Levantar Trusses Individuales Using a single pick -point at the peak can damage the truss. El use de un solo /ugar en el pico para levantar puede hacer dano a/ truss. 60° or lass i • • APpr•c.M/• t� • • • Tagline is truss length is • • •••• as �reader bar • ••••• • • • Toe -in i Toe -in Locate Spread bar • is • (30 max. �� • • • • 1to'0' ( • above • �isti<!GI�C o.c. max. Tagline Spreader bar 1/2 to -� • • • mid -height • 2/3 truss length • • • • • • • • • 0 Hold each truss in position with the •recila►� • • �- Spreader bar his 3/4 truss lenggtt 0h equipment until top chord tempera elite♦ 'agline • • 000000 restraint is installed and the truss lastened �.•.� • • • • to the bearing points. • • • • • Sostenga cada truss en posici6n con "ipo of gruel ha&,Pq ie la 1QstriccOnlateral temporal de la cuerda superior est6 insta/ado y el truss esta asegurado en roS�portes. Installation of Single Trusses by Hand Recommendacciones de Levantamiento de Trusses Individuales Par La Mano Trusses 20' Trusses 30' 6.1 IT) or 1 \ (9.1 m) or less (, t less, support support at near peak. quarter points. Soporte Soporte de cerca a/ pico los cuartos los trusses E Trusses up to 20' -► de tramo los E Trusses up to 30' -0. de 20 pies o (6.1 m) trusses de 30 (9.1 m) menos. Trusses hasta 20 pies pies o menos. Trusses haste 30 pies Temporary Restraint & Bracing Restriccion y Arriostre Temporal • Refer to BCSI-B2*** for more information. Top Chord Temporary Vea el resumen BCSI-B2*'* para mas informaci6n. Lateral Restraint (TCTLR) ® Locate ground braces directly in line with all rows 2x4 min. of top chord temporary lateral restraint (see table in the next column). I s 2'o.c., typ. Coloque los arriostres de tierra para el primer truss directamente en linea con Cade una de las filas de restricci6n lateral temporal de la cuerda =90' Brace first superior (vea /a tab/a en la proxima columl truss securely DO NOT walk on unbraced trusses. before NO camine en trusses sueltos. erection of additional DO NOT stand on truss overhangs until trusses. Structural Sheathing has been applied to the truss and overhangs. Q NO se pare an voladizos cerchas hasta Revestimlento estructura) ha side aplicado a /a armadura y voladizos. 4�< Steps to Setting Trusses Las Medidas de la Instalacion de Ios llr"ses 1) Install ground bracing. 2) Set first truss and attach securely to ground bracing. 3) Set next 4 trusses with short member temporary lateral restraint (see below). 4) Install top chord diagonal bracingsee below). 5 Install web member lane diagonal bracing to stabilize the first five trusses ( ) ) P 9 9 (see below). 6) Install bottom chord temporary lateral restraint and diagonal bracing (see below). 7 Repeat process with groups of four trusses until all trusses are set. P P 9 P 1) Instate los arriostres de tierra. 2) Instate el primate truss y ate seguramente at arriostre de tierra. 3) Instate los proximos 4 trusses con restriccion lateral temporal de miembro corto (vea abajo). 4) Instate el arriostre diagonal de /a cuerda superior (vea abajo). 5) Instate arriostre diagonal para has planes de los miembros secundanos para estabilice los primeros cinco trusses (vea abate). 6) Instate la restriccion lateral temporal y arriostre diagonal para /a cuerda inferior (vea abate), 7) Repita este procedimiento en grupos de cuatro trusses hasta que lodes los trusses esten insta/ados. Refer to BCSI-B2'"* for more information. Vea el resumen SCSI-B2'** para mas informacion. Restraint/Bracing for All Planes of Trusses Restriccion/Arriostre Para TodOs Pianos de Trusses Minimum lumber used for lateral restraint and diagonal bracing is 2x4 stress -graded lumber. Attach to each truss with at least 2-10d (0.128x3"), 2-12d (0.128x3.25") or 2-16d (0.131x3.5") nails. La madera 2x4 clasificada per estres as la madera minima utilizada para restriccion lateral y arnostramiento di- agonal. Atadas a cada braguero can al minimo 2 clavos 10d (0.128x3 ), 12d (0.128x3.25") o 16d (0.13lx3.5'). This restraint and bracing method is for all trusses except 3x2 and 4x2 parallel chord trusses (PCTs). See top of next column for temporary restraint and bracing of PCTs. Este m6todo de restriccion y arriostre es para todo trusses excepto trusses de cuerdas paralelas (PCTs) 3x2 y 4x2. Vea la parte superior de la column para la restriccion y arriostre temporal de PCTs. 11 TOP CHORD PLANE - CUFRDA SUPERIOR Truss Span Top Chord Temporary Lateral Restraint (TCTLR) Spacing Longitud de Tramo Espaciamiento del Arriostre Temporal de la Cuerda Superior Up to 30' 10' (3 m) o.c. max. (9.1 m) 30'- 45' (9.1 m - 13.7 IT) 8' (2.4 m) D.C. max. 45'- 60' (13.7In-18.3m) 6' (1.8 m) D.C. max. •••••0 60. - SD' * (18.3m-2404m)' 4' �1.21h) o.Umax. •••r • •• "Consult a RRp'St&EM Shcign Professi~dP fusses longer lralls WW1W.6 m). *Consul[e a un Professional Registrado de: iserlo para trusses mi de 60 pies. / See g&I-9'2.4 for TCTLR, Options• • • • � Vea at BCSI-52**'para /a•aivr(w•si TCTLR• ,- • • W+�RC1�rR�BCSI-83•"* • <_2't for Gable F•r�l �rWrQP•restrainV:rjAj/ ! A reinforcemeRlt information. • s 45 y . Para informacrn sobre restriccOnA • • • • TCTL arriostre/riif�-fWG gate Arri�[ •, Hastiales vea el resumen "':tCS{yi i • • • • • NotO�gLfnd�lracing not shown tar clarity. • • 10" or > S • • • • • • • • • Truss attachment Repeat diagonal braceaforreach set of 4 trusses. required at support s) Repita los arrisotres digJbnales para cada grupo de 4 trusses. Sectio M n R A -A Diagonal Continuous Lateral Restraint 2) WEB MEMBER PLANE- (CLR) splice reinforcement PLANO DE LOS MIEMBROS bracing SECUNDAR/OS Truss Member px_CLR Web members 45/ I I I „= A Bottom !' chords Minimum 2' 2x_ Scab block center, over CUR splice, Attach Diagonal braces every to CLR with minimum 8-16d 10 truss spaces 20' (0.1350.5") nails each side (6.1 m) max. of splice or as specified by the 10' (3 m) - 15' (4.6 m) max. Building Designer. Same spacing as bottom chord Note: Some chord and web members SECTION A -A lateral restraint not shown for clarity. 3) BOTTOM CHORD PLANE - CUERDA INFERIOR /' Truss Lateral Restraints - 2x4x12' or greater Member lapped over two trusses Note: Some chord or CLR splice reinforcement. j and web members Bottom ` not shown for chords _4 � clarity. 10' (3 m) - 15' (4.6 m) max. Diagonal braces every 10 truss spaces 20' (6.1 m) max. Restraint & Bracing for 3x2 and 4x2 Parallel Chord Trusses Restriccion y Arriostre Para Trusses de Cuerdas Paralelas 3x2 y 4x2 10' (3 m) or Diagonal bracing Repeat diagonal bracing Refer to 15' (4.6 m)* every 15 truss spaces 30' for more / (9.1 m) max. information. < para el resumen era mas informacidn. ' o.c., tyP. Apply diagonal brace to vertical 5 2 -- webs at end of cantilever and at bearing locations. All lateral restraints lapped at least two trusses. *Top chord temporary lateral restraint spacing shall be 10' (3 m) o.c. max. for 3x2 chords and 15' (4.6 m) o.c. for 42 chords. Installing - Instalaci6n Out -of -Plumb J Tolerances for Out -of -Plane. Tolerancias para Fuera-de-Plano. D/50 D (ft.) 1/4" 6 rum 1' 0.3IT Len th -> Max. Bow Ll-- 9 T Length -�LI " Max. Bow 9 t 13 mm 0.6 m 3/4" 19 mm 3' 0.9m Max. Bow p z 1.1 25 rum 4 1.2m Length m Plumb /line Tolerances for f Out-of-Plumb. 1-114" 32 mm 5- 1.5 m 1-1/2" 38 mm 6' 1.8 m D/50 max Tolerancias para I Fuera-de-P/omada. 1-3/4" 7' 44 rum 2.1 IT 51 mm a2 a m Construction Loading Ca a De Construction DO NOT proceed with construction until all lateral restraint and bracing is securely and properly in place. NO proceda con la construction hasta que todas las restric- ciones lateral/es y los arriostres esten colocados en forma apropiada y segura. G DO NOT exceed maximum stack heights in table at right. Refer to BCSI-B ""* for more information. NO exceda las a/turas maximas de mont6n. vea e/ resumen BCSI-B4""* para mas informacion. Maximum Stack Height for Material on Trusses" Material Height Gypsum Board 12" (305 mm) Plywood or OSB 16" (406 rum) Asphalt Shingles 2 bundles Concrete Block 8" (203 mm) Clay Tile 3-4 tiles high 1. Based on truss live load of 40 psf or greater. For other conditions, contact - - - - a Registered Design Professional. 2. Install stacks of materials as quickly as possible. NEVER stack materials near a peak, at mid -span, on Cantilevers or overhangs. NUNCA spite los materiales cerca de un pica, a Centro de /a luz, an cantilevers o a/eros. DO NOT overload small groups or single trusses. NO sobrecargue pequenos grupos o trusses individuales. ❑`� Place loads over as many trusses as possible. Coloque has cargas sobre tantos trusses come sea posib/e. �✓ Position loads over load bearing walls. Coloque las cargas sobre las parades soportantes. Alterations - Alterations MOTIMI Refer to BCSI-BS.'**ill Vea el resumen BCSI-B5. """ Truss bracing not shown for clarity. DO NOT cut, alter, or drill any structural member of a truss unless specifically permitted by the truss design drawing. NO torte, alters o perfore ningun miembro estructura) de un truss, a menos que estei especificamente permitido en el dibujo del diseno del truss. 1i Trusses that have been overloaded during construction or altered without the Truss Man- ufacturer's prior approval may render the Truss Manufacturer's limited warranty null and void. Trusses que se han sobrecargado durante la construction o han side a/terados sin la autor- izacion previa del Fabricante de Trusses, pueden hacer nu/o y sin efecto la garantia limitada del Fabricante de Trusses. ""Contact the Component Manufacturer for more information or consult a Registered Design Professional for assistance. NOTE: The truss manufacturer and truss designer rely on the presumption that the contractor and crane operator (if applicable) are professionals with the capability to undertake the work they have agreed to do on any given project. If the contractor believes it needs assistance in some aspect of the construction project. It should seek assistance from a competent art The methods and procedures P P l D party outlined In this document are intended to ensure that the overall construction techniques employed will put the trusses into place SAFELY These recommendations for handling, installing, restraining and bracing trusses are based upon the collective experience of leading personnel involved with truss design, manufacture and installation but must, due to the nature of responsibilities involved be resented only as a GUIDE for use by a qualified building designer or contractor. It Is not intended that these recommendations be Interpreted as superior to the building designer's design specification for handling, installing. restraining and bracing trusses and It does not preclude the use of other equivalent methods for restraming/bmcing and providing stability for the walls, columns, floors. roofs and all the interrelated structural building components as determined by the contractor Thus, SBCA and Tel expressly disclaim any responsibility for damages arising from the use, application, or reliance on the recommendations and information contained herein SBCA TRUSS PLATE INSTITUTE 6300 Enterprise Lane - Madison, WI 53719 218 N. Lee St.. Ste. 312 -Alexandria, VA 22314 608-274-4849 - sbcindustry.com 703-683-1010 " 1pinstorg RC to-Z500 All State Engineering & Testing Consultants, Inc. TESTING LABORATORIES -ENGINEERS -INSPECTION SERVICES -CHEMISTS -DRILLING -ENVIRONMENTAL SERVICES November 2, 2015 Monica Savits-.a 1460 NE 103rd,°Street. Miami Sh "*FL 33138 RE: Savits — Christopher Residence 1460 NE 1031d Street. Miami Shores, FL 33138 To whom it may concern, This letter presents the results of All State Engineering & Testing Consultants, Inc. (ASETC) Geotechnical Engineering Study for the above referenced project. The purpose of the geotechnical engineering study was to evaluate the site subsurface conditions and provide foundation recommendations for the project. Project Description Out understanding of the site is based on our observations during our subsurface investigation. Information you prgvided to us indicates the project consists of the construction of a new house. Test Method and Subsurface Investigation The borings were conducted in accordance with procedures outlined for Standard Penetration Test and split spoon sampling of soils by ASTM Method D-1586 as described below. Two (2) feet long, two (2) inches O.D. split spoon sampler was driven into the ground by successive blows with a 140 Ibs hammer dropping thirty (30) inches. The soil sampler was driven two (2) feet at a time (continuous method) then extracted for visual examination and classification of the soil samples. The number of blows required for one (1) foot penetration of the sample is designated as "N" (known as the standard Penetration Resistance Value). The N Value provides an indication of the relative density of non - cohesive soils and the consistency of cohesive soils. A general evaluation of soils is made from the established correlation between "N" and the relative density or consistency of soils. This dynamic method of soil testing has been widely accepted by foundation engineers and architects to conservatively evaluate the bearing capacity of soils. The subsurface investigation consisteq of performing ftee{a), 25-ft deep Standard Penetration Test (SPT) borings (B-1, B-2, and B-3). The aorings:Ndr4perfjrjj0 orl October 30, 2015. ... • an .... • � • • • • • : • • : ALL �mAmTcE 12949 W Okeechobee Rd, Hialeah;• 3artJens' FL'336f$ / Phone: 305-888-3373 Fax: 305-888-7443 Based on the information obtained from the SPT borings, Boring B-1 comprised of Topsoil from 0'-0" to 0'- 2", Backfill — Grey medium Sand with Rock fragments from 0'-2" to 6'-6" with N value ranging from 8 to 22, Brown medium Sand with some Wood pieces from 6'-6" to 8'-0" with N value 2, Black medium Sand with Muck and some Wood pieces from 8'-0" to 13'-6" with N values ranging from 14 to 20, Grey medium Sand with some Rock fragments from 13'-6" to 18'-0" with N values ranging from 20 to 28, Tan medium Limerock from 18'-0" to 25'-0" with N value ranging from 47 to 91. Boring B-2 comprised of Topsoil from 0'-0" to 0'-2", Black medium Sand with some Rocks from 0'-2" to 6'- 0" with N value ranging from 5 to 15, Grey medium Beach Sand with Silt and Peat from 6'-0" to 12'-6" with N values ranging from 2 to 7, Grey medium Beach Sand from 12'-6" to 18'-0" with N values ranging from 16 to 34, Tan Limerock from 18'-0" to 25'-0" with N values ranging from 51 to 83. Boring B-3 comprised of Black medium Silica Sand with some Rocks from 0'-0" to 2'-0" with N value 12, Tan medium Sand with some Shells and Rocks from 2'-0" to 3'-6" with N value 8, Black medium Sand with some Rocks from 3'-6" to 8'-6" with N value 2 to 9, Grey medium Beach Sand with Silt from 8'-6" to 13'-0" with N value ranging from 4 to 18, Grey medium Beach Sand with Shells from 13'-0" to 17'-6" with N values ranging from 18 to 37, Tan medium Lime Sand with Coral Rock from 17'-6" to 22'-0" with N values ranging from 37 to 63, Tan Limerock from 22'-0" to 25'-0" with N values ranging from 36 to 66. Detailed subsurface information is provided in the attached SPT Soil Boring Reports. Groundwater Conditions The groundwater table was first encountered approximately 2'-0" below the existing ground surface during the performance of the borings. The groundwater elevation is expected to change with seasonal and tidal fluctuations, and during storm/hurricane events. The possibility of groundwater level fluctuations should be considered when developing the design and construction plans for the project. Foundation Evaluation and Recommendations Based on the encountered subsurface conditions and project location, we have evaluated a number of foundation systems for the project. Special consideration in the analysis was given due to the location of the property being in an area classified as a Special Flood Hazard Zone. Additionally, there exists the unsuitable soil strata of Silt (B-1: 8'-0" to 13'-6"; B-2: 6-0 to 12'-6"; B-3: 8'-6" to 13'-0") and also, there are areas of the sand strata Black/Brown medium Sand (B-1: 6'-6" to 8'-0"; B-2: 0'-2" to 6-0"; B-3: 3'-6" to 8'-6") which have N values that classify the soil's relative density as Loose. Because of these factors, we have selected the use of Augercast Piles and Helical Piles or Pin Piles. A deep foundation would serve to keep the structure in place in case of tidal surges/flood event. Also, the use of a foundation system using piling would bypass the unsuitable soils and organics and allow the direct transfer of the proposed structural loads to Ihe.limestons layer encountered below, thereby providing a stable foundation. The following Ole critetiersUld:bi Ijed.to design the support of the proposed structure: • .. • to • • . . . . . • • • • • • • • • . • • � •f1L4i EfRINGE 12949 W Okeechobee Rd, HialeahQartlens' FL•33df6 / Phone: 305-888-3373 Fax: 305-888-7443 Augercast Piles: The capacity of these piles is essentially developed in tip bearing and side friction. The analysis for this foundation option consisted of determining a pile capacity for a specific size and depth of installation. The relationship obtained is as follows: Pile Diameter Proposed Depth Allowable Compressive Capacity Allowable Tensile Capacity Allowable Lateral Capacity 14" 22' 35 tons 8 tons 2 tons The Augercast Piles should be installed with a minimum embedment of 3 ft into the limestone layer. Grout strength and steel reinforcement size should be determined by the Structural Engineer. ASETC should be provided with drawings and structural details upon their development for our review. A minimum of three (3) indicator piles should initially be installed at strategic locations in order to verify the suggested pile depth. The pile installation should be inspected to confirm compliance with depth penetration, continuity of grout, and reinforcing details. Helical Piles: The capacity of these piles is essentially developed in tip bearing and side friction. The analysis for this foundation option consisted of determining a pile capacity for a specific size and depth of installation. The relationship obtained is as follows: Shaft Proposed Allowable Allowable Tensile Type Diameter Depth Compressive Capacity Capacity Type B 3.5" 22' 15 tons 5 tons Helix Pile The Helical Piles' helix size/number and required installation torque should be determined by the Structural Engineer. ASETC should be provided with drawings and structural details upon their development for our review. Please refer to the chosen helical pile manufacturer's guide for termination and installation requirements. Helix size/number and/or final depth (shallower or deeper) may need to be adjusted according to torque values obtained during installation. A minimum of three (3) indicator piles should initially be installed at strategic locations in order to verify the suggested pile depth. The pile installation should be inspected to confirm compliance with torque requirements and depth. Pin Piles: The capacity of these piles is essentially developed in tip bearing. The analysis for this foundation option consisted of determining a pile capacity for a specific pile size and depth of installation. The relationship obtained is as follows: ... • • • ' Pile • •' • • Proposed' ' Allowable Compressive O.D. Depth Capacity 4" :•: :• '•� :.:' 5tons • bm CZ a • • . . ... • • • • • • • • • 00 • : ALLSTATE 12949 W Okeechobee Rd, Hialeah 4artlens,' FL633M / Phone: 305-888-3373 Fax: 305-888-7443 E Grout strength and steel reinforcement size should be determined by the Structural Engineer. ASETC should be provided with drawings and structural details upon their development for our review. A minimum of three (3) indicator piles should initially be installed at strategic locations in order to verify the suggested pile depth. The pile installation should be inspected to confirm compliance with depth penetration, continuity of grout, and reinforcing details. Limitations Regardless of the thoroughness of our geotechnical exploration there is always a possibility that conditions on the subject project may be different from those at the test locations. With this being said, ASETC reserves the right to amend/supplement this report upon discovery of new information. Should any subsoil conditions different from those reported in our boring logs be encountered during construction, All State Engineering and Testing Consultants, Inc. should be notified immediately. The conclusions provided by All State Engineering & Testing Consultants, Inc. are based solely on the information presented in this report. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval. We appreciate the opportunity to have been of service to you. Please feel free to contact us if there are any questions or comments pertaining to this report. Sincerely, iLtkt,.<,ci'� Gilberto Gavarrete PE # 51371 All State Engineering & Testing ,Conns pants, Inc. NNUUU2015 ATTACHMENT 1.0 — BORING LOG ATTACHMENT 2.0 — BORING LOCATION MAP ....... . .. .. • • • • • • • • • • • ••• ••• ••• ••• • • •• • ••• ••• ••• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • : � • • � �ci�TcaAacE 12949 W Okeechobee Rd, Hialeah 6rdens,• FL�3did / Phone: 305-888-3373 Fax: 305-888-7443 ATTACHMENT 1.0 - BORING LOG ....... . .. .. • ••• ••• ••• • • • ALL STATE All State En jineerinq &Testing Consultants, Inc. ENGINEERING TESTING LABORATORIES -ENGINEERS -INSPECTION SERVICES-CHEMIST-DRILLING-ENIVIRONMENTAL SERVICES 12949 West Okeechobee Rd. Unit C4. Hialeah Gardens, Florida 33018 / Phone: 305888.3373, Fax: 305888.7443 SPT SOIL BORING REPORT CLIENT: Monica Savits Page: 1 of 1 CLIENT ADDRESS: 1460 NE 103rd Street. Miami Shores, FL 33138 Report #: 1 PROJECT: Savits - Christopher Residence Boring #: B-1 PROJECT ADDRESS: 1460 NE 103rd Street. Miami Shores, FL 33138 Date: 10/30/15 BORING LOCATION: See the attached Boring Location Map Driller: AG DEPTH (FEET) DESCRIPTION OF MATERIALS Sample No. Hammer blows on sampler "N" Value 1 0'-0" to 0'-2" Topsoil 0'-2" to 6'-6" Backfill - Grey medium Sand with Rock fragments 0'-2' ................................ 10 12 22 2 3 ................. 2'-4' .........� �....... 9 6 19 4 5 .......6 4'-6' ': 5 ............................ 3 4 8 6 7 6'-6" to 8'-0" Brown medium Sand with some Wood pieces 6'-8' 2 1 .................................... 1 1 2 8 9 8'-0" to 13'-6" Black medium Sand with Muck and some Wood pieces 8'-10' 3 € 6 ............................. 8 7 14 10 11 10'-12' 7 8 .................�................... 9 8 17 12 13 12'-14' ................<.........9........ 11 10 20 14 13'-6" to 18'-0" Grey medium Sand with some Rock fragments 15 14'-16' 3...............1 2....... 13 14 25 16 17 16'-18' 12 1 5......:.................... 16 25 28 18 19 18'-0" to 25'-0" Tan medium Limerock 18'-20' 28 3?.,..... ............................ . 30 € 32 61 20 21 20'-22' 31.............. 3.3....... 31 36 64 22 23 22'-24' ........................ 48....... 43 1 41 91 24 25 24'-26' ..... 49............. 47....... 47 26 End of Boring @ 25'-0" 27 26'-28' ................... 28 29 30 Respectfully Submitted: WATER TABLE: 2'-0" below surface, ,,, , , e • : •• ;•,;;:00: NOV02-2015- • • c4tkL1�, • • • • • 3,Qvie,:bartoret PE#51371 • • • g neering & Testing Consultants, Inc. As a mutual protection to clients, the public and Qurse¢es, 911 n oils; are submittdU at tht iuhfidenbal property of Giants, and authorization for publication of statements, conclusions or extracts from or rdgarding cur reportsMs resetved pending our, wvritten approval. • • •.• • • 0 •.• • ALLSTATE All State Engineering & Testing Consultants, Inc. ENGINEERING TESTING LABORATORIES -ENGINEERS -INSPECTION SERVICES-CHEMIST-DRILLING-ENIVIRONMENTAL SERVICES 12949 West Okeechobee Rd. Unit C-4. Hialeah Gardens, Florida 33018 / Phone: 305-888-3373, Fax: 305-888-7443 SPIT SOIL BORING REPORT CLIENT: Monica Savits Page: 1 of 1 CLIENT ADDRESS: 1460 NE 103rd Street. Miami Shores, FL 33138 Report #: 1 PROJECT: Savits - Christopher Residence Boring #: B-2 PROJECT ADDRESS: 1460 NE 103rd Street. Miami Shores, FL 33138 Date: 10/30/15 BORING LOCATION: See the attached Boring Location Map Driller: AG DEPTH (FEET) DESCRIPTION OF MATERIALS Sample No. Hammer blows on sampler " N" Value 1 0'-0" to 0'-2" Topsoil 0'-2" to 6'-0" Black medium Sand with some Rocks 0'-2' 6 i 7 ................:.................... 8 6 15 2 3 2'4 6 3 ..................................... 2 4 5 q 5 ........... 4'-6' ................3........ 2 2 5 6 7 6'-0" to 12'-6" Grey medium Beach Sand with Silt and Peat 6'-8' 2 1......... ............................. 1 1 2 8 9 8'-10, 1 € 1 ................ �.................... 2 3 3 10 11 10'-12' i 4 4.......�................... 3 6 7 12 13 12'-6" to 18'-0" Grey medium Beach Sand 12'-14' 8 ....4........7 9 8 16 14 15 14'-16' ................ 12 13 27 16 17 16'-18' 6..............15....... 19 25 34 1 g 19 18'-0" to 25'-0" Tan Limerock 18'-20' 28 22 ..................................... 29 •. 26 51 20 21 20'-22' ..... 23......:....... 31........ 36 38 67 22 23 22'-24' .1 i ...................... 40....... 43 41 83 24 25 24'-26' ......2............. 40. 40 26 End of Boring @ 25'-0" 27 26-28' ..................................... 28 29 28'-30' 30 Respectfully Submitted: WATER TABLE: 2'-4" below surface • • • • • • • • ........V 0 2 2015 .. ••• .. • • • • • Gilbertp ret PE #51371 • • • • • Epg ee ing & Testing Consultants, Inc. . . .. . • . • • ...... As a mutual protection to clients, the public and ourselveso all reports aressubmilled�s the lx neAd. RtorproPerty of clients, and authorization for publication of statements, conclusions or extracts from or regardingbQr repoRs is reservtd penning our written approval. • • • • • • • • • • • •• •• • • • •• •• ••• • • • ••• • • ALLSTATE All State Engineering & Testing Consultants, Inc. ENGINEERING TESTING LABORATORIES -ENGINEERS -INSPECTION SERVICES-CHEMIST-DRILLING-ENIVIRONMENTALSERVICES 12949 West Okeechobee Rd. Unit C4. Hialeah Gardens, Florida 33018 / Phone: 305-888.3373, Fax: 305-888-7443 SPT SOIL BORING REPORT CLIENT: Monica Savits Page: 1 of 1 CLIENT ADDRESS: 1460 NE 103rd Street. Miami Shores, FL 33138 Report #: 1 PROJECT: Savits - Christopher Residence Boring #: B-3 PROJECT ADDRESS: 1460 NE 103rd Street. Miami Shores, FL 33138 Date: 10/30/15 BORING LOCATION: See the attached Boring Location Map Driller: AG DEPTH (FEET) DESCRIPTION OF MATERIALS Sample No. Hammer blows on sampler "N" Value 1 0'-0" to 2'-0" Black medium Silica Sand with some Rocks 0'-2' 8 s 6 ................... 6 3 12 2 3 2'-0" to 3'-6" Tan medium Sand with some Shells and Rocks ................. 2'-4' 4 ........5........ 3 2 8 4 3'-6" to 8'-6" Black medium Sand with some Rocks 5 ...................................... 4'-6' 2 1 1 1 2 6 7 6'-8' 4 -3....... .................... 5 4 g 8 9 8'-6" to 13'-0" Grey medium Beach Sand with Silt 8'-10, 3 € 2........ ................ <........... 2 3 4 10 11 10'-12' ....... 4 5 ............................... 5 6 10 12 13 12'-14' 10 3......�........� ........ 8 1 10 18 14 13'-0" to 17'-6" Grey medium Beach Sand with Shells 15 14'-16' ........5.................3....... 12 13 25 16 17 16-18' 1-2 ............. a....... 19 's 23 37 18 17'-6" to 22'-0" Tan medium Lime Sand with Coral Rock 19 18'-20' ..... 25............. 26....... 21 28 47 20 21 20'-22' ..... 3.............. 30....... 33 32 63 22 23 22'-0" to 25'-0" Tan Limerock 22'-24' 34 € 35 ................�.......... . 31 30 66 24 25 24'-26' 36 .... 38.......................... 36 26 End of Boring @ 25'-0" 27 ..................................... 28 29 28'-30' ..................................... 30 Respecit0y `submitted: WATER TABLE: 2'-6" below surface .. ... • • . .......NOV o 2 201� . ......... ......... .. . 0:0 . Gil e G err • • • :All S ring & Testing Consultants, Inc. •• • . • • . • • . • As a mutual protection to clients, the public and ourselves all reports arc•susmded as the CT}I Jtorproperty of clients, and authorization for publication of statements, conclusions or extracts from or regarding tar report's is reserved pending our wriiten approval. • • • • • • • • • • • •• •• • • • •• •• ••• • • • ••• • • ATTACHMENT 2.0 - BORING LOCATION MAP .. ••• .. ... • . .. . . .. .. .... .. . • • • • • •• .... • • • • • • • • . • • •.• .. • • •.• • • • • • • • ••• • • • • • • • • • • • • • ••• • • • • • • YYY Y Y 0 000 Y 0 FORM R405-2014 FLORIDA ENERGY EFFICIENCY CODE FOR BUILDING CONSTRUCTION Florida Department of Business and Professional Regulation - Residential Performance Method Project Name: Savits Residence a, Builder Name: es . Street: 1460 NE 103 ST Permit Office: Dade County(k City, State, Zip: Miami Shores, FL, 33144 Permit Number: Owner: Savits Residence Jurisdiction: 231000 Design Location: FL, Miami County:: Miami -Dade (Florida Cl'm to zone 1 1. New construction or existing Addition 9. Wall Types (3321.6 sqft.) Insu)ation Area 2. Single family or multiple family Single-family a. Concrete Block - Int Ins 16x� e0i r b. Interior Frame - Wood, I 'terior^ .' R 4.1 2810.90 ft2 �12.38 3. Number of units, if multiple family 1 • c. Concrete Block - Int Insul, Adjacent f-4.1 ft2 R=11.0 198.33 ft2 4. Number of Bedrooms(Bedrms In Addition) 3(0) d. N/A R= ft2 10. Ceiling Types (4020.0 sqft.) Insulation Area 5. Is this a worst case? No a. Under Attic (Vented) R=30.0 4020.00 ft2 6. Conditioned floor area above grade (ft2) 4020 b. N/A R= ft2 Conditioned floor area below grade (ft2) 0 c. N/A R= ft2 11. Ducts R ft2 7. Windows(753.2 sqft.) Description Area a. Sup: NewSpace2, Ret: NewSpace2, AH: NewSpa 6 131 a. U-Factor: Dbl, U=1.08 753.24 ft2 b. Sup: Main, Ret: Main, AH: Main 6 600 SHGC: SHGC=0.50 c. Sup: NewSpace3, Ret: NewSpace3, AH: NewSpa 6 221 b. U-Factor: N/A ft2 12. Cooling systems kBtu/hr Efficiency SHGC: a. Central Unit 54.0 SEER:15.00 b. Central Unit 18.0 SEER:15.00 c. U Factor: N/A ft2 c. Central Unit 24.0 SEER:15.00 SHGC: 13. Heating systems kBtu/hr Efficiency d. U-Factor: N/A ft2 a. Electric Strip Heat 34.1 COP:1.00 SHGC: b. Electric Strip Heat 17.1 COP:1.00 Area Weighted Average Overhang Depth: 5.058 ft. c. Electric Strip Heat 17.1 COP:1.00 Area Weighted Average SHGC: 0.500 14. Hot water systems - Replacement equipment a. Electric Tankless Cap: 1 gallons 8. Floor Types (4020.0 sqft.) Insulation Area EF: 0.920 a. Slab -On -Grade Ede Insulation R=0.0 3353.00 ft2 9 b. Conservation features b. Floor Over Other Space R=0.0 667.00 ft2 None c. N/A R= ft2 15. Credits Pstat Total Proposed Modified Loads: 140.59 Glass/Floor Area: 0.187 PASS Total Baseline Loads: 141.56 1 hereby certify that the plans and specifications covered by Review of the plans and YIE Srq�t� this calculation are in compliance with the Florida Energy specifications covered by this © Code. calculation indicates compliance�,y r with the Florida Energy Code. PREPARED BY: 2 � G!A Before construction is completed '• ' "" � � DATE: this building will be inspected for compliance with Section 553.908 � I hereby certify that this building, as designed, is in compliance Florida Statutes. with the Florida Energy Code. C40 WE OWNER/AGENT: .. .8LAUNQaOF.FLQlA6, DATE: C=An: • - Compjjoenq$(7?jr� MIrr `c certii ry��e@i�11r5 -co rrf(iIi a re ires ar5�� test �epibrs in a r �ewith t 8 8 " o 9/8/2016 9A L E by the air handler unit manufacturer that the air handler enclosure qualifies as nce with R403.2.2.1. • and Insulation Inspetotiorr ftiecklist in accordance with R402.4.1.1 and an envelope leakage •4.1.2. . . . . . . . .. : . .. . . . . . . . . . . . .. . . . . . . . . .... ....... . ... . . . . . . . . . . EnergyGauge® USA - FlaReM14 Section R405.4o;Eoinplian40 Software Page 1 of 5 FORM R405-2014 PROJECT Title: Savits Residence Bedrooms: 3 Address Type: Street Address Building Type: User Conditioned Area: 4020 Lot # Owner: Savits Residence Total Stories: 2 Block/SubDivision: # of Units: 1 Worst Case: No PlatBook: Builder Name: Rotate Angle: 0 Street: 1460 NE 103 ST Permit Office: Dade County Cross Ventilation: No County: Miami -Dade Jurisdiction: 231000 Whole House Fan: No City, State, Zip: Miami Shores, Family Type: Single-family FL, 33144 New/Existing: Addition Comment: CLIMATE IECC Design Temp Int Design Temp Heating Design Daily Temp V/ Design Location TMY Site Zone 97.5 % 2.5 % Winter Summer Degree Days Moisture Range FL, Miami FL_MIAMI_INTL_AP 1 51 90 70 75 149.5 56 Low BLOCKS Number Name Area Volume 1 Block1 2754 23684.4 2 Block2 599 5151.4 3 Block3 667 5556.1 SPACES Number Name Area Volume Kitchen Occupants Bedrooms InfilID Finished Cooled Heated 1 Main 2754 23684.4 Yes 4 2 1 Yes Yes Yes 2 NewSpace2 599 5151.4 No 1 0 1 Yes Yes Yes 3 NewSpace3 667 5556.1 No 2 1 1 Yes Yes Yes FLOORS # Floor Type Space Perimeter Perimeter R-Value Area Joist R-Value Tile Wood Carpet 1 Slab -On -Grade Edge Insulatio Main 259 ft 0 2754 ft2 ---- 0.2 0 0.8 2 Slab -On -Grade Edge Insulatio NewSpace2 113 ft 0 599 ft2 ---- 0.2 0 0.8 3 Floor Over Other Space NewSpace3 ---- ---- 667 ft2 0 0.2 0 0.8 ROOF V Roof Gable Roof Solar SA Emitt Emitt Deck Pitch # Type Materials Area Area Color Absor. Tested Tested Insul. (deg) 1 Hip Barrel tile 3456 ft2 0 ft2 Medium •. 0.75 No 0.9 No 0 14 • .ATTIC • • • • • • • V # Type Ventilation Vent Ratio (1 in) Area RBS IRCC 1 Full attic Vented ; ; .150 ; ; ; ; 3353. i2 Y N 00 9/8/2016 9:48 AM EnergyGauge® USA - FlaRes2014 Section R405.4.1 Compliant Software Page 2 of 5 FORM R405-2014 CEILING # Ceiling Type Space R-Value Ins Type Area Framing Frac Truss Type 1 Under Attic (Vented) Main 30 Blown 2754 ft2 0.11 Wood 2 Under Attic (Vented) NewSpace2 30 Blown 599 ft2 0.11 Wood 3 Under Attic (Vented) NewSpace3 30 Blown 667 ft2 0.11 Wood WALLS arnt Adjacent Space To Wall Typele Cavity Width Ft In Et Height In Area Sheathing Framing R-Vahle Frnrtion AhSor Solar Belo w r�rade% 1 NE Exterior Concrete Block - Int Insul Main 4.1 45 3 8 6 384.6 ft2 4.1 0 0.3 0 2 SW Exterior Concrete Block - Int Insul Main 4.1 31 10 8 6 270.6 ft2 4.1 0 0.3 0 3 SE Exterior Concrete Block - Int Insul Main 4.1 51 2 8 6 434.9 ft2 4.1 0 0.3 0 4 NW Exterior Concrete Block - Int Insul Main 4.1 38 4 8 6 325.8 ft2 4.1 0 0.3 0 5 NE Main Interior Frame - Wood NewSpace2 4.1 36 9 8 6 312.4 ft2 0 0 0.3 0 6 SW Exterior Concrete Block - Int InsLNewSpace2 4.1 36 9 8 6 312.4 ft2 4.1 0 0.3 0 7 SE Exterior Concrete Block - Int InsLNewSpace2 4.1 5 0 8 6 42.5 ft2 4.1 0 0.3 0 8 NW Exterior Concrete Block - Int InsLNewSpace2 4.1 19 10 8 6 168.6 ft2 4.1 0 0.3 0 9 SW Garage Concrete Block - Int Insul Main 11 23 4 8 6 198.3 ft2 11 0 0.3 0 10 NE Exterior Concrete Block - Int InsLNewSpace3 4.1 23 0 8 4 191.7 ft2 4.1 0 0.3 0 11 SW Exterior Concrete Block - Int InsLNewSpace3 4.1 23 0 8 4 191.7 ft2 4.1 0 0.3 0 12 SE Exterior Concrete Block - Int InsLNewSpace3 4.1 29 0 8 4 241.7 ft2 4.1 0 0.3 0 _ 13 NW Exterior Concrete Block - Int InsLNewSpace3 4.1 29 0 8 6 246.5 ft2 4.1 0 0.3 0 DOORS # Ornt Door Type Space Storms U-Value Width Height Area Ft In Ft In 1 SW Wood Main None .46 3 7 21 ft2 WINDOWS Orientation shown is the entered, Proposed orientation. Wall Overhang v # Ornt ID Frame Panes NFRC U-Factor SHGC Area Depth Separation Int Shade Screening 1 NE 1 Metal Low-E Double Yes 1.08 0.5 16.0 ft2 2 ft 6 in 1 ft 0 in None None 2 NE 1 Metal Low-E Double Yes 1.08 0.5 11.0 ft2 2 ft 6 in 1 ft2 in None None 3 NE 1 Metal Low-E Double Yes 1.08 0.5 68.6 ft2 12 ft 0 in Oft 11 in None None 4 SW 2 Metal Low-E Double Yes 1.08 0.5 74.3 ft2 5 ft 0 in 1 ft 4 in None None 5 SW 2 Metal Low-E Double Yes 1.08 0.5 69.8 ft2 13 ft 0 in 1 ft 4 in None None 6 SE 3 Metal Low-E Double Yes 1.08 0.5 32.0 ft2 2 ft 6 in 1 ft 1 in None None 7 SE 3 Metal Low-E Double Yes 1.08 0.5 9.0 ft2 2 ft 6 in 1 ft 1 in None None 8 SE 3 Metal Low-E Double Yes 1.08 0.5 40.0 ft2 2 ft 6 in 1 ft 1 in None None 9 NW 4 Metal Low-E Double Yes 1.08 0.5 10.0 ft2 2 ft 6 in 1 ft 1 in None None 10 NW 4 Metal Low-E Double Yes 1.080 04.5 • • • •24.0 ft2 •.2 ft 6 in 1 ft 1 in None None 11 NW 4 Metal Low-E Double Yes 40 A 5 �'; ; ; ;4.'� ft'� 2 ft6 in 1 ft 1 in None None 12 SW 6 Metal Low-E Double Yes 1.1DE� • 0.5 • • • :48+0 k26 • 2 ft 6 in 1 ft 2 in None None 13 SW 6 Metal Low-E Double Yes 1.08 0.5 50.7 ft2 5 ft 0 in 1 ft 2 in None None 14 SW 6 Metal Low-E Double Yes • 1A8';' 0.5.*. .'. 74•3ft2 . 5•ft 0 in 1 ft 4 in None None 15 SE 7 Metal Low-E Double Yes 9.6 • 0!5 • • * •17e8 ft2 : A 0 in 1 ft 2 in None None •. e • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • ••• • • • ••• • • 9/8/2016 9:48 AM EnergyGauge® USA - FlaRes2014 Section R405.4.1 Compliant Software Page 3 of 5 FORM R405-2014 WINDOWS Orientation shown is the entered, Proposed orie V Wall # Ornt ID Frame Panes NFRC U-Factor SHGC 16 NW 8 Metal Low-E Double Yes 1.08 0.5 1 17 NE 10 Metal Low-E Double Yes 1.08 0.5 1 18 SW 11 Metal Low-E Double Yes 1.08 0.5 1 19 NW 13 Metal Low-E Double Yes 1.08 0.5 20 SE 3 Metal Low-E Double Yes 1.08 0.5 1 21 NW 8 Metal Low-E Double Yes 1.08 0.5 4 # Floor Area 1 596.48 ft2 # Scope Method 1 Wholehouse Proposed ACH(50) veiling Area 596.48 ft2 GARAGE Exposed Wall Perimeter F 72.6 ft INFILTRATION SLA CFM 50 ELA EgLA .000272 2866 157.34 295.9 HEATING SYSTEM Overhang Area Depth Separati 7.8ft2 04.6ft2 4.0ft2 2ft6in 1ft7in 8.0ft2 2ft6in 1ft0in 2ft6in 1ft0in 2ft6in 1ft0in 1.0ft2 2ft6in 1ft1in 8.0ft2 2ft6in 1 ft1 in Wall 8ft ACH .2309 Int Shade Screenii None None None None None None None None None None None None Wall Insulation 11 ACH 50 5 # System Type Subtype Efficiency Capacity Block Ducts 1 Electric Strip Heat None COPA 34.12 kBtu/hr 1 sys#2 2 Electric Strip Heat None COPA 17.1 kBtu/hr 2 sys#1 3 Electric Strip Heat None COPA 17.1 kBtu/hr 3 sys#3 COOLING SYSTEM # System Type Subtype Efficiency Capacity Air Flow SHR Block Ducts 1 2 3 Central Unit Central Unit Central Unit Split Split Split SEER: 15 54 kBtu/hr SEER: 15 18 kBtu/hr SEER: 15 24 kBtu/hr 1620 cfm 540 cfm 720 cfm 0.7 1 0.7 2 0.7 3 sys#2 sys#1 sys#3 HOT WATER SYSTEM # System Type SubType Location EF Cap Use SetPnt Conservation 1 Electric Tankless Garage 0.92 1 gal 60 gal 120 deg None SOLAR HOT WATER SYSTEM FSEC Cert # Company Name Collector System Model # Collector Model # Area Storage Volume FEF None None ft2 • • • • • • • • • • • •• • • • • • • • • • • • • • • • • • • • • ••• • • • ••• • • 9/8/2016 9:48 AM EnergyGaugeO USA - FlaRes2014 Section R405.4.1 Compliant Software Page 4 of 5 FORM R405-2014 DUCTS ---- Supply ---- ---- Return ---- Air CFM 25 CFM25 HVAC # V # Location R-Value Area Location Area Leakage Type Handler TOT OUT QN RLF Heat Cool 1 NewSpace2 6 131 ft2 NewSpace2 32 ft2 Default Leakage NewSpace2 (Default) (Default) 2 2 2 Main 6 600 ft2 Main 200 ft2 Default Leakage Main (Default) (Default) 1 1 3 NewSpace3 6 221 ft2 NewSpace3 55 ft2 Default Leakage NewSpace2 (Default) (Default) 3 3 TEMPERATURES Programable Thermostat: Y Ceiling Fans: Cooling Jan Feb Mar Apr May Xj] Jun Jul Aug Sep Oct Nov [Xj Dec Heating XJan JXJ XFeb JXJ JXXJ Mar JXXJ XApr May JXJ jXXj X] Jun Jul I jXXjAug XSep jXj XOct 1XI XNov JXJ JX] Dec Venting X Jan X Feb X Mar X Apr X May X Jun X Jul X Aug X Sep X Oct X Nov X Dec Thermostat Schedule: HERS 2006 Reference Hours Schedule Type 1 2 3 4 5 6 7 8 9 10 11 12 Cooling (WD) AM 78 78 78 78 78 78 78 78 80 80 80 80 PM 80 80 78 78 78 78 78 78 78 78 78 78 Cooling (WEH) AM 78 78 78 78 78 78 78 78 78 78 78 78 PM 78 78 78 78 78 78 78 78 78 78 78 78 Heating (WD) AM 66 66 66 66 66 68 68 68 68 68 68 68 PM 68 68 68 68 68 68 68 68 68 68 66 66 Heating (WEH) AM 66 66 66 66 66 68 68 68 68 68 68 68 PM 68 68 68 68 68 68 68 68 68 68 66 66 MECHANICAL VENTILATION Type Supply CFM Exhaust CFM Fan Watts HRV Heating System Run Time Cooling System None 0 0 0 0 1 - Electric Strip Heat 0% 1 - Central Unit 9/8/2016 9:48 AM EnergyGaugeO USA - FlaRes2014 Section R405.4.1 Compliant Software Page 5 of 5 FORM R405-2014 ENERGY PERFORMANCE LEVEL (EPL) DISPLAY CARD ESTIMATED ENERGY PERFORMANCE INDEX* = 99 The lower the EnergyPerformance Index, the more efficient the home. 1. New construction or existing 2. Single family or multiple family 3. Number of units, if multiple family 4. Number of Bedrooms 5. Is this a worst case? 6. Conditioned floor area (ft2) 7. Windows- Description a. U-Factor: Dbl, U=1.08 SHGC: SHGC=0.50 b. U-Factor: N/A SHGC: c. U-Factor: N/A SHGC: d. U-Factor: N/A SHGC: Area Weighted Average Overhang Depth Area Weighted Average SHGC: 8. Floor Types a. Slab -On -Grade Edge Insulation b. Floor Over Other Space c. N/A ���� -V I certify that this home Imo sec Construction througF , 8a ..... in this home beforyfiq j 1p�ep ay based on installecfC�dE c m liant I 1460 NE 103 ST, Miami Shores, FL, 33144 Addition 9. Wall Types Insulation Area Single-family a. Concrete Block - Int Insul, Exterior R=4.1 2810.90 ft2 b. Interior Frame - Wood, Interior R=4.1 312.38 ft2 1 c. Concrete Block - Int Insul, Adjacent R=11.0 198.33 ft2 3(0) d. N/A R= ft2 10. Ceiling Types Insulation Area No a. Under Attic (Vented) R=30.0 4020.00 ft2 4020 b. N/A R= ft2 Area c. N/A R= ft2 11. Ducts R ft2 753.24Area ft2 a. Sup: NewSpace2, Ret: NewSpace2, AH: NewSpa 6 131 b. Sup: Main, Ret: Main, AH: Main 6 600 ft2 c. Sup: NewSpace3, Ret: NewSpace3, AH: NewSpa 6 221 12. Cooling systems kBtu/hr Efficiency ft2 a. Central Unit 54.0 SEER:15.00 b. Central Unit 18.0 SEER:15.00 ft2 c. Central Unit 24.0 SEER:15.00 13. Heating systems kBtu/hr Efficiency a. Electric Strip Heat 34.1 COP:1.00 5.058 ft. b. Electric Strip Heat 17.1 COP:1.00 0.500 c. Electric Strip Heat 17.1 COP:1.00 Insulation Area 14. Hot water systems - Replacement equipment R=0.0 3353.00 ft2 a. Electric Cap: 1 gallons EF: 0.92 R=0.0 667.00 ft2 b. Conservation features R= ft2 None 15. Credits Pstat the Florida Energy Efficiency Code for Building !i�ng features which will be installed (or exceeded) . i%Npe, a new EPL Display Card will be completed ``` • `JN Builder Signature: M ;• 6 6 N Date: Address of New re : "� F * City/FL Zip: 1� S+ •.•• R I D P.•••� A L •ENG�� s *Note: This is not a-T%ikIim&-rgy Rating. If your Index is below 70, your home may qualify for energy efficient mortgage (EEM) incentives if you obtain a Florida EneVy134uie 3RJtir4.. Gorttacf the EnergyGauge Hotline at (321) 638-1492 or see the EnergyGauge web site at energygatgge.agl» for ikk sflon-and a list of certified Raters. For information about the Florida Building Code, Energy CCAseMfVtiort!,uc;ALFthe Florida Building Commission's support staff. **Label required by Section R303.1.3 of the Florida B;tldinx Codes tr er�y Copsegvation, if not DEFAULT. 9/8/2016 9:49 AM EnergyGauge® USA - FlaRes2014 - Section R405.4.1 Compliant Software Page 1 of 1 FORM R405-2014 Florida Department of Business and Professional Regulations Residential Whole t3uilding Performance and Prescriptive Methods ADDRESS: 1460 NE 103 ST Permit Number: Miami Shores, FL, 33144 MANDATORY REQUIREMENTS See individual code sections for full details. Ir 401.3 Energy Performance Level (EPL) display card (Mandatory). The building official shall require that an energy performance level (EPL) display card be completed and certified by the builder to be accurate and correct before final approval of the building for occupancy. Florida law [Section 553.9085, Florida Statues] requires the EPL display card to be included as an addendum to each sales contract for both presold and nonpresold residential buildings. The EPL display card contains information indicating the energy performance level and efficiencies of components installed in a dwelling unit. The building official shall verify that the EPL display card completed and signed by the builder accurately reflects the plans and specifications submitted to demonstrate compliance for the building. A copy of the EPL display card can be found in Appendix C. pr R402.4 Air leakage (Mandatory). The building thermal envelope shall be constructed to limit air leakage in accordance with the requirements of Sections R402.1 through R402.4.4. O R402.4.1 Building thermal envelope. The building thermal envelope shall comply with Sections R402.4.1.1 and R402.4.1.2. The sealing methods between dissimilar materials shall allow for differential expansion and contraction. • R402.4.1.1 Installation. The components of the building thermal envelope as listed in Table R402.4.1.1 shall be installed in accordance with the manufacturer's instructions and the criteria listed in Table 402.4.1.1, as applicable to the method of construction. Where required by the code official, an approved third party shall inspect all components and verify compliance. R402.4.1.2 Testing. The building or dwelling unit shall be tested and verified as having an air leakage rate of not exceeding 5 air changes per hour in Climate Zones 1 and 2, and 3 air changes per hour in Climate Zones 3 through 8. Testing shall be conducted with a blower door at a pressure of 0.2 inches w.g. (50 Pascals). Where required by the code official, testing shall be conducted by an approved third party. A written report of the results of the test shall be signed by the party conducting the test and provided to the code official. Testing shall be performed at any time after creation of all penetrations of the building thermal envelope. During testing: 1. Exterior windows and doors, fireplace and stove doors shall be closed, but not sealed, beyond the intended weatherstripping or other infiltration control measures; 2. Dampers including exhaust, intake, makeup air, backdraft and flue dampers shall be closed, but not sealed beyond intended infiltration control measures; 3. Interior doors, if installed at the time of the test, shall be open; 4. Exterior doors for continuous ventilation systems and heat recovery ventilators shall be closed and sealed; 5. Heating and cooling systems, if installed at the time of the test, shall be turned off; and 6. Supply and return registers, if installed at the time of the test, shall be fully open. O R402.4.2 Fireplaces. New wood -burning fireplaces shall have tight -fitting flue dampers and outdoor combustion air. O R402.4.3 Fenestration air leakage. Windows, skylights and sliding glass doors shall have an air infiltration rate of no more than 0.3 cfm per square foot (1.5 Us/m2), and swinging doors no more than 0.5 cfm per square foot (2.6 Us/m2), when tested according to NFRC 400 or AAMA/WDMA/CSA 101/I.S.2/A440 by an accredited, independent laboratory and listed and labeled by the manufacturer. Exception: Site -built windows, skylights and doors. O R402.4.4 Recessed lighting. Recessed luminaires installed in the building thermal envelope shall be sealed to limit air leakage between conditioned and unconditioned spaces. All recessed luminaires shall be IC -rated and labeled as having an air leakage rate not more than 2.0 cfm (0.944 Us) when tested in accordance with ASTM E 283 at a 1.57 psf (75 Pa) pressure differential. All recessed luminaires shall be sealed with a gasket or caulk between the housing and the interior wall or ceiling covering. R403.1.1 Thermostat provision (Mandatory). At least one thermostat shall be provided for each separate heating and cooling system. R403.1.3 Heat pump supplementary heat (Mandatory). Heat pumps having supplementary electric -resistance heat shall have controls that, except during defrost, prevent supplemental heat operation when the heat pump compressor can meet the heating load. 10 R403.2.2 Sealing (Mandatory)AII ducts, air handlers, and filter boxes and building cavities that form the primary air containment passageways for air distribution systems shall be considered ducts and plenum chambers, shall be constructed and sealed in accordance with Section C403.2.7.2 of the Commercial Provisions of this code and shall be shown to meet duct tightness criteria by post -construction or rough -in testing below. Duct tightness shall be verified by testing to Section 803 of the RESNET Standards by either an energy rater certified in accordance with Section 553.99, Florida Statutes, or as authorized by Florida Statutes, to be,;sua,%antWIIV leafreg" by eitDgr of the following: 1. Post -construction test: Total leakage shall be less than or etlyal to,;fq t1:13,1Umin3 Per 100 square feet (9.29 m2) of conditioned floor area when tested at a pressure differential of 0.1 inches w.g. (25 13.0 across t heserkire:systein, including the manufacturer's air handler enclosure. All register boots shall be taped or otherwise sealed during the test. 2. Rough -in test: Total leakage shall be less than or equal to 4 cfm (113 Umin) per 100 square feet (9.29 m2) of conditioned floor area when tested at a pressure differential of 0.1 inches w.g. (25Pa) acrosslbe s;slem, irscluding'tbe mvtfactyter's air handler enclosure. All registers shall be taped or otherwise sealed during the test. If the air handi'ej ss nql instal ft 9t tpe:mV qi ff)p t:st:total leakage shall be less than or equal to 3 cfm (85 Umin) per 100 square feet (9.29 m2) of conditioned &dr arg2. • • • • • • • • • • • • Exceptions: 1. The total leakage testis not required for ducts and air handless locateci egtirglg yuitbin the building envelope. 2. Duct testing is not mandatory for buildings complying bye ecjor6Rg 9;d'Fjhis bodes . .. .• . . • .• .. 9/8/2016 9:49 AM EnergyGauge® USA - FlaRes2014 - Section R405.4.1 Com Page 1 of 3 FORM R405-2014 MANDATORY REQUIREMENTS - (Continued) O R403.2.3 Building Cavities (Mandatory). Building framing cavities shall not be used as ducts or plenums. O R403.3 Mechanical system piping insulation (Mandatory). Mechanical system piping capable of carrying fluids above 105°F (41 °C) or below 55°F (13°C) shall be insulated to a minimum of R-3., R403.3.1 Protection of piping insulation. O R403.4.1 Circulating hot water systems (Mandatory). Circulating hot water systems shall be provided with an automatic or readily accessible manual switch that can turn off the hot-water circulating pump when the system is not in use. O R403.4.3 Heat traps (Mandatory). Storage water heaters not equipped with integral heat traps and having vertical pipe risers shall have heat traps installed on both the inlets and outlets. External heat traps shall consist of either a commercially available heat trap or a downward and upward bend of at least 3'/2 inches (89 mm) in the hot water distribution line and cold water line located as close as possible to the storage tank. O R403.4.4 Water heater efficiencies (Mandatory). 0 R403.4.4.1 Storage water heater temperature controls R403.4.4.1.1 Automatic controls. Service water heating systems shall be equipped with automatic temperature controls capable of adjustment from the lowest to the highest acceptable temperature settings for the intended use. The minimum temperature setting range shall be from 100°F to 140°F (38°C to 60°C). R403.4.4.1.2 Shut down. A separate switch or a clearly marked circuit breaker shall be provided to permit the power supplied to electric service systems to be turned off. A separate valve shall be provided to permit the energy supplied to the main burner(s) of combustion types of service water heating systems to be turned off. 0 R403.4.4.2 Water heating equipment. Water heating equipment installed in residential units shall meet the minimum efficiencies of Table C404.2 in Chapter 4 of the Florida Building Code, Energy Conservation, Commercial Provisions, for the type of equipment installed. Equipment used to provide heating functions as part of a combination system shall satisfy all stated requirements for the appropriate water heating category. Solar water heaters shall met the criteria Section R403.4.4.2.1. R403.4.4.2.1 Solar water heating systems. Solar systems for domestic hot water production are rated by the annual solar energy factor of the system. The solar energy factor of a system shall be determined from the Florida Solar Energy Center Directory of Certified Solar Systems. Solar collectors shall be tested in accordance with ISO Standard 9806, Test Methods for Solar Collectors, and SRCC Standard TM-1, Solar Domestic Hot Water System and Component Test Protocol, Collectors in installed solar water heating systems should meet the following criteria: 1. Be installed with a tilt angle between 10 degrees and 40 degrees of the horizontal; and 2. Be installed at an orientation within 45 degrees of true south. O R403.5 Mechanical ventilation (Mandatory). The building shall be provided with ventilation that meets the requirements of the Florida Building Code, Residential or Florida Building Code, Mechanical, as applicable, or with other approved means of ventilation. Outdoor air intakes and exhausts shall have automatic or gravity dampers that close when the ventilation system is not operating. ( R403.6 Heating and cooling equipment (Mandatory). The following sections are mandatory for cooling and heating equipment. 0 R403.6.1 Equipment sizing. Heating and cooling equipment shall be sized in accordance with ACCA Manual S based on the equipment loads calculated in accordance with ACCA Manual J or other approved heating and cooling calculation methodologies, based on building loads for the directional orientation of the building. The manufacturer and model number of the outdoor and indoor units (if split system) shall be submitted along with the sensible and total cooling capacities at the design conditions described in Section R302.1. This code does not allow designer safety factors, provisions for future expansion or other factors which affect equipment sizing. System sizing calculations shall not include loads created by local intermittent mechanical ventilation such as standard kitchen and bathroom exhaust systems. • R403.6.1.1 Cooling equipment capacity. Cooling only equipment shall be selected so that its total capacity is not less than the calculated total load, but not more than 1.15 times greater than the total load calculated according to the procedure selected in Section 403.6, or the closest available size provided•by the menwfacturer's product lines. The corresponding latent capacity of the equipment shall not be less than the calculated latent load: •: ; ; ; .. ••• •• • • • •• • • • • • • . • . • • •• • • • • • • 00 • • • •• •• • • • •• •• ••• • • • ••• • • 9/8/2016 9:49 AM EnergyGauge® USA - FlaRes2014 - Section R405.4.1 Com Page 2 of 3 FORM R405-2014 MANDATORY REQUIREMENTS - (Continued) O R403.6.1.1 Cooling equipment capacity. (continued) The published value for AHRI total capacity is a nominal, rating -test value and shall not be used for equipment sizing. Manufacture's expanded performance data shall be used to select cooling -only equipment. This selection shall be used to select cooling -only equipment. This selection shall be based on the outdoor design dry bulb temperature for the load calculation (or entering water temperature for water -source equipment), the blower cfm provided by the expanded performance data, the design value for entering wet bulb temperature and the design value for entering dry bulb temperature. Design values for entering wet bulb and dry bulb temperature shall be for the indoor dry bulb and relative humidity used for the load calculation and shall be adjusted for return side gains if the return duct(s) is installed in an unconditioned space. Exceptions: 1. Attached single- and multi -family residential equipment sizing may be selected so that its cooling capacity is less than the calculated total sensible load but not less than 80 percent of that load. 2. When signed and sealed by a Florida -registered engineer, in attached single- and multi -family units, the capacity of equipment may be sized in accordance with good design practice. O R403.6.1.2 Heating equipment capacity R403.6.1.2.1 Heat pumps. Heat pumps sizing shall be based on the cooling requirements as calculated according to Section R403.6.1.1 and the heat pump total cooling capacity shall not be more than 1.15 times greater than the design cooling load. R403.6.1.2.2 Electric resistance furnaces. Electric resistance furnaces shall be sized within 4 kW of the design requirements calculated according to the procedure selected in Section R403.6.1. R403.6.1.2.3 Fossil fuel heating equipment. The capacity of fossil fuel heating equipment with natural draft atmospheric burners shall not be less than the design load calculated in accordance with Section R403.6.1. O R403.6.1.3 Extra capacity required for special occasions. Residences requiring excess cooling or heating equipment capacity on an intermittent basis, such as anticipated additional loads caused by major entertainment events, shall have equipment sized or controlled to prevent continuous space cooling or heating within that space by one or more of the following options: A separate cooling or heating system is utilized to provide cooling or heating to the major entertainment areas. A variable capacity system sized for optimum performance during base load periods is utilized. ❑ R403.7 Systems serving multiple dwelling units (Mandatory). Systems serving multiple dwelling units shall comply with Sections C403 and C404 of the Commercial Provisions in lieu of Section R403. ❑ R403.8 Snow melt system controls (Mandatory). Snow and ice -melting systems, supplied through energy service to the building, shall include automatic controls capable of shutting off the system when the pavement temperature is above 55°F, and no precipitation is falling and an automatic or manual control that will allow shutoff when the outdoor temperature is above 40°F. ❑ R403.9 Swimming pools, inground spas and portable spas (Mandatory). The energy requirements for residential pools and inground spas shall be as specified in Sections R403.9.1 through R403.9.3 and in accordance with ANSI/APSP-15. The energy requirements for portable spas shall be in accordance with ANSI/APSP-14. O R403.9.1 Pool and spa heaters. All pool heaters shall be equipped with a readily accessible on -off switch that is mounted outside the heater to allow shutting off the heater without adjusting the thermostat setting. R403.9.1.1 Gas and oil -fired pool and spa heaters. All gas- and oil -fired pool and space heaters shall have a minimum thermal efficiency of 82 percent for heaters manufactured on or after April 16, 2013 when tested in accordance with ANSI Z 21.56. Pool heaters fired by natural gas or LP gas shall not have continuously burning pilot lights. R403.9.1.2 Heat pump pool heaters. Heat pump pool heaters shall have a minimum COP of 4.0 when tested in accordance with AHRI 1160, Table 2, Standard Rating Conditions -Low Air Temperature. A test report from an independent laboratory is required to verify procedure compliance. Geothermal swimming pool heat pumps are not required to meet this standard. O R403.9.2 Time switches. Time switches or other control method that can automatically turn off and on heaters and pumps according to a preset schedule shall be installed on all heaters and pumps. Heaters, pumps and motors that have built in timers shall be deemed in compliance with this equipment. Exceptions: • 1. Where public health standards require 24-hour pump operations. 2. Where pumps are required to operate sola - arVkVsje-Feat-jecoyery poglpeating systems. 3. Where pumps are powered exclusively fram on-si$ rAg4va0le ge0e03tiQn. O R403.9.3 Covers. Heated swimming pools and inground perm'enly inslallgd iV4 shg4 be equipped with a vapor -retardant cover on or at the water surface or a liquid cover or other means proved to re*dce Meat As. • • • • Exception: Outdoor pools deriving over 70 percent of the energy for heating from site -recovered energy, such as a heat pump or solar energy source computed over an operatin8 seas". . • • • RR404.1 Lighting equipment (Mandatory). A minimum df4 pejcentof•tb8lain* iq p1r%antntV installed lighting fixtures shall be high -efficacy lamps or a minimum of 75 percent of permanentV^talptl light1h84fixtUrM shah �entain only high efficacy lamps. Exception: Low -voltage lighting shall not be required to utilize high -efficacy lamps. O R404.1.1 Lighting equipment (Mandatory). Fuel jas lighting systems shall not have continuously burning pilot lights R405.2 Performance ONLY. All ducts not entirely inside the biding therjalkn=elope shall be�nsulated to a minimum of R-6. O R405.2.1 Performance ONLY. Ceilings shall have mintnunt ip%glJti* (I R-29. Vygerg Single assemby of the exposed deck and beam type or concrete deck roofs do not have sufficent space, R-10 is dfl8wed. • • • • • • • 9/8/2016 9:49 AM EnergyGauge® USA - FlaRes2014 - Section R405.4.1 Com Page 3 of 3 Residential System Sizing Calculation Summary Savits Residence Project Title: 1460 NE 103 ST Savits Residence Miami Shores, FL 33144 9/8/2016 Location for weather data: Miami, FL - Defaults: Latitude(25.82) Altitude(7 ft.) Temp Range(L) Humidity data: Interior RH 50% Outdoor wet bulb 77F Humidity difference 56 r. Winter design temperature(TMY3 99%) 49 F Summer design temperature(TMY3 99%) 92 F Winter setpoint 70 F Summer setpoint 75 F Winter temperature difference 21 F Summer temperature difference 17 F Total heating load calculation 38236 Btuh Total cooling load calculation 88455 Btuh Submitted heating capacity % of calc Btuh Submitted cooling capacity % of calc Btuh Total (Electric Strip Heat) 178.7 68320 Sensible (SHR = 0.70) 108.7 67200 Latent 108.1 28800 Total 108.5 96000 WINTER CALCULATIONS Winter Heating Load (for 4020 saft Load component Load Window total 753 sqft 17084 Btuh Wall total 2547 sqft 4152 Btuh Door total 21 sqft 203 Btuh Ceiling total 4020 sqft 2689 Btuh Floor total See detail report 9218 Btuh Infiltration 212 cfm 4890 Btuh Duct loss 0 Btuh Subtotal 38236 Btuh Ventilation 0 cfm 0 Btuh TOTAL HEAT LOSS 38236 Btuh Ceilings(7.0$k) SUMMER CALCULATIONS Floors(24.1%) JUmmer uoonng Loaa Tor 4uzu S TT Load component Load Window total 753 sqft 34171 Btuh Wall total 2547 sqft 3361 Btuh Door total 21 sqft 309 Btuh Ceiling total 4020 sqft 2689 Btuh Floor total 0 Btuh Infiltration 159 cfm 2969 Btuh Internal gain 18310 Btuh Duct gain 0 Btuh Sens. Ventilation 0 cfm 0 Btuh Blower Load 0 Btuh Total sensible gain 61809 Btuh Latent gain(ducts) 0 Bjdtf Latent gain(infiltration) 6046 Bich Latent gain (ventilation) 0 Blu� Latent gain(internal/occupants/other) 20600 Btuh Total latent gain 26646 Ptu4 TOTAL HEAT GAIN 88455 ;B1uh •• Infi ((13.2%j • I—— — .._a ('Amdotisi.44.K, j �1�'indv�vs(38.5°i6 Latent int(23.3%j MIH�MWOOLL EnergyGa@qe®NU3RC,6 JOSE A, MAR TINEZ POE Civil Structural. Engineers Lic. ,# PE-631 SQ9 STRUCTURAL CALCULATION S.AVITS RESIDENCE 1.460 NE 103 RD. STREET MIAMI SHORES ,FLORIDA .. 714 E. 5111 St. Hialeah, FL 33010 •;'Pha:iq: f 345}8,$7 44;17 . . • • . • • . . . . ...... . .... .... . . .... . 4 INDEX 1. .'DESIGN CRITERIA (PAGE# 1) 2. WIND ANALYSIS AND TRUSS REACTION (PAGES # 2 THRU # 5) 3.MASONRY WALL DESIGN. (PAGES # 6 THRU # 9) 4. CONCRETE BEAM DESIGN (PAGES # 107HRP # 21), 5.S STEEL BEAM DESIGN. (PAGES # 2ftHRU # 46)1 6. CONCRETE SLAB DESIGN. (PAGES # 46 THRU # 48) 7. STEEL COLUMN DESIGN. (PAGES #49 THRU # 51) 8. CONCRETE GRADE BEAM DESIGN. (PAGES #52 THRU # 66) 9, PILE CAPACITY. (PAGES # 67 THRU # 73) 10. CANTILIVER WALL. (PAGES # 74 THRU # 79) 11. PRESSURE WINDOW AND DOOR. (PAGES # 80 THRU # 82) :0 000 000 ese 000 WIND LOADS (ANSVA►SCE 7»11% Method 2-Analytical Proceduee Basic Wind 'Speed, -V= 175 mph (FBC 2014) Structural Category 2 Exposure Category D Importance Factor l =1<.0 (FBC 2014) Kd =0.85 By Calculations: Desigg Pressures for Components and Cladding Design Wind Pressure for Walls Roof Design Wind Pressure Doors and Windows Design Wind Pressure Design Pressure or Main Wind Force Resisting System Reactions : Gravity and Uplift of Truss and Girder truss ....... . .. .. . ......... . .. ... .. . . . .. .. . .... . .. .. . .... .. .. .. . . . ....... . .. . . . . . • . • .... ....... . • •• •• • • • •• •• ••• • • • ••• • • N Ll MacaWind Pro v.2..-2..7..,,5- per ASCE. 1-10 Developed by, RECA kntetfpriits,, Inc. Copyright Date Project- No; lohNCi ,fnput parameters. Directional Prooeaurq•jdj koighis quilaing (Ch 27 Part 1) Basic wind Speg#(V). () mph StruCturbI Category Tr Exposure Category l4atural Frequency N/A Flexible Structure No 0.85, -T=portan-cii rector birect,ional Factor Alpha .11.50 Zg. 700-00 ft At 0.09 Et 1.07 P.0 0.11 am 1. 0.80 650.00 Cc Epsilon 0.15 0.13 Zmin 7.00 ft Pitch of Roof 3 - 12 Slope of Roof(Theta) 14.04 Dog h. mean Roof fit 24.85 ft Type of Roof HIPPED ft FHt: Ridge Ht 29.45 2.50 ft ft Ehtt eavi height'20.25 overhead Type OR W/ soffit OF-. Roof Overhang at Eave- sidl Length Along Ridge - 108-00 ft Bid.; width Across Ridge- 69.58 ft Length of Hipped Ridge - 90,00 ft Roof slope on Hip End - 38-65 Deg Gust Factor Calculations Gust Factor Category 1 Rigid Structures - sizplifivd method 0.85 s r I , For Rigid StruCttites (Nast.. Freq.>1 H--) use -to. Rigid Complete Analysis ;�;st rat� - C4ate4o't gid Structures • 14o91 ft, zm: 0 1 6 *Ht 17--1. CC,(33/Zm)^0.j67 K0.17 (Zm/33 -ps -4 Ion 588.55 ft C,ust2: 0.925*((141.7*lzm,3.4,Q)/(1+1.7*3.4*lzmi) 0.89 !lot a riexiblie Structure use the Lessor of Gustl or Gust2 Table 26.11-1 internal pressure Coefficients for Buildings, GCP1 qC'Pi : Internal Pressure Coefficient Red.,jctioa Factor for Large Volume Buildings, Ri .00 ft12 Aoc: -4otal Area of 00enings in Bldg Envelope .00 ft'3 VI: Unpartitioned internal Value 1,000 Votes: V) GCpi -0.55 Ri .I -.es: 2) -r'Cpi -0-55 Ri, Wind pressure Main Wind Force Resisting System (MWFRS) Ref Figure 27.4-1 1.12 K-h: 2.Q1*(RL/Zg)' �2'/Alpha� 1.00 Topographic Fac,,nr 1,F49ure 6-4) 21 1r1h1Xht:Kd 44.97 P3f. 0 D 2 5 6 * (V) 0.80 cpww; Windward Wall CPiRef Fig 6-6) 881.6.0 ft'Z Rcof Area Mo Factor based on Roof Area mWFRS-Wall Pressures for Wind Normal to 109 ft Wall (Normal to Ridge) w:.is a Load raczor of wall CP Pressure Pressure +GCpi (Psf) -GCpi (pof) --------------- ----------- ----------- Leewarc wal'. D -43�65 .0; 9 0 0 0 0-2.0': Wall EIV- *r-: 4t: 'P:**.qr• press Press Total Oft 006 so 0 0 'Psgo +Gcpi -G;Cpi ------------------------------------------------------------------- Ga 4 4,16 .25 trx dw5...75-1, � o 3.28 4 .11 a,* •q I a • 3.26 • • Pressure Pressure Ro:? Loc9%i!bn* CP +GCPj(psf)-GC-P)(psf) (D Windward --41n- -------------- ------- -- --- Cp - -------- -------------------- 63 -48,02 0.65 ukirward - Max Cp ' 6* 10 -�-28;56 20.91 iee,w-ard Norm to -Widge -() 49 ;-41'. 08 6.39 Iiippfid End bO to 12.42 ft) -6.40 -9.67 Hipped End (12.42' to 24.'85. ft) -0.96 59A4. -9.67 Hipped End (24,,05 to 49.I0 ft) - 0.50 -0.30 -43:15 5,62 13.21 nipped Znd,(49-70 to 73-58 ft) 0.00 29.51 29 w 51' overhang Bbt-(Windward only)• Notes - Normal to Pid4W n Note - (If Per Fig 27�.4-1 Note 7, Since Theta > 10 Deg basscalc on Hea 'Hi Nota; (2) Wall, A. Roof,itealures - Qh*(G*co - OC?i) Note. (3) +GCpJ - positive internal, Bldg Press, -GCPJ negative gativ - e. or internal Bldg Press NOte:(4) ,Toter Pr6ssure - Leeward Press + Windward,Presj� (For 4� 'Note' (5) .Hipped ends consider ' ed as parallel to ridge for all thetas 0.23 Note(6) Ref, Fig 27.4-1, Normal to Ridge, (Theta>-10)". Theta- 144 -Deq, h/l, Note: (7) Overhang bottom oased upon windward wall cp.an,d GCpi - 0. Note (8) X-,Alonq Building ridge, Y - Normal to Building Ridge,- z - vertical Note (9) MIN - M.-nimur pressures on Walls - 9.6 psf and Roof - 4.8 psf Note (10) Area* - Area of the surface projected onto a vertical plane normal to wind. mwtRs-wall pressures for Wind Normal to 68.58 ft wall (Along Ridge) All pressures sJ1*,,tn are L,cIjed ASDosl-512l- with a Wad ractQr of Wall Cp pressure pressure +GCPi (psf) -GCpi (Pot) -----------____ ------ ----------- Leeward Wall -0.39 -39.45 10.02, Side Walls -0.10 -51.49 -2.02 wall Elev Kz Xx t Cp qz Press Press Total ft psf +GCpi -GCpi +/-GCpi ------------------------------------------------ --------- : ----------- Windward 29.45 1.16 1,00 0.80 46.32 6.16 66.23 46-22 Windward 20.25 1.09 1.00 0.80 43,40 4.18 $4,25 44.2.3 Windward 10.25 1.03 1.00 0.80 41-19 3.28 $2.75 42.13 Windward 0.25 1,03 1.00 0.80 41.19 3.28 $2.15 42,73 Roof - Dist from Windward Edge Cp Pressure Pressure +GCpi(psr)-GCpi (Psf) ------------------------------------------------------ roofs ---- 12,4 ft----0.90 -59.14 -9,67 1 Roo!: 12.4 ft ti 24.8 ft -0. -59.14 -9.67 Roof- 24,6 ft to 45-7 ft -0.50 -43.65 Booi; 4,?" it try1<1.0 It -0.30 - 36.20 13,27 Notes - Along Ridge (1) Ref Fig 27,4-1, Pa-allel to Ridge (All), h/1- 0.23 Note (21 X- Along Building ridge, y - Normal to Building Ridge, Z - Vertical Note (3) M - 4.8 psf IN - Mi.a11-.t1r, pres.,�ures on Walls - 9.6 psf and Roof Note (4) Area* Area th-z-surfaceo- surface projected onto a vertical plane normal to w"Id. - ---' Total Base P-OaCt'On Summery Description Fx Py Fz Kip Mx K-ft KY K-ft M1 K-ft Kip Kip -- -------------Walls'Roof+------------rcpi-----------.0------99-------390.----9---- Norm. a! to Ridge �4 1737.4 .0 t;orma I to- Ridge Walls Only 1GCPi .0 104.7 .0 -95.9 1068.2 $20.3 .0 r - -GCpi Ridge Wa1l3+Ro,,f .0 118.0 iO4.- 1068.2 lk- to F-�dqe wails only -GCpi .0 1 .0 431.2 .0 .0 . ; Ridge W,1115.mon - 47; .0 2 9 .0 370.4 le t Ri,g4� Walls�poof .Gcpi SA . 4 .0 0 .0 .0 isle fadq w,31.1,5 only -GCpi 60.4 � *� 0 0 5 .0 -2173.5 0.0 �1 A 10 n�,� Ridge Walls r100f �,*! P1 .6-10 .()** .0 P-dqi, Walls Only ♦&GCP1 •0 4. 4. Fl-lqfwill-Roof X% . �o- 0 . . 00 go* Notes Applying to XWFRS Reactions: Sh-ar CalCulated wlt"% or wit"�It 1P USE! Q:�ea-�:Qr :�f ".mai,00 r ";crtical X 15-.91 d L- d! 14�5 �0,6 i&.3foand R 4�8 os�� a icy :vert - aze�-. Nn,- US Wind Prossur•' on Components and Cladding 31 ss 5,46-;rn ata b4Abd'vpon ASO Oe$49n, with a 1.03a factor of ..6 width of ressare CoerfieleA Zone "a" 6.06 ft oesdription Width -Span Area ton* :MAX min max A Min p fe rt ft^2 Gcp GCO p*f pof --^- ----- -- `------- ---------- ------------------ PIUSS, 2.00 14.67 71.7 2 0 33 -3.21 39, 52' 81.95 zon , 1 2,00 5.00 '.10.o 1- 0.50 -0.90 .47.22 -65:21 ZCNF-2 2.00 5.00 10,0 2 0.50 -1.70 47,22-101.19 ZoNt 3 2.00 .5.00 107.0 3 0.56 -1>70 47 -1 -2201:19 DOOR 3.00 6.67 20.0 5 0.95 -1.29 67.31 -82.41 LwR, 3.'00 6,61 20.0 4 0.95 -1.05 67.31-71-.61 V)i" 1.00 12.00 48.0 4 0.08 -0.98 64.30 -68:70 WALL 1.00 12,.00 48.0 5 0.88 -1.16 64.30 -?6.8$ •• ••• • • • • • •• • •• • • • • ••• • •• ••• •• • • • •• • • • • • • • • • • • • • • • • • •• • • •• • • • • • • • • • • • •• • • • • • • • • • • • • • • • • • • • •• •• • • • •• •• ••• • • • ••• • • Ngina 1 reacti6h GIRDER s • • • •••• • • • 0 Truss Mark Q1 (PSO Q2 (PSO LERGTy TRIBUTARY VVIDTH TRIBUTARY AREA UPIM Roaction Obs) OL Reaction ( ) LL Roaction (Ibs) DL+LL Roaction Otis) Net Uollft on) Truss T Mark GT1 39.6 81.95 20.58 15 36,015 2951 900 1080 1981 2411 CaT1 14.67 3.5 25.6725 2104 642 770 1412 1719 l3T2 15,67 3.5 27,4225 2247 686 823 1508 1838 G73 875 3.5 459 842 1025- G745 N111150147 6.92 3.5 12.11 992 303' 363 666 811 GT$5 9.58 2.5 11.975 981 299` 359 659 802 CJ1 5 T33 2.5 9.1625 751 229 275 504 613 CJ2 .5 &75 2.5 10,9375 896 273 328 602 732 CJ3 T1 39.6 81.95 20.58 2 20.58 1687 515 617 1132 1378 T1 T2 39.6 81.95 14.62 2 14.62 1198 366 439 804 979 T2 T3 39.6 81,95 15.67 2 15.67 1284 392 470 862 1049 T3 T4 39.6 81.95 7 2 7 574 175 210 385 469 T4 T5 39.6 81.95 8 2 8 656 260 .480 760. 488 Tb stoat b 19.9 57.21 21 3.83 40 215 2301 1408 2413 3820 1456 stool b WALL DESIGN: `Wall t* gtt=12 ft Veit ", Loads Roof DL = 251'(2 + = 125 T. Beam OL= $__ _12 150.1 = 100 144 Total Vertical "Load= 125 + 100 = 225 Wind Load: Zone 5 Wall Pressure =76.88 psf By Calculations Annexed: Zone 5 USE 8" CONCRETE BLOCK WI #6 AT 24" O.0 fee .• . .. .. ... . . . .. . . .. .• . . . .. . . . . 040 . . . . . . . .. . . .. . . . . . . . . . . . .. 060 fee . • 000 . . . . . . . . . . ... . . . ... . . Title Bloc* Line I 'Boj can change this M using the "Settings' menu item and then using the *Printing & Title Block' selection Title Block Line 6 Masonry Slender Wall IIVIXIRTMZ-7,1111"F��� Description MASONRY WALL ZONE 5 Project Title: Engineer Project ID: Protect Descr: MRCALC, M. 1%3.2015, &mdj.15.12.9, Vr,6,16,129 Code References Calculations per ACI 530-11, IBC 2012. CBC 2013. ASCE 7-10 Load Combinations Used. ASCE 7-05 General Information ,Calculations per, AC,1 530-11. IBC 2012, CBC 2013, ASCE 7-10 Construction Type Grouted Hollow Concrete Masonry F'm 1.50 ksi Nora. Wall Thickness Fv-YW 60.0 ksi Actual Thickness Fr - Roo" 61 �0 psi R" *d* distance Ern -- rm * 900,0 Lower Level Relpar Max % of V) bai, = 0L006833 Bat Size # Bat Spacing Grout Density 140 pcf Blot ,Ne!ght Normal Weight wait weight 61,0 psf Wall is grouted at rebar cells only One -Story Wall Dimensions Clear Height 12.0 ft Parapet height Wail Support Condition Top & Bottom Pinned 13 8 in Temp Diff across thickness 7-625 in Min Allow Out -of -plane Deft PAOQ% 3,750 in Minimum Vertrat Steel % U0,20 6 24,0 in Vertical -Loads i �Vllr t1tr Llnf V C�rr ,nLoads r Load in 02250 LeOge Concentric Load Lateral Loads WW4 Dada Se6mic Loa% Full area WIND toad 77 0 psf Wail WeghT Seismic Load Input MeTtOd' Direct an" of Lateral Wail Weight Fp 1.0 = 0,0 psf Sempritf. Wall Lateral Load PSI .0. .1. .00 .*. 00 : : • V. : : .. 000 0*0 000 #00 L� Y'ou can change this area using the� tiefflngs*, menu item and then using tha.TrintIng & Title btick' selection, Desciriptioll: - MASONRY WALL ZONE 5 6816N'SO)WAiARY Results reported for "Strigi Width" of U.On Governing Load Urnbirtation Actual Values-. I - - Allowable Valuet, PASS Moment Capacity Check Maximum Bending §iess RO60 = 0.6386. 4.0,90D+1.60W+1.60H Max Mu 2.1262.K-ft 1?hl' Mil 3,526 k-fl PASS Service Oeflection Check Adual W.-Rak U - 28a Allowable D60alici 240 W Only Max. Deflection 0.5095 in Max Pu/Ag- 11.834 psi Max, Allow. Dell. 0.60 in PASS Axial Load Check Location 5.80 it 0,2 * I 300.0 +1.20D+0.5OLr+0.50L+1.60W PASS Reinforcing Limit Check Controlling A$Ibd 0.004731 AstdDM33rho bal 0:006833 PASS Minimum Moment Check Maacking 0.6129 k4 Minimum Phi Mn 1788 Wt +1 A00 Maximum Reactions- for Load C.6mbination.. Top Horizontab 4D+W+H 0,4636 k Base Holizootall wonly 0,4620 k Vertical Reaction -+D-W+H 0.9570 k Results reportedfor "Strip Width" = 12 In. Desiqn Maximum Combinations - Moments Axial Load Mordent Values 0,6 Load Combination Pu 0,2*fm'b*t Mcr Mu Phi Phi Mn I X,4t As As' Ratio MR? rho bat k, lk-tl 000 0,000 0,00 OX 0.00 0.00 0.000 ozoo 0,0000 0,000 0,000 0,00 0.00 0.00 0.00 0,000' 0,0000 ODDOO 0,000 0,000 0,00 0.00 0.00 0.00 0,006 0:0000 0,0000 0.Wo 0,000 0.00 0.00 0.00 0.00 , 0,000 0.0000 010wo +1,200-1.60U480W at 5.60 to 6.00 0738 18,720 0,47 1,13 0-90 3.57 0.220 6.0047 0.0068 0000 0,000 0.00 0.00 0.00 0.00 O.ODO U000 0,0000 -1.20D+1 60S+4 BOW at 5,60 to 00 0.738 18.720 0.47 1.13 0.90 3.57 0.220 0.0047 0.0068 -1,20D-0,5%r-o0.50L-1,0V a, 5.60 to 600 0,738 18120 0.47 227 0.90 157 0220 00047 0,0068 .1,200-4501.450S-1.601,v at 5.50 to 600 0,738 18,720 047 2.27 010 3.57 0.220 0,0047 0 M 0,0000 0,000 000 0.00 0,00 0.00 0.00 0,000 0.0000 40 qr,0*l.60W+l,60H at 5.60 to 6.00 0,554 *720 0,47 225 0,90 3,53 0220 0.0047 G.m 0.0000 0,000 U00 0.00 0.00 OZ 0:00 0,000 0.0000 Results reported for "Strip Width" = 12 in . Design Maximum Combinations -Deflections Deflections .... . Axial Load Moment Values Stiffness I cracked Deflections I effective Deflection Den Ratio Load Combination PU Mcr Mactual I gross Ve4 0.000 0,00 0.00 0.00 0.00 000 0.tiv0,0 0,000 U0 0,00 0,00 0,00 oboo 0.000 0,0 0.000 0,00 0.00 0,00 0,00 O,ODO 0.000 00 ODOO 0.00 0.00 no 0.00 omo Uw 0,0 0000 ODO 0.00 0.00 0.00 0'000 0.000 00 0,000 0,00 0.00 0.00 0.00 000 0,000 00 �0 +Vi.H at 6.00 to 6 40 0.591 0A7 1.41 353,60 41.21 41,555 0.000 0.506 284 4 0,000 0.0 0,000 I i* *,: 0.00 *-O� k • 0.00 : 1%5 000 0.00 353.60 0.00 41.21 42124 0,322 447 8 _04750Lr+().750L4750W,4 at 6 00 to 6.4 0.69, 0 :*: 0 * & 41.21 42.124 322 4417,8 an r W�44 at 6.00 to 6 40 7�OL .0 75OS-0 75V 0-5fl. .0 040: •L,• •0;0 :1165 0 353.60 0000 00 G"o 0.00 0,00 0.00 0.000 _O�X, 0 M� 00 0,000 Ho (647 0.00 14r19 0,00 35360 4070 41048 0.507 283 ,0600_�V+H at 600 to 6.40 40.355oe :0,Cz • o,.% 0.00 0.00 0,000 0 000 0*0V oko 0.00 000 0,wo 0. NX, 0 0 cc 0 00 00 000 0000 0 (Ylyll Tik Sio0it l ine 1' ; You can ct t'Ns area .Ptoi� Project li3 using the 'Se ngs' awe j item WA then `using the'Prinmg &. t>eSC�iption : MASONRY WALL ZONES dontl:i Design tlAaximunt In L4 �:l)eflet#icittia; . Results repoel�ed tar nB Pwidth" =12 in Axial load moment Values Stifi»ess Deflections Load Combination Pu met, mactuat Igro"ss i cracked t.effective Deflection Deft. Ratio k.•t t n j� 1,4 n'14 rN Ott 0.000 0.00 0.00 0.00 A.00 0.000' omo, 0.0 0.000 0,00 0.00 0.00 ' 0.00 0 000 0;000 0.0 WOrily at`5.00 to 6,40 01000 047 i 3a 353,60 39.93 40279 0.509 28V 0.000 0.00 0.00 0.06 0.00 &000 0.000 0.0 0.000 0,00 0.00 0.00 0,06 0.000 0.000 0,0 Reactions - Vertical & Horizontal_ Results repotted for "Strip Width" 12 in. Load Combination Base Horizontal Top Horizontal Verticaf Wait Base 0 On'y 0.0 0.00 U57 ; +O+L+H' 0.0 ;- 0,00 0.957 k +D+U+►i 0.0 0.00 0.957 +O+S+H 0.0 _ 0.00 0,957 +D 0 750Lr40,75M+tt 0.0 0.00 1 0.957 •0+0.750L+0.750S+H 0,0 0.00 0957 •O+W4-H 0.5 046 0.957 s; +D+0.70E *H 0.0 0.00 0.957 <£ +0+0 750Lr-OJ50L+0.7501+H 0.3 0.35 0.957 +0+0.750L+0:750S+0.75t'N+H 0.3 0.35 0.957 t17501-r+0.750L+0.5250E-44 0.0 0:00 0.957 +0+0.750L+0.750S+0.5250E+H 0.0 .r 0.00 k 0,957 j0.600+W+H 0.5 t 0.46 k; 0 574 -46W470E+14 0.0 obo 0.574 0.0 0.00 0.957 a Orify 0.00 � 0.000r Lrly 0.0_ L O.o 0.00 � 0.000 0.0 ,, 0.00 0.000 S Only 046 �.. 0 000 w Only 0.5 � 0.00� 0,000 ,. E only 0.0 � 0.00 0.000 H Only 0.0 n .. ... . . . . . .. . ......... . . . . . .. ... .. . . . .. ... . . .. . . . . . . . . . . . . . . . . . . . • . . .. .. . . . ...:::: RB-1 CONCRETE BEAM DESIGN COND 1 Span =16.33' LOADS Roof DL = 25. 7 + 2.5� _ 150 pif l2 Roof LL= 30•(7 + 2.5 = 180 piF 2 TOTAL DL = 150 pif TOTAL LL= 180 plf .. ... . . . . . .. . .. . . . . ... . .. ... .. . . . .. u1c, fide ;BlooWnel', Projecf hle- p ID.- " Yoti ran change this area, Engmeer usig She *Seat — *1 fri inu item Pt*ct Descr; and.theri using the'Pfirthng & Title Block' selection. Title Block iJne 6 •�•�TY"+T� - •. - , 5 - � f•62 t1201fi1AA-t1lSA13E1: IKY1Si'7� Descriptlor) CoNckm eEAM DESIGN Re-i CoND'1 .CC 00EFE'R'ENCES- -Calculations per ACI318-11'. IBC 2012, ASCE 7-10m- Load Combination Set: ASCE 7.10 Materlal Prop!rttes Fc - 3.0 ks1 Phi Values Flexures 0.90 fr= fcV2 ,.7>50 =. 410,792 psi Shear: 0.750 W Density - 145.0 pcf" 01 = 0150 ), LtWt Factor 1.0 Elastic Modulus _ '31122.0 ksi Fy - Stirrups 40.0 ksi fy Main Rebar = 60,0 ksi E . Stirrups = 29,000,0 ksi Stirrup Bar Size # _ # 3 E -'Main Rebar = 29,000.0 ksi Number of Resisting Legs Per Stirrup = 2 • Load Combination ASCE 7-10 swr=<a:n Cross Section & Reinforcing Details »Rectangular Section, Wrdth -- 6.0 in, Height =12.0 in Span #1 Reinforcing,... 246 at 2.0 in from Bottom, from 0.0 to 16.330 ft in this span _,Applied Loads Beam self weight calculated and added to loads Loads on all spans... D = 0.150, Lr r 0.180 Uniform Load on ALL spans: D = 0150, Lr = 0.180 ktff DESIGN SUMMARY Maximum Bending Stress Ratio Section used for this span Mu: Applied Mn ` Phi: Allowable Load Combination Location of maximum on span Span # where maxims:m Occurs 0.560 : 1 Typical Section 19.467 k-ft 34.740 k-ft 1.20D-1.601-r450L-1 -60H 8.150ft Span 9 1 Cross Section Strength & Inertia .__--_ Gross Section Bar Layout DeSCITtian Sec'uon 1 2• =5 @ a=10-,2- i6 @ d=2'. Vertical Reactions '.Oaj combina"On "NeraN %tAxirru~ri 4re'ralF tdi"acn�r� � ? �4vir• KA:.•�5 2 8 at 2.0 in from Top, from 0.0 to 16.330 It in this span Service toads entered. Load Factors will be applied for calculations. Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection t?eslgn OK 0.080 in Ratio = 2447 0.000 in Ratio = 0 <360 0.403 in Ratio = 486 0.000 in Ratio = 999 <180 Top & Bottom references are for tension side of seCaen • a_.. • • •..- • • • ,., • • • •.. Phi'tvSn k ft Mornent of Iner'Ja • • • • • • • • •Malt ftfU { k-!t } t � _ __ , • • • • • • • • • • Bot1or Top Bottom Sop 19r055 Iu Bottom i u' • • • • • • • • .100 -0.00 34.74 34.74 1 E152.00 415.03 SupW notaCion : Far fait is 01 3,4$4 •...: 3�484 • • • • i i • • • i i i20$ • 1.;$ • • ••• ••• ••• 2,014 •• 2014 • 2,014 2014 34&1 ••i 4g4 • • • ••• • • 2014 2.0:4 i i•i i i j { t • llt6 • • • • • • • • 2014 ••.0i4 • • ••• • • $ U project rift. Rood Descr, Tille, 8lock U14 I You can dWWlhts area using the `Settings' menu item VaMrmlvikae4inns Support notation Far Ols #1 gad Goirttwtation I Support 2 40-+OJGE;M 2,614 2.014 *04015W0750L4450W+H 3,116 3,116 .0.0,75(X+OY50S-0A5OW-H Z014 2.014 .D40.75%-,Ol50S+0.5250E+H 2,014 1014 40.60D-0,60WARH lza 1.208 -+0.60D-,O.70E*0-60H 1208 1.22 D Or4 2.014 2,014 U Onry IA70 I470 L Oniy S Orq W onty E QnY H t�nly §FS—te4n 0 f4-ilphiVr)2<Vu<--PhiVc,ReldV$2WIiA.6,i,usestftP$$Pawat 5,0001n Between 2-44 to 13,89 ft. Vu < PNVd2,. Recfd Vs %Not Reqd 11,4,6.1t use s9nPS $paced at 0.0001n Between 13.92tol6.3OfLpfiVcj2--vu<--PhjVt,Aod,Vs=Min il,4,6,1,arse s*WsPamdat 5.000in Maximum Forces i, stresses for Load t6mbiriations Bending Stress Hesutts (k-h Load Lim LOMWn (ft) --Z7M-aX--- —ph,Wm Stress Ratio Segment Length Span in Span N%R"Ouill or llva— Span # 1 1 16,= 19A7 34,74 0.56 -1,400-160H Span # 1 1 16.330 11,51 34,74 03 .1,200.0.50U-1.60L-1.60H 1 16330 12,87 34,74 0,37 Span# 1 +120D.1,60L40MS-1,60H 16.330 9,87 3414 0.28 Span it 1 1 1.23D+1.60Lr-0.50L*1WH 1 16.330 19.47 34.74 0,56 Span # 1 -1,20D-1-60U40.501V+1A0H '. 1 16,330 '19,47 3414 0-56 Span 1 .1,20D-,0,50L+160S+1,60H 16330 9.87 34,74 0.28 Span .1,20D.1 6C.S40,$O�'Y+j,6(JH 1030 947 34,74 028 Span # 1 1 +1.200450L,4501.-O,V+160H 1 16.330 12-87 34,74 0.37 Span # 1 1,20C, -0+50L-0-50S'W+l .60H 16,330 9,87 34,74 0.28 Span # 1 1 -1,20D-0,50L420S+E+1UH 16,330 947 34.74 0.28 Span# 1 1 +090D.V, 490H 1 16,330 7,40 34.74 0,21 Span 11 -0OGD+E490H 1 16.330 7,40 34.74 011 Span 9 1 RB-1 CONCRETE BEAM DESIGN COND 2 Span =10.33' LOADS SPAN i Roof DL = 25, 188 + 2.5 287.5 p!f 2 Roof LL= 30. 188 + 2.5 = 345 plf 2 ))) TOTAL DL = 287 =287 pif TOTAL LL= 34 ' plf . . .•• . . • . .. . . . .. .. . 00 • • • • • • • • • • • • • • • • • •• • • • • • • • • • 0.0 • • • • • • • • • • • • • • •• •• • • • •• •• ••• • • • ••• • • Title Block t.ine.1 *to can change this area, using the `Se irgs. merw fte6.. and than using tli ."Printing b Calculations per,ACl 318-11, IBC 2012, ASCE-7.10 Load Combination Set, ASCE 7-10 Maiteldat Rroperttes ProjedTitle Engineer; Descr 1'c _ ' 3.0 ksi Phi Values Flexure: 0.90 fr= fc ` 7.50- = 410:792 psi Shear: 0.750 41 Density - 145.0 pd LtWt Factor Elastic Modulus = - 1.0 - 3,122.0 ksl Fy . Stirrups 40.0 ksi n_ fy -Main Rebar = 60.0 ksi E'- Stirrups = 29.000.0 ksi Stirrup Bar Size # = # 3 E - Main Rebar = 29,000.0 ksi Number of Resisting Legs Per Stirrup 2 Load Combination ASCE 7-10 am r•x irh Cross Section & Reinforcing Details - Rectangular Section, Width = 8.0 in, Height = 12.0 in Span #1 Reinforcing... 246 at 2.0 in from Bottom" from 0.0 to 16.330 It in this span 246 at 2.0 in from Top, from 0.0 to 16,330 it in this span Service loads entered. Load Factors will be applied for calculations: Applied Loads Beam self weight calculated and added to loads Loads on all spans... D = 0,2870, U = 0.3450 Uniform Load on ALL spans: D = 0.2870, Lr = 0.3450 kilt ; a� DESIGN SUMMARY Maximum Bending Stress Ratio = 0.364: 1 Maximum Ton Max Downnwarwardd Transient Deflection 0.022 in Ratio _ 5561 Section used for this span Typical Section 12,655 k-ft Max Upward Transient Deflection 0,000 in Ratio = 0 <3t30 Mu: Applied Mn ' Phi : Allowable 34,740 k-ft Max Downward total Deflection 0,068 in Ratio = 1752 Max Upward Total Deflection 0.000 in Ratio = 999 <180 Load Comoinaticn { 1.20D-1.60Lr-0.50L- . 01-1 Location of maximum on span Span # 1 Span - where maximum curs T d Bottom reserenoes are for tension side at Section Cross Section Strength & Inertia_.._ (,,ress 1,ectron Bar Layout D,6SG11p Sect.on 1 2. »r @ c , . rra @ d=2'. Vertical Reactions Load Comb:r&,�,n CN'erafl N%Ximum Qvgrall !1.N�n1um �« ! •VLi 73 ; 50L ^ «. 750: �0 750S•H -Y � �--� �'� -•� • •"' • • •fax l,�.0 (k.[t) Ptti'Mn k-ft) tbnwnt of Inertia { in"t • • • • • • • • • To Borom Top I gross to Bottom la op • • • • • • • • • • Bo+Nom p .. ••• .•i ••i ••• ••3 ? O.t}C 34.14 34.14 1,15200 475.03 47503 Support notatw, : Far left sits Suppa 1 ` . S. W 2 • • • • • 3.643: : '•5a3 : : : : :. 11511,918 •i �iiJ`1• ••• i i• i i i i 1gsQ •• t919 • • • • 64 s � tV i91d •i•t.S•i18 i i i •i• i • / Lit . 3+•`2• • • • • • • • 1918 • "Q13 •• • • • •• •• fftle Block L16-- I -Yiv �raft &ktVO this area using the *Setfings. ffoti Item :and then using the Tdrifinig & ride Blolck'selecion. '94i inh DESIGN R9-1 COND 2 Priqdd rl#OL Ned Cieser +04J50U-0,1501,40,450W-4i 3,212 3.212 +"J50L-0.750S40A5OW4H 1-918 -1,08 *o4o,75oL+0.760S40,5256E-OH IS118 1.918 4.60D460W+0.60H 1.151 1151 40,60D40,708-0.60H 1,151 1.151 D of* 1,918 1,918 U only 1,725 1,725 L Only S Only w Oroy E Only H Only Shear Stirrup Requirements, —1-1-4—,6—.l,­tiiWA�SIiM —VS= Bet ween Q.QO to 1,55 k PWd2 < VU WVC, �d Min Between l.57tofIAA VU<PhfVd2,.ReqdVs- Not Roqd-11.4,6.1, use stir tIA48*18t O-WOfn Wween'8.45 iD 9,98 k PblVc/2 4 VU - PNVC, Reg d'Vs = Mini 1.4.6.1, use $'*MPS spaced at 500 In Maximum, Forces & Stresses for Load"C6mbInitlons" �Stnm-R" Load Comb iwWn Location (ft) Bending (k.fit )' S09MM Length Span # in Span MU *1 Max phUlx Stress Ratio M4%injrn-6E—NDlN-. Span 0 1 1 10.000 12.65 34'.74 0.36 -1.4W+1,60H Span t 1 1 10.000 6.71 34.74 019 -1,20D+0.5OLr-1 .60L+1,60H 10,000 7 34.74 0,23 Span # 1 .91 *1,20D+1,60L-05OS-1MH 10000 5J5 34,74 0,17 &nan 4 1 1 -I,2bD+I,6GLr-0.50L+1.60H 10 DOO I2.65 34,74 0,36 Span 0 1 1 +I,200+1,60Lr+0.50W+1.60H 1 10.000 12,65 3414 0.36 Span 9 1 +1,20D+0,50L-1MS+1.60H 1 10,000 5,75 34.74 0,17 Span # I -1 l00+1k0S*0.50W*1.60H 1 10,000 5,75 34.74 0.17 Span 9 1 +1,20D-0 50Lr-0-50L-W-1MH 1 10.000 7,91 34,74 023 Span # 1 +1 .200-0-50L+O 50S+Wf 1.60H 1 10,000 515 34.74 017 S03,191 .1,20D-+0-50L +0,20S+E -1 .60H 10,000 5.75 34.74 OV Span # 1 1 -0 90D-W-0,90H 1 10,000 4.32 34.74 0,12 Span # 1 -0.90D+E+0,11P-1i 10000 4,32 34.74 012 Span 0*0 000 0:6 RS-Z CONCRETE BEAM DESIGN COND i Span 12.83' LOADS Roof DL = 25• (2 + 2:5 I - 150 plf Roof LL= 30- ( 7 + 2.S I - 180 pif TOTAL DL = 150 Of TOTAL LL= 180 pif .. ... . . . . . .. . . .. . ......... . . . . .. ... .. . . . .. . .• .. .. . ...... . .. . . . . . . . .. . . .. . . . ....... . .. . . 000 . . . . Tate l Owl pcoleG Tide.Pact 1t2 You rea change this aEngineers' usingftjedDescr- jhe'Settings -- menu item and;til usirtg the'Printisut'8r, Tittle D4W selection. A. ; ft 4A Title S Lines Fit*t itWttlh4-t4- 1 ixh1A 1t1SA8 112Qt64-1 A3(:�L �Concrete-130am 2� � t+cpi os,e astssis�� raw" Description: CONCRETE BEAM DESIGN RB-2 COND 1. Calculations per ACI 318-11, iSC 2012, ASCE 7-10 Load'Combination<Set : ASCE 7-10 Mjt'erjjjTLp6rt1es; fc 3.0 ksi Phi Values Flexure; 0,90 it - fc1R ' 7:50 - 410.792 psi Shear : 0.750 • • Density - 145.0 pd Vi t 0.850 h LtWt Factor 1.0 Elastic Modulus = 3,122.0 ksi Fy-Stimps 40.0 ksi N E - Stirrups - 29,000.0 ksi ty - Main Rebac = 6b.0 ksi Stirrup Bar Size' = 3 E .Main Rebar = 29,tsl Nu ber of Resisting legs Per Stirrup = 2 • • Load Combination ASCE 7-10 Cross Section& Reinforcing Details Rectangular Section. Odih = &0 in, Height =12.0 in Span #1 Reinforcing..,. 2-#6 at 2,0 in from Bottom, from 0.0 to 16.330 ft in this span - Beam self weight calculated and added to loads Loads on all spans... D = 0.150, Lr = 0,180 Uniform Load on ALL spans : D = 0,150, Lr = 0.180 k4t DESIGN SUMMARY maximum Bending Stress Ratio = 0.346 : 1 Section used for this span Typical Section Mu, Applied 12.016 k-ft Mn ' Phi: Allowable 34.740 k-ft Load Combination +1,20D+1.60Lr+0.50L+1.601i Location of maximum on span 6.427 ft ;r rn furs Span V i 6'ww irh sv*n 126"ft W 246 at 2.0 in from Top, from 0.0 to 16.330 it in this span Service loads entered. Load factors will be applied for calculations. Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max upward Total Deflection Design`OK 0.031 in Ratio = 5047 0,000 in Ratio = 0 <360 0.104 in Ratio, 1484 0.000 in Ratio = 999 <180 Span # where m ��u t tension side of sectxm Cross Section Strength & Inertia Cross SeCvn Bar Lay)ut Descrl Section t 2- #6 @ `^'.2- to @ is=2'. Vertical Reactions Load Combinavw Sup^o 1 Cy,:erall bAri:{imum 273E Overalll.lif.Tmum 0 49 {� * 58') 582 44 v;5''t-i1 SOS-H i 582 Top &Bottom references are or _ Irloment at Inertia ( m"4 J .: : : : • . _ Top To I grass lor • Bottom Bottom P lcr - Top �• �: .. ••• : .. : • 14 000 . • 0. 3474 3474 t,152.00 47503 475.03 Support notaoon Far left is Kt y ..27 .... .. .. 1 582 2 '37 ':182: • • • ••• • • hua . •.• • 582a • • • • 0 • • • • • • -Tit}e'BiodL:1 You can dwige.I using ihe'Se#rir anti th m uslnd th _ic. #�KW�U60_1 item BETE BEAM DESIGN W2 . 1 Suppprtnota8on :Fat,teeit La 4't +D+0.70&41 1.582 1382 -"',7501t+0.75OL+0.45OW- 2,448' 2.448 +0+075OL-075OS+0'.450W+H '1.5W2 '1.562 1,582 :0-0.75OL40.75OS+0.525M i 1,582 +0.60D+0.60W+0.60N 0,949 0.949 e0.600D•0.70E+0,6QH ,0.949 0.949 D N4 1,582 1582 Lr Onty 1'.155 1.155 L 01* S only W Only E Only H Only Sh_ ear Sflrmp ROgwrements 0 0 Entice Beam Span Lengm Vu < PRO. RWO Va = Not Regd 11.4.0, use sfinups spcod at Maxiihum taces & Stresses for Load 6ttibinationsndi Beng U'ess esults ( k•k SR ) Load Combinati0n Segment Length Span # Location O in Span , a __a—��..----. Mu ; Max ---•-- i-- p1u Mnx Stress Rat'a MAXimum BEN6NG"Em€siope Span # 1 1 t2.830 12.02 34.74 0.35 +1,400+1.60N Span # 1 1 12.830 7.11 34.14 0.20 +1,20D+0.5OLr+1:60L+1.60H 12.830 7.94 34,74 0.23 Span # 1 1 +1..20DA60L *0.505+1.60H 1 12.830 6.09 34.14 0.18 Swan # 1 +i _20D+I.60Lr+0.50L+1.60H 1 12.830 17.02 34.74 0.35 Span 9 1 +i .20D+i ,60Lr+0.50W+1, 60H i 12.830 12A2 34.74 0.35 Span # 1 +1.20D+0.50L+1,60S+1.60H 1 12830 6A9 34,74 0.18 Span # 1 +1.20D+160S+0.50W+1,60H 1 12830 6.09 34.74 0=18 Span # 1 +1.20D+0.50Lr+0.50L+W+1.60H 12.830 1.94 34.74 0,23 Span # 1 1 +1,200+0.50L+0.50S+W+1.60H 1 12.830 6,09 34.74 0,18 Span 1 +1.2oD+0.50L,,0,20S+E+1.60H 1 12.830 6,09 34.74 016 Span # 1 +0'90D+W+0.90H 1 12,830 4.57 34,74 0,t3 Span# 1 +0.90D+E •0.90H 1 12,830 4.57 3414 . 0.13 Span # 1 .. ... . ......... .. ... . . .. . . . . .. . . . .. . . . .. . .. . . . .. . .... . . . . . ....... 000 . . .. see . . .. . . ... . . ..... . ...... .... . . . . . ... . . .... . ... .... . . vq RS-2 CONCRETE BEAM DESIGN, COND 2 Span=10.33' L OADS'SPAN 1 Roof DL 25• i �83 + 1 185.375 pif Roof LL t 2.83 30• + 1 _ 222,45 plf 2 TOTALDL = 185 = 185 pif TOTAL LL=- 222 pif .. ... . . . . . .. . ......... . .. ... .. . . . .. . . . . . . . . . . .. . .... .. .. .. . . . . . . . . . . . .. .... .... t°� Titte-8166k Line 11neer: proled a, Youcan,change-.Ihls area Pr�ecl Dew. , area using.the *Sefts . menu item and dart usit 4 Me - N iiiii nig 'CODEA&ERENCIES' .Calculations per ACI 318-11, IBC 2012, ASCE 7w10 Load Combination Set: ASCE 7-10 rc 1.0 ksiPhi Values Flexure: 0.90 fir =- rota . 7,50 = 410.792psl Shear: 0.750 it) Density 145..0 pd P-1 2i 0.850 k LtWt Factor Elastic Modulus = = 1.0 3,122.0 W Fy - Stirrups 40.0 ksi fy -Main Rebar 60,0 ksi -Stirrups' = 29,000.0 ksi Stirrup Bar Size # z # 3 Stirrup E - Main Rebat 29,000.0 list Number of Resisting Legs Per Stirrup = 2 Load Combination ASCE 7-10 rwx 1rh 60&"10 M ft $in Cross Section & Reinforcing Details Rectangular Section, Width = 8.0 in, Height z 12.0 in Span #1 Reinforcing.... - 2-96 at 2.0 in from Bottom, from 0.0 to 16.330 ft in this span 246 at 2,0 in from Top, from 0.0 to 16.330 h in this span Service loads entered Load Factors wiii be applied for calculations, p#o_Lpads Beam self weight caicutated and added to loads Loads on all spans... D = 0. 1650, Lr = 0,2220 uniform Load on ALL spans: 0=0160, U=0.22200 DESIGN SUMMARY maximum Bending Stress Ratio = 0.266: 1 Maximum Deflection Max Downward Transient Deflection 0,016 in Ratio= 7840 Section used for this span Typical Section Max upward Transient Deflection 0,000in Ratio= 0 <360 Mu Applied 9.246 k-ft MaxDownward Total Deflection 0.036 in Ratio = 3417 = 999 <180 Mn Phi ° Allowable 34.740 k-ft Max Upward Tot at Deflection 0.000 in Ratio Load rCombinaVon -1,20D-1.60Lr-i0,50L-1.60H 5.174ft Location Of maximum On Pan Span' " I Span 4 where maximum OCCUTS Top Bottom references are for tension site of section -- Cross Section Strength & Inertia Moment of Inertia (In14) Top Bottom Top 1gross icr-Bonom 1cr-Top Dross ,,Vion Bar Laycut DescnPtOn 0 3,bo 34 74--- 3�-�4 lj��,�oo 4715,03 dzio',2- 4*6 &2', Cupport no,,a,,jon, Far left ist', Vertical Reactions L-,ad CoMbinatV1, sul)"On :2,60: 000 cr�emti %%Xwnufn 2,601 0973 0.0.87:. se 000 : : see Overall MIN;m'.1m 11 455 1,45-4 e .D.H .0-t-H 1455 14-15 2. K, 11, *00 7 t -0 1.5 7501. 0 7 50 S - H 1455 . Prt�ect?itiC 'die Black Une 1 En6`tneer• YOU can change this area ptgw odsw using the'Seriiilgs' nw item and then using tte'Prindng 8 -`rticai'Reactions` - notation : Farleft`b #t Load cornanation support $ SupW2 ,y +0+0.70E4H 1.455 i.455 +0+0.7501r40.75O.+0.450W+H 2:315 2.315 4D+0l5M+0.7 +0,450W+H t 455 1,455 -0-0.750L+0,750S40.525M4oH 1.455 U55 +0.60()+0MW*0,60H 0.873 0.873 40.60D+0.70E+0.60H 0.073 0.873 D Ony t455 1.455 Lr Ony 1,147 1,147 L Ony S Ony w any E Ony H Ong Shear Stirrup. Requirements Enrre Beam Span Length t u Ph PhtVct2. Reg'd Vs -.:Not Regd # i 4 ti.#. stirrups spaxd at 0.000 n LoadCombination Location ( p0'N4 }� VUwas.w r Sum Ratio Segment Length Span # in Span Mu: Max Phi`Mnx MAk�r�m BENDIFtG Erivebpe 10.330 9.25 34.74 0.27 Span # 1 1 +1.400+1.60H Span # 1 1 10.330 5,26 34.74 0.15 +1.20D40.50Lr+1.60L O MH 1 10.330 5.99 3414 0,17 Sparc 0 1 +1,200.1.60L+0.50S+1.60H 1 10.330 4.51 34,74 0,13 Span # 1 +1, 20D+1.60Lr+0.50L+1.64N 1 10.330 9.25 34.74 0.27 Span # 1 +1.200+1.64Lr+0.5OW-1,60H 1 10.330 9.25 34.74 0.27 Span # 1 +120D+0.50L+1.60S+1.60H i 10.330 4.51 34.74 0.13 Sparc # 1 +1.200+1.60S+0.50w+1.6011 1 10.330 4.51 34.74 0.13 Span 0 1 .1.20D+0.50Lr+0 50L+w+1.60H 10.330 5,99 34.74 017 Span 41 1 -120D+0.50L-0.509+W+1,60H 10.330 4.51 34.14 0.13 Span # 1 1 +1.20D+0.50L-0,20S+E+1,60N 10.330 4.51 34,74 013 Span # 1 1 490D+W+0.90H 1 10,330 3.38 3474 , 010 Span s 1 +0.900440.90H 1 10.330 3.38 34.74 0,10 Span # 1 .. ... . . . . . .. Pni(er� g3; 0 STB4 STEEL BEAM DESIGN SUP,P6AT TP.ELLIS Sparc =13.6r LOADS SPAN 9 Roof it = 15.(4) = 60 p1f Roof LL= 30-(4) = 120 ptf TOTALDL = 60 = 60 plf TOTAL LL= 120 plf .. ... . . . . • .. .. ... .. . . . .. . . . . . . . . . . . . . . . . . • . . . .. . . . . . . . . . . . .. . . . . . . . . • • • • • • • • • • ••• • • • ••• • • Project Tillet, , Title Block Line 1 tD You 'Candlangellthl , satea EP*d Dengineer scl, usingtfietedngs' menu'd6rn ,a then Ong . .and usl the #Piinfing i Catculafions per AISC 36,6410.1 IBC'2012, ASCE 7-10 Load'CombinationSet ' ASCE 7w10 *Waal parties .. Fy 29,000�O ksi Steel Yield: 46-0 ksl ,Analysis method: Allowable Strength Design Beam BWng `Beam Is Fully Braced against lateral-torsibnal buckling E: Modulus; Bendin,qAxis: Major Axis Bending, Load &nblnaflon ASCE 7-110 41S Beam self weiqbt calculated and added to loadin(i Loads on all qt=$_ Sw - 13 a7O ft HS310"" Service loads entered. Load Factors will be applied for calculations. Uniform Load or, ALL spans: D=0.060, Lt=0.120loft DESIGN SUMMARY 'Miximurn 0.108: 1 Maximum Shear Stress Ratio 0 1 .019: 1 Bending Stress Ratio = section used for this span HSSI0x4xII4 Section used for this span II4 HSSI0x4x Va: Applied 1.384 k Ma: Applied 4.728 k-ft 43.613 k-ft VnIornega, Allowable 71.632 k Mn / Omega: Allowable +{)+U+H Load Combination +D+Lr-H 6,835ft Load Combination Location of maximum on span 11670 It Location of maximum on span Span # I Span # where maximum occurs Span Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection 0,044 in Ratio = 3,751 Max Upward Transient Deflection 0.000 in Ratio = 0 <360 Max Downward Total Deflection 0W4 in Ratio = 0.000 in Ratio = 2224 0 <180 Max Upward Total Deflection Maximum Forces & Stresses for Load Combinations Values -S� ry- of Sheaf Vakies - Load CM11*ation - - - ------ of fi��l �nx muorega Va Max Vnx VWDmega Segment Length Span # M V MMX IAa Maxmax . ...... - - ------- 0,008 1.93 1,93 72,83 43,61 1,00 1,00 0,56 119,63 71,63 Dsgn. L z 1167 It 1 0,044 +D+LA4 1.93 72.83 43,61 1.00 1.00 0.56 11963 71,63 Dsgn. L = 1167 It 0.0-44 oboll 1.93 72-83 43.61 1.00 1.00 138 119.63 71,63 -D+Lr4H Nml.= 1367ft 0.108 0019 4.73 4,73 40+S'hH 1.93 1.93 72.83 43.61 1.00 100 0�56 11963 71.63 Dsgn. L z 13,67 ft 0�044 *D+0,MLr40350L-H 0008 006 0 0 G* 4�03 7213 43,61 1.00 1.00 1,18 11963 163 Dsgn. L z 1167 ft 1 0,092 4.04 ;016 -• :• 0 0 100 056 11963 7163 -0,750S+ -D-0 750L 1 0,044 C C�8 1910 0 0 4� �93 72 83 43 61 1,00 Dsgn L = 13 67 ft .0.0 6OW -H 193 1,93 72,83 4361 1,00 1.00 056 11963 71 15 3 Dsg,,I- L = 13 67�1 1 0,C44 +0-0,70E+H 0008 000 0 0 - ::* 72.83 4361 1-00 100 056 11963 7153 01 Dsgn L = 13 67 ft 1 -,)44 • .008: *3 000 0 0 0 6 8 11963 71,63 ,D4�0 i 50U-0.7501--O 4 5-3V,-+' 1. 0,092 4 1, 0 4 0! 72.83 4361 100 100 n Dsg n L z 13 67ft .L-3 -75V,.0., 50S,,O 450W44 191, 7283 43 61 100 0 �6 19 63 1163 Csp� L= 1136,» 1 0.,)44 -0-0750L+0 750S--0-5250E+H 0044 6 7 008 93 *:* • a * 0 a 0, -13: V -0, 113 72.83 4361 1.00 100 OSr 63 7*1 53 L 3 60H Title Sock 1 � Tom`: pwied a, -Ybu can diange this area erect usin jg ih�e'Sekdnig�s,' y�mr{`�n{u itemm UpkW C "4..- E➢Si4-'1N{Ai[!AM".'k411t59!w.—iw.—..cv. $t8e1 B saMAIt EN1 RC,�tLG AMC 19D3 21it5 6 351a �.w Oesai n sr Er aEaM SUPPORT TRELLIS 1 Max'Streis Rai $ Summary Ot Moment Values Summary of Shear Vah s Load Combina#idti _ .o Seament'Lenaih Span # M V Mmax + Mmax Ma ter Akac Mn�fOme$a Cb Rm Va mi V;i 7mooff ega ,60D+0,70E+0.60H Ds9ts t= 13.67 ft 1 0,026 O.005 1,16 116 72.83 41,61 1.00 1.00 034 119.63 71.63 Mau +' 1)ett Location to Sparc :crad naJon S r1 pa Max De11 locadai in Span load Combinatan . .,. 0,00000.4Q0 t1.0738 Support nordton : far left is 01 vakres in LOPS �a� vertlCitt'Re7donS' Load Combination Load 5apf rt 1 Support 2 Owatl MIN rmm 0:338 O-W +D+H 0:563 0,563 +D+L+H 0.563 0,563 .p:ls•+� 1.384 1.384 40+S+H 0,563 0.563 +0+0.75W+0,75OL+}t 1.178 1,178 4D4.750L+0 750S+N 0.563 0.563 +C -OAW+H O.%3 0,563 +D40-JOE+H 0.563 0s63 *D+0,75W-0.750L+0.450W+H 1.170 1.178 40+0,75©L+0J50S+0.450W+H 0.63 0.563 -0*0.75m+0.75OS40.5250E+H 0,563 0.563 +0 60D+0.60W+0,60H 0.338 0,338 +u0D+0.7OE+0,60H 0.338 0.338 p On.ly 0.563 0.563 Lr ont 0,820 0.820 L ©nry s Dnty won E arty H cmt7 ....... . .. .. . . .•• . ........ . 06 • • • • • • • • • • • • • • • • • •• • • •• • • • • • • • • • • • •• • • • • ••• ••• • •• •• • • • •• •• ••• • • • ••• • • L� ST�1 STEELBEAM DESIGN.SUPp6RT TRELLIS LOADS SpAN 1 Roof 'DL>= 15,'(13.67) = 205.05 plf Roof LL= 30-(13,67) = 41O.'1 pif TOTAL DL = 205 = 205 pif TOTAL LL= 410 plf .. . . . . . .. .. ... .. . . . .. . . . . . . . . . . .. . .... .. .. .. . . . . . . . . . . 2S Tft1e BSodc uhe:1 Project Title: • Engineer,! *d to: You �:tt>is;acea: � De§a:: using the +Settings• menu iiem and lien using ttte *#KnHng 8 `Title Blodi' selection. Calculations per AISC 360-10, ISC,2012, ASCE.?-1i Load Combination Set : ASCE 7-10 Analysis Method; Allowable Strerigth Design Fy : Steel Yield: 46,0 ksi Beam Bracing,, Beam is Fqy Braced against taiera -torsional buckiirtg E: Modulus: 29,000.0 ksi Bending Axis : ' Major Axis Bending' Load Combination iASCE,7-10 nm aosai i�.rm r Applied Loads _ _..- - Beam self weight calculated: and added to loading Loads on all spans�.w Uniform Load on ALL spans . D = 0.2050, Lr = 0.410 kilt DESIGN SUMMARY Maximum Bending Stress Ratio = 0.117 : 1 Section used for this span HSS10k4x1/4 Ma Applied 5.099 k-ft Mn t Omega : Allowable 43.613 k-ft Load Combination *D+Lr+H Location of maximum on span 4.000ft Span # where maximum occurs Span # 1 Maximum Deflection 6qn ia.4lON=ill Service toads entered. Load factors will be applied for calculations. Maximum Shear Stress Ratio = Section used for this span Va : Applied VntOmega : Allowable Load Combination Location of maximum on spars Span t# where maximum occurs Max Downward Transient Deflection 0.018 in Ratio = 5,478 Max Upward Transient Deflection 0.000 in Ratio = 0 c360 Max Downward Total Deflection 0.027 in Ratio = 3524 Max Upward Total Deflection 0.000 in Ratio = 0 <180 Maximum Farces & Stresses for Load Combinations _ W Max Stress Ratios Su worry of Moment Values Load Combination c,� , Span # men, Length pa t V Mmax + Mmax -� Ma Max nx(0mega Cb Rin htnX M xX Dsgn. L = 8.00 6 1 0.042 0.013 1.82 1.82 72.83 43.61 1,00 1.00 +O+L+H psgn. L _ 8.00 h 1 0.042 0.013 1.82 182 72.83 43.61 1.00 1.00 +0 tr+H Dson. L = 8 00 ft 1 0.117 0.036 5.10 5.10 72.83 43.61 1.Q0 1.00 +0+S-H Dsmn L -- 8.00 ft 1 0.042 0.013 1.82 1.82 • 12.83 • • • 43.61 1.00 1.00 +0+0.750Lr+0,75OL-,4 L 8.00 ft 0.098 0.030 • • • • • 4.28: : • • • • .: 4:�8: : �.2.8s 43.61 1.00 100 Dsmn. = • • • • • • • +0*0.750L+0 750S+N Dsgn. L - -3 00 ft 1 0.042 0 013 1.62. • • • • : • • : 180 X 0 • • 4361 1.00 100 +0+0 601ty- t Dsgn L = 8 00 ft1 0.042 0013 182 182 72.83 4361 • 1.00 100 +� -0,070E-H Dsgn. L = 8.00 ft 1 0.042 0.013 • ••• 1`SS2: : • • : : 122 : • • • • •• 7:23 : :151 • • • • 100 100 ?-0,7501.r•0750L+045071-H Dsmn- L = 8.00 h 1 0 3 0 •• • • 4.?ii � : • • • • • 4 2-4 7283 • • 43,61 100 100 +0+0 750L+0 750S-0 450W+H 8.00 h 1 0.042 0 013 18? ! 82 72 83 z3 61 1.tr0 ? 00 Dsgn L = • -0-« 150L+0.750S.0.5250E+H 0042 00?3 • • • 153 : : • • • : ::•2 : • 7:33 • 4351 10� 1 usgn > g0ru � • • • • • • • • -05OD-0:0'Vi.360t • • •• •• • • • •• •• 000 0 0 0 000 • • Dpsion C 0.036 :1 HSS10x4x1 i4 2.550 k 71.632 k +O+Lr+H 0.000 ft Span #t 1 Summary of Shear Values Va Maz Vnx Vnxloo ma 0.91 11963 71:63 0.91 11963 71.63 2.55 119.63 71.63 0.91 119.63 71.63 2.14 119.63 71.63 0.91 11963 7163 091 111963 71.63 0 91 119.63 7163 ? 14 11963 7163 091, 119 63 71 53 vat 11963 7163 `�/ Tjt4e Elto#c Linea' l�rojecttite: You can change,Wvarea , En sneer: i?ro1 ct 4D; using the _'SeWCsnW menu item PmJw Desa: ancilhi n usingltte Writing & Titie,Biock+ seleciwn: title Bto�k Line 6 ►� rcra,, ss,Par ---1ti201b-4-�ticctax.=».a��"" [Steet Beam, " . Et�,ltc�t:G lliG 19�20 Oesaiption STEEL BEAM SUPPORT TRELLIS CON0,2 Load Combination Max Stress Ratios Sumrmdiy of Moment vawtues Summary of Shear values _ .� Secimert►tencth `Span O M V tutmaz n4rnac, Ma Max Mnx MnxlOmega Ca Rttf Va Maz Vna WuJOmega +u axr+u.r=* D$9n, L = 8,00 ft 1 0.025 0.008 1:09 f,{i9 7283 43.61 1.00 1.00 0.55 119.63 71,63 overall MaximUrnClAdont Loci ComtsnatIbn Span Max.'= Deft Location in Span Load Combination Mu, +' 0e0 Location in Span 4.0x3 00000 0.000 Vertical Reactions Support notation: Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Ovir4f AXanwn ---•-•. •-2 - ' --- Overan MINimum 0.546 0.546 +O+H 0,910 0.910 *D-4.+H 0.910 0.910 +D+Lr+H 2.550 2,550 +O+S+H 0110 0,910 +040 750Lr+0,750L+H 2.140 2.140 +0+0.750L+0.750S+ti 0$10 0,910 *0+0,60W-H 0.910 '04110 D+0,70E+ii 0.910 0,910 +0+0 750Lr+0 75GL+0 450W+H 2140 2.140 +",750L+0.7 +0,4 +H 0,910 0210 +D+0.750L+0.750S+0,5250E+#i 0.910 0,910 +0.601)+0.60W+0,60H 0.546 0.546 +0.601)+0.70E+4.60H 0,546 0546 0 only 0.910 0,910 Lr Only 1640 1,640 L only S Only W Only E Only H Only .. ... . . . . . .. .. . . . . . . . . . .. ... .. . . . .. 000 . . . . . . . . . . . . . . . .. . . .. . . . . . . . . . . . .. . . . . so* . . 66 . STB-2 STEEL BEAM DESIGN SUPPORT ROOF "AT GACEBO Span =17.76 LOADS SPAN i Roof OL = 25.(11.67 ;+ 2 (- 195,875 Roof LL= 30. 1.1.67 + 2 = 2M.05 plf 2 TOTAL DL = 196 = 196. plf TOTAL LL= 23S plf UPLIFT = 91' LI + 2)-1.66 = 1.184 x 103 2 plf .. ... . . . . . .. .. ... .. . . . .. . . . . . . . . . . .. . .... .. .. .. . . . . . . . . . . . .. .... .... or . . . . . . . . . . ... . . . ... . Title 8166k'Une'1 Title change thisarea using the 4teWiigs*m enu iteidi • and. then using the '.066119 & Title BloW Selection. 33 Licensee: DeSCdptjb0 STEEL BEAM SUPPORT GACEBO COND I CODE REFERENCES - Calculations per RISC 360-10, IBC2012, ASCE7-10 Load Combination Set. ASCE 7-10 Miterial,pi,opedies I—, Allowable Strength Design Fy:-StW Yield 46-0 Wsi Analysis Method, , Bearn.Wadng;� Beam is Folly Braced a,#nst,lateral4o(fiorW b0ckling E: Modulus, 29,0W0 ksi Bending Axis: Major Axis Sending Load Combination ASCE 7- 1'0 Applied Loads Beam sell weight calculated and added to loadinq Loads on all spans... Uniform Load on ALL spans ; D = 0,1960, Lr = 0.2350 Wit nrSIGN SUMMARY Maxim6rn Sending Stress Ratio = 0.176: 1 Section used for this span HSS12x4x1/2 Ma Applied 18.898 k-ft Mn J Omega - Allowable 107.196 k-ft Load Combination 4,0+Lf +H 8,875ft Location of maximum on span Span # where maximum occurs span Deflection sw.11mp kMi2z"112 0 Service loads entered, Load Factors will be applied for calculations. xi ma 'mum Stie-ar Stress Ratio Section used for this span VA : Applied Vn/Omega: AJlowabte Load Combination Location of maximum on span Span 9 where maximum 00WrS Maximum Max Downward Transient Deflection 0,087 in Ratio= Max Upward Transient Deflection 0.000 in Ratio= Max Downward Total Deflection 0,177 in Ratio = Max Upward Total Deflection 0,000 in Ratio= 2,460 0 <360 1205 0 <180 Maximum Forces & Stresses for Load Combinations Max Stress Ratios S�� Moment Values i;Z- Span # M Mmax - Ma Max Cb Rm Segment Length 0,090 0.013 9.64 9�64 179-02 10720 1.00 1 -00 Dsgn, L = 17 75 It 1 •0-t-H 1 0090 0.013 964 9,64 17 9,02 107,20 1.00 1.00 Dsgn L = 171,75 ft +D+U+H 1 0176 0.026 18.90 18.90 179.02 107,20 1 DO 1.00 Dsgn. L = 17,75 ft +0­S+H 1 0090 0013 9,64 9,64 119,02 10710 100 100 Dsgn, L = I7.75 ft +D-0,750U+0 750L+4i 0.155 0.023 16,5C 11h : lig,e 10710• 100 100 D!;4gn L - 17 75 It 1 -D+0 750L-0 750S-H 1 0090 0.013 9".6 1,61 107-1 100 1�00 Nn,Lz 1775e, -0+060W-H 0,090 0-013 9.64 964 179.02 10720 100 100 1 Ds,gn L = V 75 ft• -D .0 701 -H 0 M 0,013 1;�P. 000 11 1q-9*;2 -07,20 100 00 D5,gn L z 17 75 11 • ,C,+o 75rLt-0 754E -0 4536"t-H 16F 0-023 00 •••16V ITIC2 •107 20 100 NO Dsg,) L - 17 75 It, 0 -0ii) 750L-0750S -0 450W-H 0090 1 , - 6,4, 964 17902 10720 " L�-, 10 Ds9n L- 17 75 fl, 5250E-H 0 61 • 9,02 • 107,20 100 1 ON ,Dsgn L It 1 0090 0013 .46�*• +0 ikOD-0 6UA! .0 60H 0.0'26 HSS12x4x112 4,259 k 162,999 k -D-Lr-H 0.000 It Span # I Summary of Shear valoes Va Fier " Vnx_ , Vnx_a 217 272.21 163.00 217 272.21 163,00 4.26 272.21 16300 2,17 272.21 16300 3 74 27221 163.00 2 i-f 272 21 16300 2 17 27221 163 W 2 17 272 21 16300 3 74 272 21 16300 272 21 163 GO '17 2272 21 163 NO Title'Blcck T.u#1e t: You can change:this area En meet Proved (a wkv tha'8ettingsi menu item Proved Dena: Load Combination, bRa�r Stress Russ Swmwy.of mmem Values _ — Summary of Shearyom Segnwt Length Span # M V Mman`+ Mmaz • Ma FAnx AMurlQmega Cb Rm Va Max Vnx VnxK)rnega t7sgn"17sg L 17.Z5ft 1 O:b54 v 0' 0$ 5.79 5.T9 179,02 107.20 1.bb QO i,34 27221 iS3.W +0 60E?+0.7if_+0,60H Dsgn.L- 17.75_tt 0.054 0.008 5,79 5.79 179,02 167.20 1.00 1.00 1.30 272.21 %Ib0 Overall Maximum beflectlons. M. ..,��._ ...._ Load GorribbiatiQn Span t+1az. = Oett Location In Span Land Combination Max •+: te0 Location in Span DLt+#i 1 b,1756 mmT 8.926 Vertit al Reactions. Support notation: Far M h s1 Vakm in KIPS toad Cortation Support 1 Support 2 Oierall MlNimutn 1.304 1.304 +0 H 2,173 2.173 +b+c«H 2.173 2,173 +D+Lf*H 4.259 4,259 +D+S+H 2.173 2.t73 +0+0,750L1+0,T50L+H 3.737 3.737 +0+0:75k-#0 750S+H 2.173 2.173 +040-60 *H 2.173 2.173 -+030E+t 2,173 2.173 �0+0.7501-r+0.750L+0.450W+H 3.737 3.737 +D--O.750L-0>750S+0.450W+H 2.173 2.173 +0+0J50L+0.750S+0 5250E•H 2.173 2.173 +0,60U+0.60W+0.60H 1,304 1,304 +0.60D+0,70E+0,60H 1.304 1.304 0 Only 2.173 2.173 Lr Only 2.086 2.086 L Onty S Only W Only E Only H Only Tice Block Line I frojeC Tale: Eked 10; Engineer.You can d"thiSIM, Project DftW. using the -,se@ngs'• menu Rem and then ON the,'Printing Calculations per AJSC,'.3W 0.'ISC20,12, ASCE 7- 10 .Load Combination oSei::ASCE 71`10 Analysis Method: Atlowable'Ztrenglth'Design Fy: Steel Yield Beam Bracing: Beam is Fully Braced against lateral -torsional buckling E* Modulus: Bending Axis a Major Axis Bending Load Combination ASCE 7-10' spm- 17 7504 Hsstb4Xt* 50.0 ksi 20,000.6 kSi Service toads entered. Load Factors will be applied for calculations, Applied LoadS` ---------- --- — - ----- Beam self weight catculated and added to loadiinq Loads bn all spans... Uniform Load on ALL spans W = 1.20 k/ft DESIGN SUMMARY Maximum Bending Stress Ratio = 0.260: 1 Maximum Shear Stress Ratio 0.039 Section used for this span HSS12x4xi/2 Section used for this span HSS12x4xi/2 6V4 k Ma A Applied 30.279 k-ft Va: Applied VniOmega ,Allowable 177,173 k+0+0,60W+H Mn / Omega; Allowable 116.517 k-ft Load Combination +0+0,60W+H 8,875ft Load Combination Loam Of maximum on span 0,000 ft Location of maximum on span Span # I Span # where maximum occurs Span Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection 0,442 in Ratio = 481 Max Upward Transient Deflection 0.000 in Ratio = 0 <360 Max Downward Total Deflection 0,283 in Ratio = 752 Max Upward Total Deflection 0_000 in Ratio - 0 <180 Maximum Forces & Stresses forLoad_Combinations -Scriviia—ry of Shear Values Stress Ratio Low tion res os St Of Wrrien, Values Ma Max Mnx Kviomega Cb Rm Segment Length Span it M V 1 0.017 0,002 1.92 1.92 19C58 116V 1,00 1,00 0,43 295,88 177,17 Dsgn, L = 17,75 It +D.L+H 1,92 1,92 194,58 116.52 1,00 1 DO 0,43 29588 177,17 Dsgn, L = 17,75 ft 1 0.017 0,002 -0+Lr-H 0,017 0.002 192 1 N 194,58 116.52 1 DO 1.00 043 29588 177.17 Dsgn L - 1735 ft 1 +D+S+H 1.92 194,58 116,52 1,00 1.00 0.43 295-88 171,17 Dsgn.Lz 17.75ft 1 0017 -04750l.r4�0350L+H 0002 1.92 s*6 116.52 1,00 1.00 0,43 29588 17717 Dsgn,L= 173511 1 0,017 OX2 1,9;• •.12* • .0-0 750L+0 7550S-H 0002 19-296* so••••• 116.52 1.00 100 0,43 29588 17717 0. Dsqn. L = 17.75 ft 0 — -0-0,60W.H 3028 19458 116,52 100 1.00 6.82 Z95.88 177117 Dsor, L z 17 75; ft 21;0 -mD470E-H 0,039 3.3 21� so • 92: ;16 52 : '... 1;058 100 1.00 043 29588 17717 Dsm, L = 17 75ft 0017 0002 9, so • o 6 : : • • : 5 3 177 1- 50 ^ +�D-07500--O�y1Lli�,450 CK4 0 029 2 144*58 1 *16 52 100 1,00 41 C)SIn L � 17 7� ft 1 0 1 1 C. 4-0 , 150 1- -0 -50 S 40, 4, 5C W -+1 'C; 23 19 19458 1 100 52, 295 M 17 7 17 D --,g r, L - 7 ft 0 1Q9 50S-05210E-H 017 0 029- 0 CIX02 ,- see o o •0 • o o '*so * 6 14158 11652 s 100 100 043 2.45 88 177 6,3 �,�vy'+43 6 0 H •o:. :e 7itieI&OO Line 1 Pn CtTitte You 'ran°change Ns areaProject De�x., i:ngineer Pro t,lt} using the'Settings' menu item wW then using the 'Printing Load Combaiabon Max s6iss Rados Sunrwy of Mwet Vakms SCltnrr�ary flf $tlaaf Vahres Seatnani tcrrath ,span* Ma MaMnz Mnx/Omega Cb, Rm Va Max Vnx VnxOT"a D$gn. L - 17J511 V.LDJ VM40 47111 ..., I .. _ -- ,-- 77 40.600.70E+0 60H Dsgn, L - 17 75 ff 1 0.010 On't 1.15 115 194:58 118.52 L00 1.00 0.26 295 $8 177.17 Neray Maximum DeflectionsLoad nat m SW WY, =' Dd L=Wn in Span Loci C,ombinatim Max. •+' Dog laration in Span 8.926 0.0000 0000 Vertical Reactions. — Suppod notation : far 0Is $1 ., _._- Vakm in KIPS W_....- Load Combinaom Support 1 Supportt 2 Overa9 MIN'UMM 0.260 0;260 0,434 0.434 404{ H 0.434 0.434 +O+i.r+H 0.434 0.434 +D+$+H 0.434 0.434 4" 7501.f40.754L+H 0.434 0.434 +0+0.75OL40,750S4H 0,434 0 34 .0+0,6(YW4H 6.824 6.824 +D40.70E+H 0.434 0.434 40+0.750Lr4O 750140.450W •H 5.226 5,226 +D4O.75OL40.75OS40-450W+H 5.226 5.226 +0+0.75OL+O.75OS40.5250E+H 0.434 0.434 40.60D+O6OW40.60H 6.650 6.650 +0.60D+0.70E40.60H 0.260 0,260 p Only OA34 0.434 U Only L Only S Only W Only 10.650 10.6% E Only H Only STB-2 STEEL BEAM DESIGN SUPPORT ROOF AT GACEBO Span =11':6r LOADS SPAN 1 Roof Di - 25• 7 + 2 = 13"7.5 pif 2 J Roof LL= 30• (27 + 2 = 165 pif JJJ TOTAL DL = 137 = 137 Of TOTAL LL= 165 pif .. ... . . . . . .. . .. . . . .. ... .. . .. .. ... . . .. . .. .. . .... . . • . .. . . . . . .. . . . . . . : : : : ... . . . . .. J . • 3� Title Block Line 1 Piole# I#f; You can change this area. 'Engineer. Proleci'tD; Descr using the `Settings' trivia item and then using the'Printitlg it< 7Skln Oln,.ir• enl:nfinn CODE REFERENCES Catcuiations per.Al'SC 360A0. IBC 2012, ASCE 7.10 Load Combination Set: ASCE 7-10 Material Properties Analysts Melhod : Allowable Strength Design Fy : Ste Yield,' 46.0 ks Beam Bradng ; Beam is Fully Braced against lateral -torsional bucMing E: Modulus : 29,000,0 ksl Bending Axis: Major :Axis Bending Load Combination ASCE 7-10 Applietfifi Loads Beam self weight calculated and added to loading Loads on all spans... Uniform Load on ALL spans ; 0 = 0,1380, 11= 0,1650 klft OESiGN SUMMARY Maximum Bending Stress Ratio Section used for this span Ma: Applied Mn I Omega: Allowable Load Combination Location of maximum on span Span l= where maximum occurs Maximum Deflection Max Downward Transient Deflection Max upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection sv.•. +1 eon Service loads entered, Load Factors will be applied for calculations. 0.056 : 1 Maximum Shear Stress Ratio = HSS12x4x1/2 Section used for this span 5.990 k-ft Va ' Applied 107.196 k-ft VnlOmega : Allowable D+Lr+H Load Combination 5.835ft Location of maximum at span Span # 1 Span # where maximum occurs OA11 in Ratio = 12,329 0.000 in Ratio = 0 <360 0.024 in Ratio = 5782 0,000 in Ratio = 0 <180 1asian C 0.013 ' 1 HSS12x4x1I2 2.053 k 162.999 k +D+Lr+H 0.000 It Span # 1 Maximum Forces & Stresses for Load Combinations "'"" `SummaryolShear Values Summary of Moment Values Load Ccmbinauon twtax - S n# M V Mmac + Mmax- Ma Max fAnx Mnz1(knega Cb Rm Va Max Vnx 'dnxtCmega Segment Leng -} Osgn, L - t 1.67Rft^ 1 0.030 0.007 3.18 3.18 179,02 107.20 1.00 1.00 *o+L+i+ 0.030 0.007 3.18 3.18 f79.02 107.20 1.00 1,00 Dsgn L = 11.67 ft t +D+LrOH 1 0056 0.013 5.99 5,99 . 17902 107.20 1.00 1.00 Dsgn L = 11,67 f? +D-S+H 0.030 O.dti7 3.18 3.18 17902 107.20 too 1.00 Dsgn L - 11.67 ft 1 «0t+0.750Lr+0 750L++' 0 049 .. 0,011. • . • • • 53 ' : • • : : : .5.2g • 17902 107.20 1.00 1.00 Dsgn. L = 1167 ft 1 • . • �D-0.7501_-O 750S4-H ? 0.030 . 0.007. • • • • . . • •. • • • : • • : v. • 179.02 107.20 1.00 1.00 Dsgn. L = 11.67 1t : .} .: '0+0 60W4i ? 0 030 0.007 3,18 . 318 179 02 107,20 1.00 100 Ow L = 1167 ft J�' 70E++ 0.030 0 7� •3 18 .' • • • 91 e3.18 • #79,02 10720 100 1 0v Cs�in L = 11.67 ft 1 i :0 : 54Lr�0.750L+0 d50t"3+N 1 049 0. 0 i1• s1 : •5 � 0.0 : : • • « : T79 02 • 10720 1.00 100 usgn.L= 1167ft • .C-0750L+0.750S+0.45tW-H 0 7 3.1& ?`:6 17902 t0T20 1.00 100 Cryyn. L 11 67 f1 0030 0-3 50 +0.750S+4.5250E-H • .. 0007 18 • • • • • • dt8 179.02 107.20 1.00 1.00 F`�3 - 1 67 ft 1 0030 : :.: : • • • • • 1,09 27221 16300 1.09 272.21 163.00 2.05 272.21 163.00 1.09 27221 16300 181 272.21 163 00 1,CS27221 16300 1,09 27221 15300 1 09 272 21 16300 i 81 27" 21 163 00 1 r,,9 27221 1r300 1 i1`3 272 211 1^3t't rate t3iodcune-1 F+rOjed tltt» 'YOU can t.harotht4 area Ensneer kusing the'Settings' menu item and then using the'Rinting & 'io. tl —w e,-JW4;m Lc> d Coofti ion Mau Stress kat m Summary of Mwwdyakres Summaryof Shear values Spain ' M ' 1 marc tft �n 1 00 ~17 Dsgn. 116r It ,016 O:Of14 1.9t 1 tC00 1 U0 065 272.21 +0.60D+0 JOE+0.60H DsgmL= 11,671t 1 0A18 0.004 1.91 1.91 179,02 107,20 1.06 1.00 0.65 272.21 163,00 OveWl Maximum Deilec6o' ns Load Cont nOw Span Max."DO Lmt)on in Span Load Gombt<+s m Maz '+ Dell Location in Span +Li+H Vertical Reactions support notation : For left is $1. Vakres in KIPS Lori fomb±nafion Support i Support 2 Overak MSNimum 0.654 0.654 +0-H 1,090 1,090 +{}+L+#i 1.090 1,090 +O+Lr•H 1053 2.053 +O+S+H 1,090 1.090 +0+0.750Lr+0.750144 1112 1.812 +D+4,150t.+0,750S+H t090 1.090 +0+0.60 4t 1.090 1.090 +0.0.70E+H 1.090 1.090 +0+0J5OLr+0,750L+0.450W+H i.812 1,812 +0+0J5t8.+0,750S+0.450w+tt 1.090 1.090 +0+0.750L+0,75QS+0.5250E+H 1.090 tow +0,601>+0.60W+0,60H 0.654 0,654 +0.600+0.70E+0.60H 0,654 0.654 D Oniy 1.090 1.0 Lr Only 0,963 0,963 L Only S Oni w Ong E Only H Only ....... . .. .. . . . . . . .. ... .. . .... ... .... . .. .. . .... .. .. .. . . . ....... STS-2 STEEL BEAM DESIGN SUPP6kT ROOF AT GACEBO Span=-12.25 LOADSSPAN1 Roof DL = 25.(I 1.67 + 2) = 195.875 pif 2 Roof LL= 30, 1 1.67 + 2 235.05 plf 2 TOTAL DL = 196 = 1.96 plf TOTAL LL= 235 Of UPLIFT = 91.(11.67 + 2)-1.66 1.184 x 103 2 1 .. ... . . . . . .. .. ... .. . . . .. . . . . . . . . . . .. . .... .. .. .. . . . ....... Title BW Lim I 9 Pr*d Title: Carl d= En" s area Project lne*! Descr "n,g,#*, �gv menu Item and then using the *Nntlng CODE h&EOENCEt Calculations per AISC 360-10, IBC 201Z ASCE 7-10 Load.Combination Set, ASCE 7-10 Materi al Pro p 14i4s; Analysis Method: Allowable Strength Design Fy : Steel Yield 46.0 ksi Beam gracing : -Beam Is Fully Braced againstlateral-torsional bucirling E. modulus: 29,000.0 W Bending Axis : Major.Axis Bending Load Combination ASCE 7-10 v soon - izr, A tftlbixtl Applied Lo ' ads ----------- Beam sell weight calculated and added to loading Loads on all stuns,.. Uniform Load on ALL sows . D z 0,1960, Lr = 0.2350 kfit DESIGN SUMMARY Maximum Bending Stress Ratio = 0,084: 1 Section used for this span HSS12x4x1I2 Ma Applied 9.001 k-ft Mn 1 Omega: Allowable 107,196 k-ft Load Combination +oAr+H Location of maximum on span 6125ft Span # where maximum occurs span # 1 Service bads entered. Load Factors will be applied for calculatIOM Maximum Shear hear Stress Ratio Section used for this span Va: Applied Vn/Omega: Allowable Load Combination Location of maximum on span Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection 0,020 in Ratio= 7,484 Max Upward Transient Deflection 0,000 in Ratio= 0 <360 Max Downward Total Deflection 0,040 in Ratio = 3665 Max Upward Total Deflection 0.0()0 in Ratio = 0 <180 Maximum Forces & Stresses for Load Combinations ____ ------------ - Stroll hallos 6— Surrinuiry 0 Moment V8k" M v Mmax Mmax - Ma Max Mnx mjx,0mqa Cti Rm Seq mtnt Lenqtti Span 9 — +0wl Dsgn L 12 25 ft 1 0,043 0,009 4,59 4,59 17,9.02 107,20 1.00 1,00 Osgri, L = 12-25 ft 1 0.043 0.009 4.59 4.59 179.02 107,20 1,00 1,00 -D«Lr+H Dsgn L = 12.25 ft 1 0.084 0.018 9.00 9,00 179,02 107,20 1,00 100 ,C).S,H ,DS9n L= 12 25 h 0043 0,009 4.59 4.59 179,02 0 a * 107,20 100 100 .4D+O 75OLrO 75�1--H 0,074 000 0 0 016: 7-9: 'i qA 179,02 107.20 100 1,00 Dsgn L = 12 25 ft 1 : 0 �0 -3 7 50L .0. T 50S __H1 0043 0 0 0,009000 0 0 ; 5,�, . * 1-,9.02 107.20 100 100 D'.9n L = 1221, .0-0,60vi-H 0043 0009 4,59 09 179,02 107.20 1 .00 100 LNsgn L = Q25� •D-0 70E-H ON3 0*0 • 0 :-1:9 02 0.(:; 4.59 107 20 100 100 DsgnL 12 25 ft 7 5,Q'L,13 4 �,,,I'N 41• 1 0 074 e 79 02 0 01�i ;tom, 10720 '00 100 1 2 25 ft 1 ;_vL�! 01 0.13 000 59 4 59 !,902 107 201 100 100 -,0 K,1 50S -a 5 2 50 E i t OON 59 59 179 02 10720 100 100 2 2 5, ft 1 004,3 6CH 0.018 HSS12x4x112 2.939 k 162.999 k +D+Lr+H ODOO ft Span # 1 of shear Values va Max vnx vnxonega 1,50 272.21 163,00 1.50 272.21 163-00 2.94 272.21 163,00 1.50 27211 16100 2,58 272,21 16100 150 272 21 163.00 150 27221 16300 1.50 272 21 16300 81 163100 i 5ri 27221 i 6 3 (XI, It 53 272 21 163 00 0 ,Title Bbcic Line r ` Ybu;c�n change this area Engineer.. Proeci tD: Prate Dena usinglhe'SettkW imnu item and 04n ysing the'!Nnt n9 ^rtn,. OT-4• tearer tue Load ,Combination Max Sb*m Ratios Summaryy bt Moment Vatoes Summary of Stw Values Seament Length Span 0 M V MM + Mmax Ma Max, Mnx Wxi0mega Cb Rm Va Max Vnx. Vnx +u.ovv+v,rvc+v.wn Dsgn. L= 12,25 ft 1 0.026 0,006 2:T6 2,16 179.02 t07 20 1.00 1,00 OM272.21 163.00 046911 Maxim im Dw3tiectioins Load Combination Span Max. `.' Deb :Location in Span Load Cw&Mi Max. `4' Deli Location in Span 6,160 � �..�..... 60006 _ O.OW Vertcai Reactions SupW not *on : Far left is#1 Vats in KIPS Load Cori-ibirmfon Support 1 Support 2 `ave�'twt,'iXmn,m Overall MiNmwm 0.900 0.900 .0+H 1.5w 1.500 +D-L+H 1.500 1.500 .p.i,r+H 2,939 2.939 ,O+S+H 1.500 1.500 +D+0,750Lr+0750L4H 2.579 2579 +D+0.750t.40:750S•H t.500 1.500 +D+0.60W4H 1,500 1.500 +040.70E+H 1300 1,500 .0-0.750Lr+0.750L+0,450V1+H 1579 2.579 *",750L+0.750S+0 450W+H 1.500 1.500 +D+0,750L40.750S+0.5250E+H 1.500 1.500 40.60D+o.60W+0.60H 0,900 0,900 +0.80DD4,0.70E+0.60H 0.900 0.900 D prAy 1,500 15M Lr Only 1.439 1,439 L Only S Onty W Onty E O;ity H Only • •• • • • • • • • • • • • • •• ••• •• • • • •• • • • • • • • • • • • • • • • • • •• • • • • • • • 600 • • • • • • • • • • • •• •• • • • •• •• ••• • • • ••• • • TQtle Slock Une 1 ProoTitle: F„ngint3ert : Project ID: You cart r this area DesCrs using #* "Settings' menu item and theft rising ttfe "Printing & CODE*EFERtNCES Calculations -per AISG 360-10, IBC2012> ASCE 7-10 Load Combination°Set ASCE 7-10 Material Properties _..w d6:0 Analysis Method: Allowable Strength Design EyMSodt�ilus 29,000.0 ksi Beam Bracing: Beam is Fully Braced against'laterai-torsional budding ks! Bending Axis: Major Axis Bending Load Combination ASCE 7-10 man.123*4 ress+rn Service toads entered. Load Factors will be applied for calculations, _. A erect Loads _ _. m. �..._� . Beam self weight calculated and added to Wfn4 Loads on all spans... Uniform Ltd on ALL spans, W =1.20 kit DESIGN SUMMARY Maximum Bending "Stress Ratio 0.136: 1 Maximum StiearStress Ratio- 0.029 Section used for this span HSS12x4x1/2 Section used for this span HSS12x4x112 4.740 k ma: Applied 14.611 k-ft Va : Applied Vn/Omega ; Allowable 162,999 k Mn / Omega : Allowable 107,196 k-ft +0-0.60W*H Load Combination +0+0,60W-H 6,165ft Load Comtrnation location of maximum on spare 0.000 ft Location of maximum on span Span # 1 Span # where maximum occurs Span # 1 Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection 0.103 in Ratio = 1,437 Max Upward Transient Deflection 0,000 in Ratio = 0 <360 Maas Downward Total Deflection 0,066 in Ratio = 2243 Max Upward Total Deflection 0,000 in Ratio = 0 <180 Maximum Forces & Stresses for Load Combinations x _ -- Summary of Shear Values _ _ w . _ Max Stress Raton Summary Load Combination .. w _ _ _.__ Qf Mamsnt VValues _ . Mnx Mnx*rnega Cb Rm Va htax Vnx Vnxt a Segment Length Span M _ _, . __. + V Mmax Mmax Ma Max -- .1 ----_. _.. _-. _ _ 0.009 0,002 0,93 0.93 179.02 107.20 1,00 L00 0.30 272,21 163.00 Dsgn. L = 12.33 ft 1 +0-+L* 0,93 0.93 179.02 t07.20 1,00 1.00 030 27221 163 00 Dsgn. L = 1233 ft 1 0.009 0.002 D+Lr-H, 0�2 0.93 0,93 179.02 101.20 1'00 100 0.30 27221 t63.00 re 1 0.009 fin. L = 12.33 „ --D+S'N 0.93 i79.g2 10720 t.00 1.00 0.30 272 2t 103 00 Dsgn. L = 12.33 ft 1 0,009 +D+O 7501r•0 75OL- 0002 .. : % . . . • • • • • • . . • • i gs 17902 10720 1,00 1.00 0.30 272 it t63 00 Dsgn L = 1233 tt t 0 009 7+0 750L-0,750S41 0.002- • (L • • • • • • • •j 9 • • • • •� • • • b 179.02 107,20 t 00 100 030 272 21 t53 00 Dsgn. L = 12.33 f1 1 :3 9 +0+0.60WJ+H 0.002• 14.61 179,02 107,20 100 1,00 4.74 272.21 163.00 1 Dsgn. L = 12.33 ft1 0.136 +0+0.70E y4t '4.61 0.02� • • : i ' • • • • ii5� i -47 02 10720 1.00 100 0.30 272 2 t 163 00 Dsgn L = 12.33 f' 1 0 0 0 9� • . . • • '„� • • • • . J 3 272 21 '63 X) -Q 750Lr� 75JLa0 450W1+41 � • • flUl•1 ';t� ' 179 02 ?0l, 20 ` ` 00 100 3 L is33tt 1 0.IN '9 1� 17902 0,720 1.00 100 3uw 2i221 t63 yj =yn L - ,? ,3 1 0 101 �3-07KL-07.kS-05250E++� 33 ft 1 0 �9 0.022... ; • • • • • • i i•� • • 1 O iE32 � .� . • • • • • '• • i r,r1 • 17902 tv7 20 . r ,y • i.00 100 030 272,21 163 5 �2 06 Tate Btocit LfneI you can doge this area using the `Settings"_menu item od t6en using Our ". Printing & Tat.. 61-0 ,.M-41r,., Ptoje tfi6. Engsneer Prood Descr Mu Stress Ratios Sumrnar� of Vs s � of Shear Vakm Load'Catnbinatiat Span # M V Mrriax . Mrne�c - Mfa MazMxMnxt�knI.e$s �-- Cb Rm Va Maz Vmi VnzlOmega Segment Length ... ...k .. . _ 1 4 179,02 1!�`%2C! 1, 't: 4.62 '272.21 163:00 Dsgn. L = 1233 ft 1 0.133 0.028 1414 +0,600+0.70E+0.60H 1 0,005 0,001 0.56 0,56 17902 107.20, 1.00 1.00 0.18 272.2i 163.00 = *n.L12.33ft br Span Ma,'-' Deft Location in Span Load Com1s&►ation 16,1M `* [kit location in Span tAa9 Combir►aSon 0 0000 0 000 W Vertical Reactions Support rotation, Far Leff is 01 Vak es in IOPS Load Combination Support 1 Support 2 Overall MINimum 0.181 0,181 40 H 0.301 0.301 D+L+H 0.301 0,301 *O.{ r-H 0-301 0,301 +O+S+H 0,301 0.301 +0+0.750Lr+0.750L+H 0,301 0,301 +0*0.750L+0.750s+ 0.301 0,301 +040.60W+H 4,740 4.740, +0+0.70E+H 0.301 0.301 +0«0.750Lr+0,75GL-1.4 0tV4i 3.630 3.630 -D+0,7501 +0.750S+0,451W+H 3 630 3.630 +047+0.750S+0,5250E+H 0.301 0 301 +0.600+0.60W+0.60H 4,619 4.619 +4.600+0 70E•0.60H 0,181 0.181 0OrJy 0 301 0.301 Lr Or4 L Only S On4 W only 7.398 7.398 E On1 H Ont .. ... . . . . . .. • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• • • • • ••• ••• • • • • • • • • • • • • • • • • • • • • • • 6 www.hittLus Profis Anchor 2.4.9 Par: SPWW. Project: Addres& Sub -Project I Pos, No.: Phone i Fax j Date: Spocifier's comments: 1 Input data Anchor type and diameter. Effective embedment depth, Material. Proof. Stand-off installation Anchor plate Profile Base material. Reinforcernent Selstftloads (cat C. D. E. or F) Goometry (in.] & Loading (lb, in.1b) AWS DIA GR. 13 34 N, - 4,724 in 7T design method ACI 318-08 1 CIP e,, - 0,()0() in, (no stand-off), t - 0.600 in 1, x ly x t - 16.000 in, x 8,000 in. x 0,500 in r (Recommended Plate thickness not calculated) Rectangular HSS (AISC), (L x VIV x T) - 12,000 in. x 4.000 in, x 0.250 in cracked concrete, 2500. f,'- 2500 psi, h - 8.000 in, tension: condition A. shear: condition A; anchor reinforcement: tension, shear edge reinforcement: none or < No, 4 bar no FA 6 00 06: 0.: r.4, seta a, -,I res.45 -M4 tvvKi,64 fx 3a10--Ort wT' x 0 nnn r•itrn�M Profis Anchor 2.4-9 wvwr.htlti;us Company. Page: 2. Speafi � Address: 1 Pos. No: Phone i Fax, t Date* 8/11i20% [- 2 Proof i Utilization (Governing Cases) Design valmsitbj Utilization Loading Proof toad Capacity W I Ml Status Tension Shear Steei.Strength 3985 18674 - / 22 OK, Loading iW Utilization pr,,v N Status m n tens a s artoads � ' 3 Warnings • Please consider all details and hintstwamings given in the detailed reportl Fastening meets the design criteria! 4 Remarks; Your Cooperation Duties - Any and all informatics and data contained in the Software concem solely the use of 1+16 products and are based on the principles, fomu"s and security regulations in accordance with Hillis technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-spedfic tests are to be conducted prior to using the relevant Milt! producL The results of the calculations carried out by means of the Software are based essentially on the data you put In. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked sW cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility, The Software'- serves only as an aid to Interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application. • You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. in particular, you must arrange for the regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. if you do not use the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilt! Websile. Hitti will not be liable for consequences, such as the recovery of lost or damaged data or programs, arising from a culpable breach of duty by you. •• ••• • • • • • •• • •• • • • • ••• •• •• ••• •• • • • •• • • • • • • • • • • • • • • • • •• • • • •s • i.,.t.3 aaz and rests rwA!Cfi 4 a • 4 AC•ice'• • c-s Or %J'1f:XX i G 1 2033 200q I*Q' AG [ iS:fd S.1illuri tMe' •s•' �z• • • • • • • 0.0 • • • • a STB-3 STEEL BEAM DESIGN FOR WIND LOADS Span = ' 7.75' LOADS SPAN 1 Wind = 88•(1.5)-1.66 = 219.12 pif . • • • 00 0 • • •10 . r040 SkPr*ct Title; V A Line i Enginder You can change -,this area Roject Desor, l. usingthe.menu ifeffi and then using the e.!Prmng & Title Block' selection: STEEL, Elf -AM "PORT WIND LOADS CODE REFERENCES` - 'Calculations per AISC 360-10, IBC 2012, ASCE 7-10 Load Combination Set: ASCE 7-10 Xj�ajysjj Method: Ailbwable Strength -Pesign Bearneracing: Beam is Fully Braced agairistIzIteralutorsional budling Bending Axis: Minor Axis Bending Load combination ASCE 7-10 ;W A led LiJids PPI I , - _ - --- - -1- Beam sell weight calculated and added to loadiniq Loads on all sprits... UniformLoad on ALL spans: W z 0,2190 k1ft DESIGN SUMMARY Maximum Bending Stress Ratio = 0.169: 1 Section used for this span HSS10x4x112 Ma: Applied 6.831 k-ft Mn / Omega , Allowable 40.399 k-ft Load Combination Location of maximum on span Span 9 where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection +0-+0,60W+H 8,875ft Span # 1 sow'. 11 MR Kssl*c4xt)2 Fy: Steel Yield E: Modulus: 46.0 ksi 29,000.0 W Service loads entered, Load Factors will be applied for -calculations, Maximum Shear hear Stress Ratio Section used for this span Va : Applied Vn/omega: Ailowable Load Combination Location of maximum on span Span # where maximum occurs 0.574 in Ratio = 370 0,000 in Ratio= 0 <360 0,455 in Ratio = 468 0.000 in Ratio= 0 <180 Design C 0.038 :1 HSS10x4x112 1.539 k 40,039 k +040,60W+H 0.000 it Span 0 1 Maximum Forces & Stresses for Load Combination$ of Summary Ratios SurrdylarY Moment Values Load 6�&Ution M V maiax Mew - Ma Max Mny mnyonega Cb Rm Va Max vny vnyOrega Segment Length Span # .......... 1 O.041 0,009 1.66 1.66 67,47 40,40 100 1.00 0.37 6687 40.04 Cs,-n L = 17.75 ft .0--t-H 0.041 0,009 1.66 1 �66 67,47 40A0 1.00 1,00 03 7 66.67 40.04 0sci L = 1715ft 1 .{,'.Ltd! 0.041 nosi 1.66 1.66 67,47 40,40 100 100 0,37 66.87 40.04 DSgn-L= -O*S-H 0.009 1.66 116 6T47 40.40 1,00 100 037 66-87 40,04 Dsgri,L= 17.75ft 1 0.041 +0.0.75OLr+O 75OL-H 0.041oo Lto o 1 �66 67,47 40,40 1 .00 00 037 66,87 40.04Dsgn. L = 17.75 ft �D+o 50LO 75OS-+-i 7 '1*669 1,66 6747 4040 1.00 1 �00 0,37 6687 40,04 Dsgr, L � 17 75 ft 0,04i 0 * 0 -0-0 6OW-H •••go 0038 6 83 653 67A7 40-40 1 1,00 100 1.54 66,87 4004 17 ft 0169 0 " OE - 0CA1W9 6747 4040 100 1 DO 037 6687 4004 ,sjn L1775l 750L -0 4' CW*H, 6 • 44 6747 4040 100 100 125 65.87 4004 ,Ds�jn L - 17 75 , j_. *V31 1 1. . 0 .0554 _,�c 4)."' i 5^4- -10 45OV4-H go 0• 554 67 47, 4040 100 100 25 51687 40 04 _g,' L � '' 75 7,�OL­0 750S .0 5250;- +H•••••• L 7 7 5 1 C. 1117 0 4 1�66 .4 677 4040 1,00 100 037 8 40 04 TM4e; Block Une 1 You can change ft area using the 'Settings* rnbw item and 66 using ittie'Pdniing & TM. GInn4'-%JbAi^A Project ride, Engineer Oesa:- Load Combination Max $tress Ratios Summary of Momw Vakm Simxnary of Shear Vahres . SeomentLersoM Span M V Mmax * Mrtax - lAa tAarc Mn�c Mnrit kne+ga Cb Rmya Marc Vnz YnxlOrtwga +tr,bUy+u. rut+u:�run Dsgn, L = 17,75 4 1 0.025 0.006 0,99 0.99 67.47 40,40 1.00 1.00 0.22 66.87 40.04 Overall Maxirrium aeftedons Loa Combination Span Marc.'-' Deft! LOCSbon in Span load Cambinatbn Maus '+ Detl. Loca6w in Span . �W flnty i 057 8.926 Vertical R8aCt10liS SupW notation : Far left is 01 ,., W------_..._-,. Va m in KIPS _ ---. Co- iCombination Supw l SupW 2 Overall MINimum 0.224 0224 +04H 0.373 0,373 40-*L+H 0.373 0.373 +D*Lr+H 0.373 0,373 +D+S+H 0,373 0.373 +0+0,750Lr40.750L+H 0.373 0,373 4".7501+0,750$44i 0,373 0.373 •0+0.60W+H 1,539 1.539' +0+0.70E+H 0.373 0.373 +040.7501r+0.750L+0,450Ni+H 1.248 1.248 +0+0,750L40.750S+0.450W+H 1,248 1.248 +0+0.750L+0.750S40:5250E4H 0.313 0.373 +0,60D-0360W40.60H 1,390 1.390 +0.600+0.70E 40.60H 0.224 0.224 0 onty 0,373 0.373 Lr Onty L Only S Of* W Onty 1.944 1,944 E ONy H onty 9 CONCRSTE SLAB DESIGN. Span =.12' LOADS Floor DL 8 .150.(1) = 100 plf 12 Floor DL = 25.(1) = 25 pif Floor LL- 100-(I) = 100 plf TOTAL DL = 100 + 25 = 125 pif TOTAL LL= 100 = 100 pif . . . .. ... . .. • : ••� 0 . • '60 Tltle 8toctc torte 1. Pidj "title; You'ca<►.ctrartge.#his area E ineer. Proiect tC}; using the'Seriings' tmeiiu item Nect Dew and then using'the'Pthit ng 8 TittA Atfr& setedion. CODE•REFERENCES- Celculations per ACl 318-11, I8C,2012f ASCE 7-10 Lead Combination Set: ASCE 7-10 .Mateclal-Piropertle"s fc - 3.0 ksl � Phi Nettles Fie7wre : 0.80 t to a fr = fc ' 7.50- 410.792 psi Shear , 0.750 4' Density - 145.0 pc1 Ot 0:850 % LtWt Factor - - 1.0 � Elastic Modulus 3,122,0 ksl Fy • Stirrups 40.0 ksi o fy - Main Rebar = 60,0 ksi E - Stirrups = 29,000.0 ksi ! Stirrup Bat Size # = # 3 E - Main Rebar = 29,000.0 ksi 2 Number of Resisting Legs Per Stirrup = Load Combination ASCE 7-10 Cross Section & Reinforcing Details Re(ianguiar Section, Width = 12.0 in, Height = &0 in Span #1 Reinforcing.- 1 -#5 at 3.0 in from Bottom, from 0.0 to 12.0 ft in this span Applied Load& _ Loads on all spans... . D=0,12 , L=0.10 Uniform Load on ALL spans: D=0,1250, L = 0.10 klit DESIGN SUMMARY Maximurn Bending Stress Ratio 0.852: 1 Section used for this span Typical Section Mu : Applied 5.580 k-ft Mn ' Phi : Allowable 6.551 k-ft Load Combinations-1.200-0.5OLr-1,60L+1.60H Location of maxsrrum on span 6.011 ft Span � where maximum occurs Span # 1 Cross Section Strength & Inertia Cress Seeton Bar La?srst Descriptian Sec-'Kn,i 1•154d=5' , Vertical Reactions !-OaZj Comornawri �rerali h4Axanurr. ^'.`era!'' k1141mum ^_ Z :j 4{ 5.0V. k; 0 45�0• • 07� • 1.350• 0iji• ;i SuDporl 2 1 3ti0 ••* 4` • 0 ,iio • •11• • 0 750 0 r'rr 200 • vv 100 1z"Wilrh sporw12:or. a t2; f Service toads entered. Load Factors will be applied for calculations. Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max. Downward Total Deflection Max Upward Total Deflection 0.029 in Ratio = 4935 0.000 in Ratio = 0 <360 0.066 in Ratio = 2193 0.000 in Ratio - 999 c180 Top & Bottom references are for tension side of section _ j7Aax MuJ t k•fl } Phi"Mn (k•rl l Moment Oi inertia i W4 ) • ' •bottom TOP Bottum Top t grass icr • Bottom lcr Top • • • .•. .• 600 _0.00:...._ 6.55 000 5t2.00 48.21 15,52 • upW notaW : Far left is #1 •• • • ii11t:"Bior2c U f!� fi0e: fou canrchange:this area Engineer:, using the'Seplings' menu item Ned Desa and then using ihe` NntirO Tile BiaW refection. Vertical'ReacHons' Suppot i�btatjon :Far left is #1 Load Combination Support 1 Support 2 +D+0;750U+0,75OL40.45OW4H 1200 12M +D+0,754t:+0.75OS+0,45OW414 .1.200 1,200 4D+0,75M+0,75S+0,5250E+H 1200 1.200 +0.600+OVN+0.60H 0:450 0.450 40.60D-0,70E40.60H '0,450 0.450 D Ong+ 6150 OJ50 Lr Only L 0* U,00 0,600, S Only W Onhy E Onty H Omy SheafStlrru Fquirerlientt Entire Seam Span LeN : Vu > Ptu'VC; Reij Vs --Vs > VS,nax per 114 7,9, use stirrups spaced at 0.000 in Maximum Forces &Streliai for Load Combination t-, Load Comb at3on Locati� (rt)' Keno rg Stress Resuas (k-ft ) - -- -- — Segment length' Span # in Span Mu Max W_.,,.,._,.__...._��...#.... phr' ft Stress Ratio lv4AXtmum BENDiNti Envelope ..._.ate.-.... Span # 1 t 12.000 5.58 6.55 0.85 +1,40D+1.60H Span#'1 1 12.000 3.15 6,55 0,48 +1.20D+0.50Lr+1.60L+1,60H Span # 1 1 12,000 5.58 6.55 0.85 +1,20D+1.60L+0SOS+1,60H Span # 1 1 12.000 5,58 6,55 0,85 +1,20D+1,6OLr+0.50L+1,60H Span # 1 1 12.000 3.60 6,55 0.55 +1,2M+1.6OLr40, 50W+1.60H Span # 1 1 12,000 2,70 655 0.41 +1.20D+0.50L-1,60S+1.60H 12.000 3,60 6.55 0.55 Span 41 1 +1.200+1,60S+0.50W+1.60H 12.000 210 6,55 0.41 Span 41 1 +1.20D40.5OLr+0.50L+W+1,60H 1 12.000 3.60 6,55 0.55 Span # 1 +1,20D+O: +rJ.50S-`d4-13OH Span # 1 1 12.000 3.60 6.55 0.55 +1,20D+a5OL-0,20S+E+1 SOH 12,000 3,60 6,55 0.55 Span # 1 1 +0.90D+W+0,90H Span 0 1 1 12,000 2.02 6.55 0,31 +0.900+E+0.90H Span # 1 1 12.000 2.02 05 0,31 • • • • ••• • • • • STEEL. COLUMN DESIGN WORST COND stc-1 LOADS STB 2 DL = 2.11 K LL= 2-09 K STB-2 DL = 1.05 K LL = 0.96 K STB-1 DL =0,70 K LL = 0.82 K TOTAL DL = 2.11 + 1.05 + 0.70 = 3.85 TOTAL LL= 2.09 + 0.96 + 0.82 = 3.87 • • ••• • • • • •• • Tale Bk>ck L!441 Prood Ti Proied 1D: You can change ft area using the `SettiftjW Dew. ngs' menu item and then using the:'Prlrtting & Title Rloce smection. ;Code Re renaes Calcutatioris per AISC 360-10, IBC' 2012, CBC 2013, ASCE 7.10 Load Combinations Used: ASCE 7.10 tssrtera( InftarmationT Steel Section Name HSS6x6x114 Allowable Strength Overall Column Height 13.0 ft Top & Bottom Fixity Top & Bottom Pinned Analysis WOW: Steel Stress Grade Brace cordtion for deft dori (buckling) along columns: Fir : Steel Yield 36.0 ksi X•X (width) axis: g -13 IL K -1 Lfnbraccd Length for X-X Axis txaddi .Q E ;Elastic Beading Modut 29.000.0 ksl Load Combination: ASCE 7-10 Y-Y ((depth axis UnDraoed)Length for Y•Y Axe twck* -13 ft. K -1.Q Applied Loads Service loads entered. Load Factors will be applied for calculations. Column sell weight included : 247.260 Ibs - bead Load Factor AXIAL LOADS .. - Axial Load at 13.0 ft, D = 3,1 0, LR = 3.870 k DESIGN SUMMARY Bending & Shear Check Results PASS Max. Axial+Bending Stress Ratio = OA8t324 :1 Maximum SERV1Ct Lox! Rescttons .. Load Cornbirtation +D+Lr+H Top along X-X 0.0 k Location of max.above base 0.0 ft Bottom along X-X 0.0 k At maximum location values are ... Top along Y-Y 0,0 k Pa: Axial 7.977 k Bottom along Y-Y 0.0 k Pn I Omega: Abowa* 89.393 k Maximum SERY CE Load Deflections .. . Ma-x : Applied 0.0 k-ft Along Y'y 0.0 in at OA ft above. base Mn-z r Omega: Allowable 20.120 k-ft for load combination r Mary :: Apprted 0.0 k-ft 20,120 k-ft A" X-X 0.0 in at 0.0ft above base Mn-y I Omega: Allowable for load oar*nation : PASS Maximum Shear Stress Ratio = 0.0 :1 Load Combination Location of max.above base 0,0 ft At maximum kaea'.ion values are ... 0.0 k Va : Applied Vn I Omega: Allowable 0.0 k Load Combination Results Maximo + Ben dirxl Stress Ratios Maximum Sh ar Ratios Load Combination Rate of tatus LocationStress Ratty Status. Location � _ _ _ 0.046 _ O.00.g_ PASS 0.000 PASS 0,00 ft 0.046 PASS 0.00 ft 0.000 PASS 0.00 ft +D +H 0.089 PASS 0.00 it 0.000 PASS 0.00 ft +D*t r 0.046 PASS 0.00 ft 0.000 PASS 0,00 ft 'O;S`H +D+0.750Lr-0350L+H 0,078 PASS 0.00 ft 4.000 PASS 0,000 PASS 0.00 ft, 0.00 ft +0-#43.;50L40750E-H 0.046 PASS 0.00 it 0.00 ft 0.000 PASS 0.00 ft +D+O.&',)W+H 0.046 0.046 PASS .BASS. 0.00 0.000 PASS 0.00 ft +fl+0,70E+H +iN0.750Lr+0350L+0 4YjW+H 0,078 . .. '.0.000 PASS PASS: Q .0 ft, 0.000 PASS 0.00 P, 000 +D+0.7501.-0 750S-0A50W+H 0.046 09 f *PASS: : •: a.000 PASS tj 00f ..0.000 a 00 t -�C+ 750L•4175),;-) 5250+H 0.046 PASS 0.00 f PASS 0.00 ft +L 6OD-0,o0'Wr 0,6V-H O.a28 u0,028.a PASS s o.ao ft 0.000 PASS 0,00 ft +0.60D-Wv 70E-L �.. .. . .. Maximum Deflections for Load Combinations .. .... . .. .- __o • • • ttax. XX Deflecin •_ . ra ry a Distance • tis�ance . . .� Y• . Load Combir.2rjon n 0000 ." 004 f • • 0 Ob0 ut v t (}.o�� Ni �0 000 ;n 0 G(h .� ft • • • • • • • • • • • • • • • • • • • • • • T41e 8lock lane 1En Ptojecl Tithe; You can ct1e ih area. meet; usit� tfie `pr Serorg 1 menu Item 3tlti 1tfP�1 fusing thi- rini'ing i3 YtJ: ni��t,4 ,,.iwd;ww +5 O,OOOO in O.000 +D+0:75tft.t+0 75OL+H O.O000 to O.ODO +0+0,7501.+0AOS4� O.00DD in 0.000 +0+ SW4H 0.0000 in 0.000 D*o,70E+H 0.0000 , in 0.000 {}+0 +.750Lr+0.75OL+0.450w+H 0,0000 in 0.000 •0+0.750L+0.75OS+0.450W+H 0.0000 in 0.000 .0+0,750l.+0.750S+0.5250E•H 0.0000 in 0,000 +0.6DD+0.60W+0.60H 0.0000 in 0.000 +0.600+0.70E+0.60H 0,0000 in 0.000 0 Only 0.0000 in 0.000 LrOnly 0,0000 in 0.000 L Only 0.0000 in 0.000 S Onty 0.0000 in 0.000 W ony 0.0000 in 0.000 E 0,0000 in 0.000 H Only 0.0000 in 0,000 Steel Section Properties MSS6x6xi/4 _ __. Deplh S xx Width 6.000 in R zx Wail Thick = 0,250 in Zz Ama 5.240 in"2 t yy - Wei hl - 19 020 Of S yy R yy - Ycg = 0,000 in ft 0,000 in 0.000 R ft 0.000 in 0.000 ft ft 0.000 In 000 A ft 0.000 in 0,00o R ft 0.000 to 0,000 ft fl 0.000 h 0.000 ft fl 0.000 in 0.000 ft ft O,ODD in 0.000 a ft 0.000 in 0,000 ft ft 0,000 in 0.000 A ft 0.000 in 0.000 ft ft 0.000 in 0,000 ft ft 0.000 in 0.000 Ift f! 0.000 in 0,000 ft ft 0.000 in 0.000 ft ft OVO in 0,000 ft ft 0000 in 0.000 ft . 28.60 in"4'�.,..�.,_..__.... 9.54 W3 2.340 in t l 200 W3 28.600 tn"4 C = 15.400 in"3 9.540 W3 2.340 in .. ... . . . . . .. . .. . . . . ... . .. ... .. . . . .. . . . . . . . . . . . . . . . . . .. . . .. . . . . . . . . . . . .. . . . . . . . . CUD GB-iA, CONCRETE BEAM DESIGN Spay=6'+6.42'+5.83+3' LOADS i Roof DL - 25• 2 7 + 2 = 195.8`plf Roof LL = 30• " 67 + ;2 = 235.05 plf 2 Wall DL= 55-16 = 880 plf Floor DL = 2.150.(11.67) = 583.5 Of Floor DL= 25.(I I.67) = 145.875 pif 2 Floor LL= 00.(112.67) = 583.5 100.( plf TOTAL DL = 196 + 880 + 584 + 146 = 1.806 x 10" pff TOTAL LL= 235 + 583 = 818 pif LOADS 2 Wall DL= 55.9 = 495/// plf Floor DL = 8 •150� 1 1.67 583.5 plf 12 2 �- _ Floor DL= 25.(11' 67) = 145,875 pif Floor LL= 1w(1 1,67 = 583.5 plf TOTAL DL = 495 + 584 + 146 = 1.225 x 103 plf TOTAL LL= 583 = 583 plf .. ... . . . . . .. . ......... . .. ... .. . . . .. ... .. . . . ... .0. . . . .. . .... .. .. .. . . . ....... . .. .... .... 0 Title Block Lute t Piciod Tl*- project 10: You calm Erinedr. Ned ;this area Oesce. using the "Settings` menu item and them usfnq the *NhUng & Calculations: perACt S-11.18 20.12, ASCE 7-10 Load Combination Set: ASCtr.7-10 l'c _ 3.0 ksi pM Values Flexure: 0.90 fr fctft ' 7.50- - 410.792 psi Shear: 0.750 • • y bertsity = 145.0 pcf a 1 - 0.850 A LtWC Factor - 1.0 Elastic Modulus = 3,122.0 ksi Fy - Stirrups 60.0 ksi ty Main Rebar = 60.0 ksi E-SGmrps = 29,000.0ksi Stirrup Bar Size # _ # 3 E - Main Rebar = 29,000.0.ksi' Number of Resisting Legs Per Stirrup 2 Load Combination ASCE 7-10 tip.. Z5 ti"`-2ch •....` irwt2rn "°"""^ 7Twrl+-n ,_ .. swt .s 0 it spw-a 4X h cross Section & Reinforcing Details " Rectangular Section; Width =12.0 in, Height = 24.0 in Span #1 Reinforcing..., 3-95 at 3.0 in from Bottom, from 0.0 to 6,0 ft in this span Span #2 Reinforcing..., 345 at 3.0 in from Bottom, from 0.0 to 6,420 ft in this span Span #3 Reinforcing.... 345 at 3.0 in from Bottom, from 0,0 to 6.0 ft in this span Span #4 Reinforcing.... 345 at 3.0 in from Bottom, from 0.0 to 6.0 ft in this span __App ied Loads___ Beam self weight calculated and addedvto toads Load for Span Number i Uniform Load: 0 = 140. L = 0.820 kMl , Tributary Width = 1.0 If Load for Span Number 2 Uniform Load : 0 =1.220, L = 0s580 klft, Tributary Width = 1.0 ft Load for Span Number 3 Uniform Load, 0 = 1.220, L 0.580 kilt, Tributary Width = i .0 ft Load for Span Number 4 • • Uniform Load D = 1.220 L = 0.580 k/ft, Tributary Width = 1.t j it DESIGN SUMMARY Maximum Bending Stress Ratio Section used for this span Mu: applied Mn - phi Allowable ! Gad CombYnation i � ,n Of n}aYlrnuni On span Scan z where n1a<1n`v^1 occurs • • = 0.16a' 1 ••• Typical Section -13.961 k-. 84;917 k-r +L20D+0-50Lr-1,60!_ -1.tvH i• Span 4 2, span 5.62d 0 sp+n4.0 R 345 at 3.0 in from Top, from 0.0 to 6.0 It in this span 345 at 3.0 in from Top, from 0.0 to 6,420 ft in this span 345 at 3,0 in from Top, from 0.0 to 6.0 it in this spare 345 at 3,0 in from Top, from 0.0 to 6.0 ft in this span Service toads entered. Load Factors will be applied for calculations. M3frimu" Dlefi►ct4 W1 Flax Downward Transient Deflection Max Upward Transient Deflection . %ax.t?(:6wnwa. 'TotaltDeflection •0,axe10Wa d W*ai Cie".ction ... . . . . ... . . .......... ............ Design OK 0.000 in Ratio = 0 <360 0.000 in Ratio = 0 QK 0.002 in Ratio = 46900 0.000 in Ratio = 999 <180 Tills Blocklane 1 You can change this area using the 'SOW menu (tern and then usir►g tne'PrinGng $, Tii� B " seleem, 'Prci)t�cf Trtiie: Engineer."'. Cross Section Strength & Inertia __ Top & 9omm re%mnces am forte dw side of section section . Bar Layout Bohm TOP Moment of ineft (-w I groom la - Bottor i kx - Sectptr 2 3• 95 @ d=21',3- 95 @ d=34. 0.00 0.00 $4.96 84,96, 13,824.00 2,732.46 Z732 46 Section 3 3- #5 @ d=21'.3- #5 @ d=T, 0.00 O.OD $4.96 84.96 t3,624.00 2,732,46 2,732 46 Sedan 4 3- 95 @.d=21`,3- #5 @ d=3% bm 0.00 84.96 84.96 13,824.00 2.732,46 2.732.46 Vertical Reactions Sup* notation: far left is #1 load-CombCombi na�bon Support I Support 2 Support 3 Support 4 Support 5 (7vera-TMAkunum 6"957 f8.i15 1"i`i t 5 Overal MiNftm 1.963 5.475 3,078' 1.649 40+H 4.994 13.040 8,038 9.496 +0+L.H 6,957 18.115 11,116 13.145 +O-q.r+H 4.994 13,040 8.038 9 496 +D+S+14 4.994 13,040 8.038 9.496 +0+0.750Lr4750L4H 6.466 16.847 10.346 12.233 +040.750L+0.750S+H 6A66 16,847 10,346 12233 +0+0,60W+H 4.994 13,040 8,.038 '9.496 +D+0.70E4+1 4.994 13.040, 8.038 9A96 +D+0,750Lr+0.750L+0,4 +H 6,466 16.847 10.346 • 12.233 +D+0.750L+0.750S+0.450W+H 6.466 16,847 t0.346 12.233 40+0.750L40.750S+0,5250E+H 6,466 16,847 10.346 12.233 +0.60D+0,60W+0;60H 2,996 7,824 4.821 5.697 +0.60D+0.70E+0.6DH 2.996 7,824 4,823 5.697 0 Onty 094 13,040 8,038 9A96 Lr Ony L. Ony 1.963 5,075 3,078 3.649 S Onty W Only E only H only Shear Stirrup Requirements Between U.00 to 5.18 tt Vu < PhNcl2, Neq'd l Between 5.24 to 5.94 fL PhiVd2 < Vu - PhM Between 6.00 to 21.22 8. Vu < PhiVc32, RKd : Not Regd 1111.4.6.1, use st nups spaced at 0,000 in Req'd Vs = Min 11A.6.1, use stirrups spaced at 10.000 in s = Not Regd 11.4.6.1, use stim,ps spaced at 0.000 in Maximum Forces & Stresses for Load . ... . _ Ben ing SVewResub (k ft ) Load ComWnafw Location (ft) Segment length Span # in Spar, Mu: Max Sum Ran MAkinum BENDING t&eI6r 1 6,000 -13.10 84.96 0.15. Span # 1 Span # 2 2 6.420 -13,96 84.96 0.16 Span # 3 3 5 830 •11.78 806 0.14 Span # 4 4 3 000 -12,33 84,96 0,15 +1 40D+1.60H Span # 1 1 6.000 •10.06 84.96 0,12 Span # 2 2 6.420 •10,72 806 0.13 Span # 3 3 5.830 -9,09 84,96 0.11 Span # 4 4 3.000 9,5t 84,96 0.11 +1.200+0.50Lr+1.60L+1.60H 1 6.000 .13.10 K96 0,15 Span At 1 Span k 2 2 6,420 • • •13.96 • �• • • 8*4 . • • . .04 - • • Span #3 3 5.830 •11,78 &i86.•: : 0.014.: ••- Span x4 4 3.000 •12.33 .•• .'•: �. • • •- -1-70D+1 f i-.'O 5OS+1 60H 1 6.000 -13.10 84,96 0,15 Span # 1 Span42 2 6.420 13.96. ...84.96. . 0,16 .. - Span 43 3 38W t233.: : 84.96. : �.�• : : ,14 :- 165 Span.4 • •• : :D 20D+1 60L-0 50L-I CfjH t 000 • • •1002 • • 84.46 • Y 52 • • Span= i ,Span « 2 2 6 420 10.68 8496 013 S�,3n r 3 3 5 830 •9 04 84 9r 0' 1 Span .44 4 3.000 •9,46 • • a4 !• i i L-�1 i i +120v-160U-?.5-OW-16Lki • • • • • • ♦ • • • Spans 2 2 �tft.SW& Llne I Project Title, Engineer: Pmjw ID: Y(*j can dmp ihis as ' PFCied Dow. using bSe$effinge menu ItOn and t6n using the 'P66r� & TRIP FHod-wAectiw. Load Combktaion Segment length son 0 ITSI�-nllv Span 0 4 4 +1,20040.50L+1,60S,*1.60H Span # 1 1 Span 0 2 2 Span # 3 3 span # 4 -1,20D*1,60S-0.50W-1.60H Span # 1 1 Span 0 2 2 Span # 3 3 Span 0 4 4 -1 .20D-*0,5OLr-0,50L +W-1 MH Span # 1 1 Sven 0 2 2 Span # 3 3 Span 0 4 4 +1.20D45OL-450S*W+1.60H Span # 1 1 Span # 2 Span # 3 3 Span # 4 4 -1,20D-450L+0.20S+E*1.6')H Span # 1 1 Span 9 2 2 Span 9 3 3 Span # 4 4 *0.90D+W+O.90H Span 0 1 1 Span 9 2 2 Span # 3 3 Span 9 4 4 40,90D+E-0-90H Span # 1 1 Span # 2 2 Span # 3 3 Span 4 4 4 3.000 61000 6,420 5,830 1000 6.000 6.420 SVO 3.000 6.000 6,420 SMO 1000 6.000 6A20 5.830 IOW 6.000 6.420 5.00 3.000 6.000 6.420 5,830 3,000 6.000 6A20 5,830 3.000 8endNSuess Res(ft (k-ft) W. Max ptu%ft St m Rats -1.79 $4.96 0.09 815 $4.96 0.10 10,02 $4,96 0.12 -10,66 84,96 0,13 -9,04 $4,96 0.11 -9.46 806 OAI -8.62 84,96 0.10 9 1 .19 84,96 oll -7.79 $4.96 0.09 415 84,96 0.10 -10.02 806 0.12 -10,68 606 0.13 .9.04 84.96 0.11 .9,46 84.96 oll -10,02 84.96 012 .10,66 84.96 0.13 404 84.96 0.11 -9,46 84.96 OAI -10,02 806 0.12 -10-68 84.96 0,13 -9M 84.96 0.11 446 $4.96 0.11 .6,47 84.96 0.08 -6,89 84.96 0.08 -5.84 806 0.07 -612 84.96 OW -6.47 806 0.08 -6.89 606 0.08 -5,84 84,96 OW -6,12 84,96 0,07 GB-1B CONCRETE BEAM DESIGN LOADS Span=9.26+9;26+3, Floor DIL 8 :150`(11.67 93.5 pif 1 1 Floor DL = 2;f 11.67) _ 145.875 pif 2 Floor LL= ioo. 11.67 583.5 plf 2 ) =' TOTAL ©L = 584 + 146 = 730 plf TOTAL lL- 583 = 583 pif .. ... . . . . . .. .. ... .. . . . .. .. . . . . . . . . . . Title Biook Linea Project 1iue. YOU can change this area Engineer, Pioixt ID: Project Descr: using the "Settings'menu item and then using the'Prinung & Title Block` selection.. CODE `REFERENCES � CaICU lations-�rAC1318- 11,'IBC-2012,_ASCE7-10 Load Combination Set., ASCE 7.10 Material! Properties rc = 3.0 ksi Phi Values Flexure:, 0.90 fr = fct12- 7.50 = 410.792 psi Shear: 0.750 • X Density = 145.0 pcf l31 - 085a h, LtWt Factor = 1.0 Elastic Modulus = 3.122.0 ksi Fy - Stirrups 60.0 ksi fy - Maim Rehr = 60.0 ksi E - Stirrups = 29,000.0 ksi " Stirrup Bar Size # = 3 E - Main Rebar = 29,000.0 ksi Number of Resisting Legs Per Stirrup = 2 Load Combination ASCE 7-10 ' tI r I . 121. x 24' r+ _... Cross Section & Reinforcing Details Rectangular Section, Width = 12.0 in, Height = 24,0 in Span #1 Reinforcing.... 345 at 3.0 in from Bottom, from 0.0 to 9.50 ft in this span Span #2 Reinforcing.... 345 at 3.0 in from Bottom, from 0.0 to 9,50 ft in this span Span #3 Reinforcing...: 345 at 3.0 in from Bottom, from 0.0 to 6.0 it in this span Applied Loads Beam self weight calculated and added to loads Loads on all spans... 0=0.730, L=0.60 Uniform Load on ALL spans D = 0.730. L = 0.60 ktft DESIGN SUMMARY Maximum Bending Stress Ratio = 0.261 ; 1 Section used for this span Typical Section Mu Apol,ed -22.181 k-ft Mn ' Phi, Ailowabie 84.957 k-ft toad Combination �,1.2006Q5iit.r-4 60e-1.%H• � • • • •t • 0,(:)O Location of rta�ir?�um txt span • . . • • • • ; ••yp`�n ! •(� • Scan t wfic e rnaxim,im Occurs ; ; Cross Section Strength & Inertia soanx9'so R Span-3 4 rt 345 at 3.0 in from Top, from 0.0 to 9,50 ft in this span 345 at 3,0 in from Top, from 0.0 to 9,50 ft in this span 345 at 3.0 in from Top, from 0.0 to 6.0 ft in this spare Service bads entered. Load Factors will be applied for calculations, .Desi n OW Maximum Deflection Max Downward Transient Deflection 0,001 in Ratio = 95201 Max Upward Transient Deflection 0,000 in Ratio = 0 <360 Max Downward Total Deflection 0.003 in Ratio = 35259 Max Upward Total Deflection 0.000 in Ratio = 999 <160 Top & Bottom references are for tension We of section max eau ( 0) ph,*%in (k•ff) Marnent of inertia • • • • + oo *00 : Bcr0 Top Bottom ;oss Sect on bar Layout Cesuxptsr • • ; : : • • : • • ; : 0 O.CA 0.00 84.9£i Sc :gin t 3- ,5 @ 1=2t.3 > 5 t�3'. • + • • • • • • • 000 0.00 8496 Si c',cn 2 3• 3=2i'.3 5 i?+1=3'. • • 0.00 0.00 64 96 Seruon 3 not3 On ar 'rh >t1 Vertical Reactions • • • + • ++. +Supco" Su4.>tt 3 • Support 4 UJErai wrY;murr. • ;ivera�i 6dNimum .La��?• • �539 +.. ?293 Top l Gross ict - Borate icr • Top 84 96 13,824'00 2,732 46 2,732,46 84 96 13.824 00 2,73246 2,732,46 84 96 13.824 00 2.732 46 2.732 46 rteg�uneI You can change tt area Engineer Pro> io. the `Se Ns', rn66u item Rood Descr end g1et using ft PM -UN &, Title SbW setecOon. Tine Block Line'6 [ ` __ _ Fk • CIAIAKt%1kF-11 6M� 11tSABEt 1t201fi 1=11 Kit k i�beard�c6 �.►dherke Beam _ Ei�RCAtC tNG t9b32fi15.Bi�dQ�1�t Y1r815129 x p CONCRETE GRADE BEAM GB-1B Veriica! Reacfidns: Support too 6on Fat left is 01 Load CoMzatkV6 Support 1 Suppai 2 Support 3 Suppod 4 5.963 18.086 11.590 +D+t r4! 3,755 11,388 7.298 +D+S-; 3.755 11.38$ 7.298 +0+0.750U40,7501.-H 5,411 16:412 10.517 +D+0.750L+0,750S+H 5411 16.412 10.517 4".60W#4 3.755 11.388 7.298 +D+0.70E+H 3,755 11,388 7.298 +0+0.750Lr40,750L+0,450W+H 5,411 16.412 10.517 +D+0.750t+0.750S+0.450W+H 5,41i 16.412 %517 +D+0.750L+0.7505+0.5250E4H 5.411 16,412 10,517 40,60O+0.60W+0.60H 2,253 6.833 4.379 +0.60O+0.70E40,60H 2,253 6.833 4.379 p Onty 3,755 11.388 7.296 t,r Onty L Ord+ 2,209 6.699 4.293 S Onty W onty E Only H Only $hiear Stirrup R uiremenis Between o.00 to 8.55 fL Vu < PhiVcl2 Req'd Vs -Not Rend 11,4.6.1, use strrups spaced at 0.00o in Between 8,61 to 9.88 tL PI1Vc12 < Vu <z PhiVc, Redd Vs = Min 11.4.6.1, use stirrups Spaced at 10.000 in Between 9 94 to 21.98 ft. Vu < PN'Ve12. Req'd Vs = Not Reqd i i,4,,6.1, use stirrups spaced at 0.000 in Maximum Forces & Stresses for Load Combinations _... _ .,._ ._ Load Comhinnation __.. �. Suess ResuIts (k-ft ) Segment length Span # Location (it) in Span �.....__ - ._, _.... Mu :Max p -- Stress Ratio N4A) rn BENDING Envetope Span A 1 1 9.500 •21.38 84.96 025 Span # 2 2 9.500 2Z.18 84.96 0.26 Span # 3 3 3,000 -9,83 64.96 0.12 +1400+1.60H Span 9 1 1 9,500 -13,98 84,96 0.16 Span 4 2 2 9.500 •14,50 84,96 0,17 Span # 3 3 3,000 •6.43 64.96 Ha +1.200+0.50Lr+1.60L+1,60H 1 9 500 -21,38 84.96 0.25 Span 9 1 Span s 2 2 9.500 •22.18 64.96 0.26 Span 4 3 3 3.000 -9,83 84,96 0.12 -1.200+160L+0.505+1.60H 1 9.500 -21.38 84.96 0.25 Span 9 1 Span # 2 2 9.500 -22,18 $4.96 0.26 Span # 3 3 3.000 -9.83 84.96 0.12 +1.200+1.60Lr+o.50L+1.60H 1 9.500 •14.92 84.96 Q.tB Span 41 Span 9 2 2 9.500 -15.48 84.96 0.18 Spar, 4 3 3 3,000 -6.86 64.96 0.08 -1.200+1.60Lr+0.50W-1.63H 1 9.500 11.98 84 96 0.14 Span 1 Spar. » 2 2 9 500 -1�.3 ... 416. . . 0' 1 . 0• Span + 3 3 3.000 5.51 • �4.96 : : -1.200+0.50L+1 60S+1 60H Span K1 1 9500 • • • • • • • jI.4T2..: .Q4M.• • • • • : :0;8. Span n 22 9,500 .15.48 84 96 0.19 Span S 3 3 3 Wo -6.86 84.96 008 ., i.20D-1 60S+0.50b'r'�1:,;u 1 g5 0 •••11• • 99••J4.9u• .t*14.•. n> ; Span-2 2 9.500 *.:124: •.$4. i . :%15: '3 3 Srar.. _ 3ti040 ..• 551P0 ••� •• . y••• -t 200 50Lr�v l-,Q1;b4.1 80H 1 9 5G0 14 92 84 9b 018 r, Spa » 1 z an:2 i 9 4 �i�' . • r ... 94 x 18 . • • • 0 0n . laarl» 3 ' 3 ow � 6c • • trt(e Alock tole i Pro(W Two, ineer. You can change this area En ��� �, using 111e `5etCmt, r imu item and thenusing:the'Printing & Title BIW,' setettim, . C ncr,etq., eAm ` - DescripCwn : GQNGRETE GRADE 8EAM GB-1B' Load Combinabon Sending.5tress Resub' (k-ft ) Segment Length Span # In Span A4u : Maz p Stress Rate 2 9 -15.48 84.96 a.18' Span # 3 3 3.000 -6;86 $4.96 0.08 +1.201)4501.420S*E+1.60H Span # 1 1 9.5Q0' =14>92 84;96 tt 18 Span # 2 2 9.500 •15A8 84;96 .0.18 Span Of 3 3 3,000 -6.86 $4.96 0.08 49OD- M+0.9014 Span # 1 1 9:500 .8.99 64.96 • 0;11 Span # 2 2 9.500 -9.32 $4.96 0,11 Span # 3 3 3,000 4.13 84.96 0,05 Span # 1 1 9.5w .8.99 84.96 0.11 Span # 2 2 9.500 •9.32 84.96 0.11 Span # 3 3 3000 .4.13 84.96 0.05 •. ••. . • . . • .. . .• .... •.. . • • • • • . •. .•. .. • • • .• ..• .. • • • . ... .9. • . • . . • • • • • •• • • •• . . . . • • . . • . • •• • • • . • . . • GB iC CONCRETE BEAM -DESIGN 5 a n 4 lam'' Roof DL = + 2-.137.5 plf 25•(2 Roof LL = 30•( 7 '+ 2) = J 2 Wall DL= 55.16 = 880 pif Floor OL = 8..1.50•(3) = a00 plf 12. Floor DL= 25•(3) =75 plf Floor LL= 100•(3) =`300 -plf plf TOTAL DL = 137 + 880 + 300 + 75 = 1.392 x 103 plf TOTAL LL= 165 + 300 = 465 pff LOADS 2 Floor DL= 8— 150.(3) = 300 plf 12 Floor DL= 25-(3) = 75 plf Floor LL= 1000) = 300 plf TOTAL DL = 300 + 75 = 375 plf TOTAL LL= 300 = 300 plf .. ... . . . . . .. . . • • • • • • • • • • • • • • • • • • • • • • 0 To BW Line If sneer, Yau cats change ifiis area erect Ifs: En9. . ujin j•ttte'. a tings' menu item R4W,DeFr. and then Using ttii*knting & Title B[ocit" sell6cfiotl, s�r#roa. t; h3 Titre Bktdc litre 6 ��e • C trti-ss2ot6tx;-tuS�BEs -is sbi-:,t cUL Cpictrte Beach Rote n�c isez,sa�t�.9.� Description, CONCRETE GRADE BEAM G94C CODE REFERENCES Calculations per ACl 318-11. IBC 2012, ASCE 7=10 Load Combination Set: ASCE 7-10 MateCtaii Pro-_Oedl _ _..• = 3.0 ksi F+i) values Flexure ; • frc= fc'� ' 7.50 = 410:792 psi Shear: 0.750 y Density _ 145.0 pcf (3 s = 0.850 LtWt Factor = 1.0 Elastic Modulus = 3.122.0 ksi Fy - Stirrups 60.O ksi s' fy - Main Rebar = 60.0 ksi E • Stirrups = Stirrup gar Size # = 29,000.0 ksi # 3 E - Main Rebar = 29,000.0 ksi Number of Resisting Legs Per Stirrup = 2 Load Combination ASCE 7-10 IrWxWIN 5""0 6 4 Cross Section &Reinforcing Details Rectangular Section, Width =12.0 in, Height = 24.0 In Span #1 Reinforcing.... 3-45 at 3.0 in from Bottom, from 0.0 to 6.420 It in this span Span #2 Reinforcing..., 345 at 3.0 in from Bottom, from 0.0 to 6.0 ft in this span Beam self weight calculated and added to loads Load for Span Number 1 Uniform Load: D = 1.30, L = 0.50 kM, Tributary Width =1.0 it Load for Span Number 2 Uniform Load: D = 0.40, L = 0,30 k11t, Tributary Width =1.0 fl DESIGN SUMMARY Maximum Bending Stress Ratio = 0.1 1 Section used for this span Typical Section Mu , Applied -9.036 k-ft Mn Phi Allowable 84.957 k-ft Load Combination +1.20D+0.50Lr+1.60L+1.60H Location of maximum on span .. 0.000ft .. $pan 42 . • • Span 4 where maxim rm occurs 00 Section Strength & Inertia .. . . . . • • • Cross tr. .z<•h sow"4 4 R 345 at 3.0 in from Top, from 0.0 to 6.420 ft in this span 345 at 3.0 in from Top, from 0.0 to 6.0 ft in this span Service bads entered. Load Factors will be applied for calculations. t3esign OK, Maximum Deflection Ratio = 0 <360 Max Downward Transient Deflection 0.000 in 0 <360 Max upward Transient Deflection 0.000 in Ratio Max Downward Total Deflection 0.000 in Ratio = 999 <160 Max Upward Total Deflection 0.000 in Ratio = 999 <180 ;' ; • . Top & Bottom references are for tertsan side of sector • • • • Max f,'u (k-ft) j Phi'AAn ( k-it j PJ or, en1 of hxe; �a t �r # ; Sodom Top gortom ryes Sec,,on Sat Laycut D,.Sf- pt*0 .. : 00 $4 96 :.� 0. Secix7n ; 3- r5 1pd=21'.3� »5 @ d=3'. . • . • • . . • • • SwIon 2 3 4.5 @ d=21',3- k5 d=3'• ' •: . . • • . • • . . • . • . . . • gar left is d1 Vertical Reactions__ • • • • . . Sur,: ro•'zon• . ,Wd Cemh;naticn Sups 1; Sue x 2 SuG n 3 Overai! htAX�nwm 5115 11 550 : • • : : t • • • • • sera i ft;Nimurn 1200. 3 5115 . 4. �•'�8'..• .• .. • • .{i�t-N ..•i1VO Top Igross ,uSe"orn ;c, TU 84 % 13.824 32 4-. 2 7 -2 _ 84 9{ 13,824 00 2,731246 2732 - TWO Skd Ike. ' You can Oartge this_area irieer� - Usirtg'111e'SetlingS' «tenU Item. pmled arcf the tang tfte'Pnnbng & Titka Rhyne;Aedi0n. i%er4ir' ni Raicrlf nl Suppvt nat Wn ; FIB' 0 is #1. +D+S+H 4D+0.750Lr40.750€ +H +0+6,750L+0;750S-H -0.60W� +D+0.70E+H +D+O 750tr+0,750L+0,450W+H +D+0.750L+0.750S+0,450W+H +0+0.750L+0,750S+0.5250E+H +060D+0.60W+0.60H 40.60040.10E+0,60H D Ony Lr Ony L Oy S Ony W Ony E Ony H Ony, 1,915 8.550 1,215 4,815 10.800. 1.665 4,815 10,800 1.665 3,915 6.5% 1,215 3,915 8.550 1.215 4.815 10.800 1,665 4,815 10.800 1.665 4,815 10800 1.665 2.349 5.130 0.729 2.349 5,130 0.729 3,915 8,550 1.215 1.200 1000 0.600 Shear-Sti"I Requirements Entire Sum Span Leif Q Vu �Phi'Jc#2. Req"d Vs =Not Read 114.6.1, use startups spaced w 6.000 ° nations Loan t,omomauw Segment Length Spann # Locatan (fl) --_ in Span ,••,. � _ � �_ Mu: Max Pta'Mnx Stress Ratio MAX m BENOiNU nv iope Span # 1 1 6.000 -8.80 84.96 0,10 Span # 2 2 6.000 •9,04 $4.96 0.11 +1.40D41.t ��,y H Span # 1 1 5.000 6.99 84,96 0.08 Span # 2 2 6.000 -7.18 84.96 0.06 +1,20D+0.50Lr+1.60L+1.60H $pen # 1 1 6.000 -8.80 84,96 0.10 Span # 2 2 6.000 -9.04 84.% 0.11 +1.20D+1.60L+0.50S+1.60H 1 6,000 -8 80 606 0.10 Span # 1 $pan # 2 2 6.000 -9 04 84.96 0.11 +1, 200+1-60Lr.0.50L+1.60H 1 6.000 -6,87 84,96 0.08 Span # 1 Span 4 2 2 6.000 -7.06 84.96 0.08 +1.20D+1.60Lr40.50W+l 60H 1 6,000 -5,99 84.96 0,07 Span # 1 Span # 2 2 6.000 &.16 K96 0,07 +1.20D+0.50L+1.60S+1.60N 1 6.000 -&87 8d.96 0.08 Span # 1 Span # 2 2 6,000 -7.06 84.96 0.08 +1.20D+1,60S+0.50W+1.6GH 1 6.000 -5.99 84.96 0.07 Span # 1 Span # 2 2 6.040 -6.16 84.96 ON +1,20D+0.5OU4.0 5 +W+1.Ei0H 6.000 -6.87 84.96 0- 08 Span # 1 SGan # 2 1 2 6.000 •7.06 84.96 0,08 • • +1.20D+0.50L+0.50S+W-1.60H • • 6.000 : 000 • • :6 8k, : : 8;.$$6; • 0,08 Span # 1 Span 9 2 1 2 6.000 ' . • s7 �y : : : 81.96. • 0.08 • • +1 20D+9 5vL-O 20S-7--+1 60H • • •• • • 000 • • • 84,96 0 08 Span # 1 Span x 2 1 2 6.000 6 000 •6,87 •7,06 • 84.96 • • • • 008 <0.90D.tiv.O.s�ti 1 • 000 6.0 i -4.4& i • 64.96O • • • i V.05 Span # 1 Spa.n » 2 2 6 Woo; • :. 4.6s . &i96• • . 4.05 <0 QGD-c •0 90H • • ti 000 • 49 8496 005 cam:, 2 0:00 2 8496 005 ••• • • • • ••• • • • Vile 6106k Line t You can char ge' this area using the 'Settings' rnertu +tent and melt using the "Printing 9 T'riie Blow selection, CONCRETE GRADE BEAM G8- • •'»s iZ • —n— Calculations per ACi 318-1 i, lBC 2012, ASCE 7-10 Load Combination Set ASCE 7-10 Materiaf Pro �`rties'_ rc 3.0 ksi Phi values Flexure 0.90 • fr = f`c1 •7 50 - 410792 of Shear: 0.750 4r Density - 145.0.pcf 01 0.850 LIWi Factor - 1.0 Elastic Modulus 4 _ '3,122.0 ksi Fy - Stirrups 60.0 ksi ; fy - Main Rebar = 60.0 its E-- Stirrups = 29,000.0 ksi Stirrup g Size _ 3 E • Main, Rebar - 29,000.O ksi Number of Resisting Legs Per Stirrup = 2 Load Combination ASCE 7-10 ,.,. f,.,. tr w ■ za` n Cross Section $ Reinforcing Details Rectangular Section, Width = 12.0 in, Height = 24,0 in Span #1 Reinforcing.... 3-45 at 3.0 in from Bottom, from 0.0 to 6,420 ft in this span Applied Loads Beam self weight calculated and added to loads Load for Span Number 1 Uniform Load D =1,330, L = 0.50 kilt, Tributary Width = 1,0 it DESIGN SUMMARY Maximum Bending Stress Ratio 0.143 : 1 Section used for this span Typical Section Mu : Applied 12.186 k-ft Mn • Phi : Allowable 84,957 k-ft Load Combination *1.20D+0,50Lr*1.60L*1.60H Location of maximum on span 2 °Cr5ft Span # where maximum occurs Span # 1 Cross Section Strength & Inertia Cross Secw, Sac Laycul Desuiption • : • Sean 1 3. ax 6 d 21"3• 5 d=3'. • • • • • Vertical Reactions Load Combina5on Uaera.i tAAXY L;m G`p.'erall MINmu>n KW <i «H 5"Lr 0L-+i 41 sa. -6 0 tt 345 at 3.0 in from Top, from 0,0 to 6.420 it in this span Service loads entered. Load Factors will be applied for calculations. Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection !Design OK 0.000 in Ratio = 0 <360 0.000 in Ratio = 0 <360 0.001 in Ratio = 51004 0.000 in Ratio = 999 <180 Tap & Borlom references are for tension side of section Max 41 u t k.(t j Phi•MSn (k f#) MCrttent of Ine'3a { +ni . • • • „. ottom•Top Bottom Top I gross icr •Bottom icr - 1 op B .0.00 0.00 &4.84,96 13,&24 00 2,732.46 2.732 46 06 • supw, notation : Far left is *I Suppon i Suppe, 2 r-27t:•• 006270 ••• ••• ••• ••• • • 1 500 • • • • • • • • • 4,7770 00i i477*0 •�• i•i �•� �•� 627(?0 •6.270 4 770 4 770 710 4 770 . • • • • • • • • • 5 905 : t395 t� • • �770 •i• i��0 • • ••• 7i8e 8iptc t #te 1 Project' TiUa s YOU can change Ws area Engineer. Pied li3 using "he "Settings' menu itens and'then using the `Printing Ttita i3inw sett'ctiori. Vertical Reactions' support rwtatlon . Far 0 is #t Load Contoitaton Support 1 Support? +D+O.750Lr+0,7501.+0.450W+H 5:895 S 895 +0+0,7501.+0 750S+0.450W-H 5.895 5.895 +D•0,7 40.75OS40.5250E+H 5,895 5,895 6OD+0,60W+0.604 2.862 2.862 -4:60O+0:70E+0.60H 2.862 2,862 D and, 4,770 4,770 Lr Only L Only 1.500 1.500 S Only W Only E Only H" Shear Stirrup Requirements EW Beam Span Length : Vu < PWd2, Req'd Vs - # Reg01 i.4.6A. use s nvps paced at 0.000 kt Maximum Forces &Stresses`forLoad.t;ombinaticn ;; Y r __,__ ----- -_ Luau WtttUMdULAt Segment Length Span Location{tt) in Span Mu = Max PteM1u Sum RaSo MAXlmum BENDth1G Enmelope Span # 1 1 6.000 12.19 84.96 0.14 +1.40D+1,60H Span # 1 1 6.000 10.02 84.96 0,12 +1.2�3+0.50Lr+1.60L*1,60t Span # 1 1 6.000 12.19 84.96 0.14 +1.200+1,60L+0.5€ S* 160H 6,000 12.19 84.96 0,14 Span # 1 1 +1.20D+1,60Lr40.501.+1.60H 6.000 9,71 84,96 0.11 Span # 1 1 +1, 20 D+1, 60Lr+0. 50 W +i .604 000 8.59 84.96 0.10 Span # 1 1 +1.20D40.50L+1.60S 460H 6,000 9<7t 84.96 0,1 Span # 1 1 +1.2M+1.60S+0.50W+1.60H 6.000 8.59 84.96 0.10 Span # 1 1 +1.20D40.50Lr+0.50L+W+1.60H 6.000 9,71 $4,96 0,11 Span # 1 1 +1.20D-0.50L+0.50S+W+1.60H 6.000 971 84.96 0,11 Span# 1 t +1.20O4O.50L+O.20S+E+1.60H 6,000 9.71 84,96 0.11 Span # 1 1 +0,90DAv+0.90H Span # 1 t 6,0006.44 $4.96 OM +0.90D+E 40.90H Span # 1 t 6.000 6,44 84.96 0,08 • • • • • • • • • • • • • • • • • • • • • Title Block tine 1. ; Ned.Tik E ineer. project ID, You can change this area. offLr4n Lf✓ii!G'RGTS716.nyti.y Calculations per ACI 318-11 IBC 2012, ASCE 7-10 ..,......,_..,.,:,x»..,...,..,...�,.-,.�...w._._..�.� �.._.. Load Combination Set ,-ASCE 7-10 iViateriat pro ttiet3 fc = 3.0 ksi ` 16 Phi Values Flexure: 0.90 1 n ; to ' 7:54 = 410,702 psi Shear : 0.750 • • W Density = 145.0 pd fit - 0.860' LtAtt Factor = 1.0 Elastic Modulus = 3.122:0 W Fy = Stirrups 60.0 ksi y, fy Main Reber = 60.0 ksi E Stirrup's = 29,000.0 ksi Stirrup Bar Size # = 3 E - Main Ret>;ar = 29.000.0 ksi 2 Number of Resisting Legs Per Stirrup = Load Combination ASCE 7-10 ., . 112 ii' Cross Section & Reinforcing Details Rectangular Section, Width =12.0 in. Height = 24,0 in Span #1 Reinforcing.... 345 at 3.0 in from Bottom, from 0.0 to 12.0 It in this span Appii!Otoads Beam set weight weight calculated and added to loads Load for Span Number 1 Uniform Load: D = 0.40, t = 0.30 kill, Tributary Width = 1.0 it DESIGN SUMMARY Maximum Bending Stress Ratio = 0.277 : 1 Section used for this span Typical Section Mu : Applied 23.544 k-ft Mn 'Phi: Allowable 84.957 k-ft Load Combination *i.200+0.501-r+1.60L+1.60H Location of maximum on span 5.989h Span n where maximum occurs Span 01 Cross Section Strength & Inertia Cross Section Bar Layout Descriptxarf Sr t„,n 1 . ;5 @ d--E 1".3 �5 @ d=3' Vertical Reactions Lead Combcnat*fl ,'yerafl M X rr••urn Overall fd;Nimum J+H -0 n 5OLf,0 fir"--H 0- S* •• ••• • . • • • • • • • • • • • • • •• • • s • +rrr2{'n spwf2.010 345 at 3.0 in from Top, from 0.0 to 12.0 It in this span Service loads entered. Load Factors will be applied for calculations. Design OK Maximum Deflection Max Downward Transient Deflection 0.003 in Ratio = 44416 Max Upward Transient Deflection 0.000 In Ratio = 0 <360 Max Downward Total Deflection 0.011 in Ratio = 13459 Max Upward Total Deflection 0.000 in Ratio = 999 <180 Top 6 Bottom references are for tension side of section Mu (k n i �hi M?in (k.n } fmraent of ineftia (W41 :Bottom Top Bottom Top i geoss to - Bottom la - Top • : dOO 0.00 64 % 84 96 13.824.00 2.432.46 2.232 46 Supp, notaton. Far left is *1 su000rt t Support 5940�`• •--t0 �`� �`• ••• �•{ ! 8Q0• • {!, • • • • 4l40 •i •!{14w • • • ••• ••• 5943{` 5940 4 iJ0 G 140 "-"0 ••• 4 140' • • • •{• • • • • • n c AAN • • �� 414C ••• WL • • ••• • • We eioac Una t Project Title: You can large tins aeea En ineer: Pad lt7 9 the `Si6rigs" menu it6m Pr*ct Dena. and then using the `PrlrtON & Tille'816W Weetldm VneHi-at iia� inns a , . Support notation: Far Left is #1 +0+0.7w4O,760L+0.450Wkt ,5.490 $ 490 +D 0.750L+0.,*S+0;45tW --H 5.490 5,49tt +D+4.750L--OJ50S4525OE4i 5,490 5.490 40.60D+0.60W40.60H 2.484 2.484 46004748 *0.60H 2.484 2.464 D Onljr 4.140 4.140, Lr." L #y 1.800 1.800 S Only w orgy E Onty H Only Shear S):tqiqq Requirements _ -- EnM Beam Span 1 OVM Vu < PhNlcl2. Req'tt Vs Not Reqd 11.4.6,1, use stirrups spaced at 0.000 in fog Segment Length Span# Location in Span ..,.�.....''."� - W x Stn�s Ratio Max pWft Span 01 1 12.000 23.54 84.96 0,28 +S 40D+1.60H Span # 1 1 12.000 17.39 94.96 0.20 a+120D+0.50Lr+1.60L+1.60H Span tr 1 1 12.000 23.54 84.96 028 +1.20D+1.6OL+0.50S+1.6tki Span 41 1 12,000 23.54' 606 0.28 +1,20D+1,6Mr+O.50L+1.60H Span # 1 1 12.000 17.60 84.96 0.21 +1.20D+1.6OL r+0.50W+1.60H Span #1 1 12.000 100 64.96 0.18 +1.20D450L+1.60S+1.60H Span 01 1 12,000 17.60 84.96 0.21 +1.20D460S+0.50W+1.60H Span 9 1 i 12.000 14,90 84.96 0.18 +t,20D�0.50Lr450L+W+1.60H 12.000 17.60 84.96 0.21 Span # 1 1 +1.20D450L+0.50S+VW,6OH 12,000 17.60 84.96 0.21 Span 41 1 +1.24D*0.50L+0,20S+E+1.60H 12.000 1760 84.96 0.21 Span 41 1 •0.90D+W+0 90H Span 41 1 12,000 11.16 84.96 0.13 +0.90D+E+0.90H Span $ 1 1 12.000 11,18 64.96 0.13 •• ••• • • • • • •• 00 . •• • • • • • •• • • • • • • • • • • • • • • • �lm cv15— IC- 1 ,. 1:11 HP V EXPAN51ON JOINT C�� -:::hovered .•.••Terrace •••.•• b EE ! TrplliS 1 1 iQ"``""�"""� ENTRY s - , :,-r) 4t_l a S OT7 • • • • • • • • • • •�(, .:^ [,� {mot �^?+'� Y `�.J r ! of ••• •••• �r•�—/` 1L • • • • • • • • • • • 66:- Z- j5ge"f ^n x oaf AOL r,7t- - 1,A I% s 66 i jr. � A-- I � .. •.• •. • • • •• •.. .• .. • . . . . . . . • • . . . • . • •. . . .• . . . • . • . • . • . •• . • . • • . . . .:.:......: : r 6 7' 5 f AAI-G�`;T O. f0 Z6 / •. •. •.. • . . . . . -� •"a %� 1 � day.✓ r x O f F '3 s ••• • • • • • • • • • ••• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • MecaWind Pro v2.2.7 ..5 pew -ASCE T-..1.0 Developed by MS CA Enterprises. lit. Cdoyrighe w�ssr.aecaei»#x zises.rosa iPs9te 8fllf2016 project No. ; .lob"o input Parameters: Other Structures i Building,A. p tsnces )OW" `(C1 29) Basic wind Speedtst) � 175..00 mph Expostiire Category °D' Structural Category No *Natural Frequency 171A Flexible Structure ; uriance Factor .1.00, Kd r€irectionsl factor ,p 0.85 Alpha 11.50 «g m 7011007 ft. A. 0.09 Bt 0.1.� 0.30 z 1. 650.00 ft rc 0.1.5 1 7.06 ft. Epsilon 0.13 zmin B - Horizon»al Dim. 17.00 ft HC- Grades to Fop of Sign- 6.00 ft.. c: - Sign Depth 0.67 ft S = vertical Sign Dim. * 6.00 ft Bs- Ratio of B % S 2.83 Sh' Ratio 'of S I Ht " 1.00 E - Solidity Ratio 100} 00 f Elb - Base Elevdtion - .00 ft Gust Factor Calculations Gust r"act-or Category Z ksgid Str4ct res - Simplif"ied. Method ust1: For Rigid Structures (Nat. Freq.>l HI) use 0:85 0.85 Gust Factor- Category°iZ. p-igid Structures Complete Analysis V 1.00 ft gym: 0.6`Ht. �. 0.19 lzIr: Cc*(331Zm)'0.167 = 535.41 ft l' tZm/33) ^Epsilon 0. 96 ;: ;lf(1+0.3'tiB+Htlli2mi 0.6)3"Q•5 0.91 <kI s t2: 0.925*((1+1_.7*1ati*3.4*Q)1(1+1.713.4*I=)1 ,.us eMtor �,r�3ry � 4.85 >r , FlleXi,ble Structure use :the Lessor of Gust) or Gust2 1lesign Wind Pressure - Other Structures W Pres Cf( 1.38) tl•v Kr Kst qs - - ft of psf -----------•--------- - p----- ----------_--- ia.fJE 1..03 1.00 41-J93 46.32 re based on ct;Foree Coefficient) w Fees Cf is Wind Pressu Figure 29.4-1: Wind Loads for Solid Signs t Freestanding Walls • 1.38 cf - Force coefficient � 1.00 Rd - Reduction Factor tl-ti-Et 1.5;) 1.03 Fz xat. 41.19 ps,. fl_ g 48.3' ps: wind Pressure at Elevation 6 ft S*cns with openings comprising < 30t of gross area are ccoside rd sn d 3icMs4 21 Face coef_`�icients for solid signs with openings shall be Mul Piiea ry Rd 31 case r only applies when Bs >- 2 Distance from Cf Kz Kit Qh Mind -pressure a Distance leading edge ft Force Caaff. psf ------------ Psf----------- ------------------------------------ ;�.� r r0 6.0 2.03 •r,s,s• • 0.34• • 1.03 ••1=00 vl.I3 4 7a s . ,_ i2.t7 to• 1�.0 • •�•t • • • e • • L'• • • • • R i t,• ; a,c. - `t.o;1 6'aC••: E•>••as•••c t�. • GOPs• a9 b PdC wh+-n t tir, 0.9 ther2 e m - • •.r• .1 • •• • • • • • • • • • • • • •• • • • • • • • • •+• • • • Y ••• • • • • • • • • • • • • ••• • 0 • ••• • • .. ... . . . . . .. ell • •• • . • •• • f • • • • • • • r % f,,,: •• • • • • • _. • • • 00 • 0 0 0 • REINFQRCED RECTANGULAR CONCRETE gb-1 a input Data 12.0 Beam width [in] 24.0 Beam depth [in] 5.0 fc [ksi] 13.5 Vu, Ultimate Shear [k] 4.5 Tu, Ultimate Torsion [k-ft] 21.30 d [in] 3 Size of Stirrup 2 No. legs L,.Span (ft) Mu,•Ultimate Moment[k-ft] iS* * Asb, maximum reinforcement [in^2 as.�nin, minimum reinforcement [in^2j P-1. W,,required flexural reinforcement [in^, :••••JA�e�jprovided reinforcement.[in^2] moment capacity jk-ft] ...... .... . . 5.1 0.259tcri C acking'Torque/4 Ik-ft] 26.4 QSTcr, Redistributed Torsion [k-ftj 2?1 t ,Vc, Shear Strength of. Concrete. -Section [k] '530 Qi(Vctbw'd+8*(icj"0.5) (psi] 79((Vurbw`dj^2+(T4"phrl,7Aoh"2)"2)110. (psi] p.K, Check Sedan Size Adequacy (FS>F9) NR Av, Required Area of Transversal Reinforcement rn"21ftj-' ,NR• Av min 0.00 At, Required Area of Transversal Reinforcement pnl Ziml no Tu } At min.- i4fifillte sv,.RegWred Stirrup Spacing Based on Shear-[ini 2g.0% st, Required°Stirrup Spacing Based'on TOrsidn [in] 28 ,0 s, Required Stirrup Spacing Based on Strength[in] 22A Maximum Stirrup Spacing, SO.bw.s/fy [in]' 20.6 ; Maximum"Stirrup Spacing for Shear; d/2 [inj ►4EA Maximum,Spacing of Stirrups for Torsion jinj 10.6 s, Required Stirrup Spacing on) no Td:IAI, At min , Minimum Area of Longitudinal Reinforcement'[in^21, no Tu Area of Longitudinal Reinf. Based on Strength [in^2] no.Tu. Ai, Re'quired Area of Longitudinal Reinforcement jtn0I2j - `-'/A" Distance tto_piacMAv (in} 1.) Stirrup orientation assumed vertical. 2.) Analysis not valid for pre -stressed or hollow -core concrete members. 3.) Analysis not valid for light weight concrete members. Block Line I Project Title: Engineer: Project ID, You can change this area Project Descr- using the *SetMqs' menu Item and then using the'Printing & Title Block' selection. Tdie Block Liners SC16 4sCWXAM-1016MA ENERMC, INC, 1%3�2oj$. ajd-61512.9. Vl Masonry Slender Wall llll1l:::1:1 llp 1! Pre .117; FE Description fAA§5iiR—WkL-CANTfUVER WALL Code References Calculations per ACI 530-11, IBC 2012, CIBC 2013, ASCE 7-10 Load Combinations Used -. ASCE 7-05 Calculations per ACI 5s0-1 1, IBC 2012, CBC 2013, ASCE 7-10 General Information Construction Type Grouted Hollow Concrete Masonry 1.50 Ill Norm Wall Thickness 8 in Temp Diff across thickness deg F Fm Fy Yield 60.0 ksi Actual Thickness 7.625 in Min Allow Out -of -plane Deft Ratio = 0 Fr Rupture = 61.0 psi ReparV distance 3.750 in Minimum Vertical Steel % 0.0020 Em = I'm * = 9000 Lower Level Rebar . , # 6 Max % of pbat. O�006833 Bar size Bar Spacing 24 in Grout Density 140 pcf Block Weight Normal Weight Wall Weight 61 0 psi Wall is grouted at rebar cells only One -Story Wall Dimensions Ciear Height E- Parapet height Vl support Corldwn Top Free, E Lateral Loads Wind Loads Seismic Loads: Wal WeQht Seismic Load input MeMod Direct entry of Lateral Wall Weight F0 area WIND toad 71,0 Pst PSI Fo 00 0 Seisms Wan Lateral Load Results reported for "Strip Width" of 12 0 in -- DESIGN SUMMARY Allowable Values Governing Load Combination Actual Values , = 0.6016 Maximum Sending Stress Ratiott PASS momeril Capacity Check Max Mu -2.051 k-ft Phi * Mn 3,409 K- +1, 20D+0.5OLr+0,50L+1,60W Actual Dell. Ratio U 351 Allowable Deft, Ratio 240 PASS Service. 1,0,efieCtOr� Max, Deflection 0.2054 in W Only Max Pul Aq 6V1 0 Max Allow Dell 0,30 in 300.0 Psi PASS Axial LoN! Chell 0,10ft 02*fm +1 20D+O 50Lr+0.50L+1 60W PASS Reinforcing �jmlt Check•••••••• 40-0O4731 AsUO06833rho tai 0.006833 Wracking 0.6129 k-ft Minimum Phi Mn 3,788 k" PASS Minimum Moment Check + 1,40D 0 Gee JAammlim ReactiW for Load Cornbfnatty...0 0 k, :ojHl : 0,4260 k 0 VV Cnjy :a* HtinVIpi 0 3660 k itReattkor, D�W-H • Tilted ock L 1e.i Project Tide;. You can dwrn a this area t:rxgineer. it3 : using the'Settings` menu item ProiecE Oesa �d #lien using the'Phrlting "Ni. 01 11t` aahbr4inf4 Design Maximum UmbinA16,hs - MUnOts �.. __.��.m.. Results repotted for -Strip Width" _ 12 in. �......, .,�._.�.-. _ Axial Load Moment 0,6' Load Combination Pu .10.2'tm`t `t Ma MU Phi Phi Mn, As As Ratio rho foal U, k ##.. k-ft Y`i z. W2 01000 01000 0,00 0.00 0.00 0.00 0.000 0,0000 0,0000 0.000 0.000 000 ODO 0,00 0.00 0.000 OA004 0.0000 0,000 bwo 0.0 0,00 0.00 0,00 0.000 0.0000 0.0000 0.000 0.000 0.,00 0.00 0,00 0,00 0.000 0.0000 0.0000 +1,20D+1.6W+O.8OW at 0.00 to 0.20 O.000 18,720 0,47 1102 0.90 3.41 0.220 0,0047 0,0068 0.000 0.000 0.00 0.00 ODD 0.00 0.000 0.0000 0.0000 r1,20D+1,60S+0.80W at 0.00 to 0.20 0,000 18,720 0,47 1.02 010 341 0.220 0.0047 0,0068 +1.20D40.;O.r+0.50L+1,6OVi at 0.00 to 010 0.000 18.720 0,47 2.05 0,90 3.41 0,220 0.0047 0,0068 +1.200.0,50L+0,5OS+1.60W at 0.00 to 0.20 0.000 111,720 0.47 2,05 0,90 3.41 0,220 0,0047 0.0068 0.000 0.000 0.00 O00 0,00 0.00 0:000 0.0000 0,0000 +O:90D+1.60V+1.60H at 0.00 to 0.20 0.000 18.720, 0.47 2.05 0,90 3.41 0,220 0,0047 00068 0.000 0.000 0.00 0.00 0,00 0,00 0" 010000 0,0000 Results reported for "strip Width" = 12 in, Desigrf Max mum Cambinatlons beftt�d0dits Axial Load Moment Values stiffness Deflections Pu Mcr Maduai I gross I cracked 1 effective Deflection Defl. Ratio Load Combination ?"`It 11 rt in-4 sT ,A 'tf,'4 'g 0.000 0,00 0.00 0.00 0.0 0.000 O OO 0,0 0.000 0.00 0.00 0.00 0.00 0,070 0.000 0.0 6,000 0.00 0.00 0.00 0.00 0,000 0.000 0,0 0,000 0.00 0.00 0.00 0.00 O.00O 0.000 0,0 0,000 O.00 0.00 0.00 0,00 0.000 0,000 0.0 01000 0,00 0.00 0,00 0,00 0000 0.000 0.0 +O+W+H at 5.80 to 6.00 0,013 0,47 0,00 353.60 39.95 353.600 0204 353.4 0.0 0.000 0.00 0.00 0.00 0.00 0,000 0.000 +D+0:75OLr+0,750t+0.75011-H al 580 to 60 0.013 0.47 0.00 353..60 39.95 353.600 0.114 634,O 634,0 +0+0.750L+0750$4750W+H at 5,80 to 6.00 0.013 O47 0.00 353,60 3995 353.600 0.114 0,0 ODDO 0.00 0.00 0,00 0.00 0.000 0,000 0.000 0.00 0.00 0.00 0.00 0.000 0.000 00 +0.60DAV I-H at 5,80 to 6.00 0.008 0.47 0.00 353.60 39.94 353.600 0.2N 0.000 3522 0.0 0.000 ODD 0.00 0.00 0,00 0000 0.000 0.00 0.00 UO 0.00 0.000 0,000 0.0 0.004 0.00 0.00 0.00 0.000.000 0.000 0,0 0,000 0,00 0,00 0,000.00 0.000 0,000 0.000 0.00 0.00 0.00 0.00 0.000 0.000 00 0.001 0.47 0,00 353,60 39.93 353,600 0.205 3505 a7 at 5 60 to 6.,5 0,00 0,00 0,00 0.00 0 000 0 000 0.0 0.000 0.000 0,00 000 0.00 0.00 0,000 0 000 0.0 Results reported for "Strip Width" = 12 in. ._ Reactions - Vertical & Horizontal Load Combination D OnSy .0-L-.. Base Horizon:81 u.o • r • _. --.... • Top Horizontal Vertical @ Wall Base i i i•0 �• 000 0.?.06 0.0 : : .. • 0 00 0.366 0.00 ',,366 .. . 4� 0 366 . • i•• i i 0.01 03-36 000 • • • • 0 366 'QUe ck:Une 1 I AVpd Tift. You can change this area - En t'tt° i'Q. mrr ,using � andihei using the ` hinting Title %6a ,. si iion: Rt3aGti0l15=:::V6rticai 8e Hothontai Results reported for "Strip Width" =12 in. Load Combination Base;Horiontal Top Horizontal Vertical @'Wall Base 404W4H OA 0.00 0.A- k +040YOE4 i 0.0 0,00 k 0,366 : +D+0.75OU+0,750L+0750W+H 0.3 O.00 0.366 +D+0.75OL+OJ5OS;0,750 i-H 03 °_ 0°00 v, 0, 366 +0+0,75OLr+O,750L+0,5150E+N 0.0 O:OO r: 0,366 r +0+0.750L+0.75OS+0.5250E+H 0.0 0.00 0.366 =- +0.60D+W+H 0.A 0.00 0,220 +0.60D+O.70E+H 0.0 0.00 e 0.220 a: D On y 0,0 0.00 ,r 0.366 Lr Onty 0.0 OM 0,000 L On4 0.0 k 0.00 '•: 0.000 S Only 0.0 0,00 0.000 4V Only O A i 0.00 r 0,000 x, E On atr fr 0.00 0:000 H Om: 0,0 e' 000 Y 0.000 0 •• ••• • • • • • •• • •• • • • • ••• • •• ••• •• • • • •• 00 • • • • • • • • • • • • • • • • • •• • • •• • • • • • • • • • • • •• • • • • • • • • ••• • • • • ••• • • • • • • • • • • • • • •• •• • • • •• •• ••• • • • ••• • • 4 MedaWind Pro v2,.2.• 7.5 per ASCE 7-10 Developeo by MECA rriterprises, Inc. Copyright s ea 54--1'. coo Date : 8/1112016 Project No. : JobNo Input Parameters. Directional Procedure All Heights Building (Ch 27 Part 1) Basic Wind Speed(V) 1-15.00 mph Structural Category exposure Category Natural Frequency Fleicible Structure No Importance Factor- Kd,Directional, Factor - 0.85 Alpha 11.50 Zq - 700.00 ft A- I 0.09 St a 1.07 A-n 0.11 BM 0.80 Cc 0115 1 650.00 it Epsilon 0.13 zmin 7.00 ft Pitch of Roof a 3 ; .12 Slope of Roof(Theta) 14.04 Deg h: Mean Roof Ht -24.71 ft Type of Roof - HIPPED Rht: Ridge Ht 28.,99 ft Ebt: Eave Height - 20.42 ft Oil: Roof Overhang at Eave- .00 ft Overhead Type - No Overhang Bldg Length Along Ridge - 81.83 ft Bldg Width Across Ridge- 68.58 "t, Length of Hipped Ridge - 59.00 ft Roof Slope on Hip End = 26.91 Deg Gust Factor Calculations Cuss. Factor Category ! Rig -id Structures - Simplified Method Gu3t1: For Rigid Structures (Nat,. Freq.>l At) use 0.8$ 0.55 Gust Factor Category 11 Rigid Structures- - Complete Analysis Zm : 0. 9" fit - 14.82 ft 1 zm: Cc, (33/zin)'o. 16" 7 . 0.17 -Tzm, 1*(Zn/33),Epsilon - 588.12 ft Q: ( (Bitit) /Lzm) ^063) )10.5 m 0.91 Gu -It 2 : 0 .975* 1 (1+1 .711=13.410) /(14-1 .7*3.4*lz.m) 1 0.84 Fictor Summary Not a Flexible Structure use the Lessor of Gustl or Gust2 0.65 Table 26.11-1 internal Pressure Coefficients for Buildings, GCpi GCPi : Internal Pressure Coefficient Wind Pressure Kain Wind Force Poxisting System (MWFRS) - Ref Figure 27,4-1 Kht: Topographic. Factor (Figure 6-4) - 1.00 Qh: v0256-(V)-Z-I-Kh-Kht-Kd - 44.93 psf Cpww: Windward Wall Cp(Ref Fig 6-6) . 0.80 Roof Area - 5973.05 ft,2 Reduct-on Factor based on Roof Area . 0.80 mWFRS-wall Pressures for Wind Normal to 81.83 ft Wall (Normal to Ridge) u.,wn; rz. t�-iscd %pon, ASD wit'll a Lead Wall Cis Pressure Pressure +GCPi (psf) -GCPi (Pef) --------------- ------ ----------- ----------- Le,2ward Wall -0.50 -27.18 -11.01 s-,de walls -0.70 -34.82 -18.64 Wall Elev Kz Kzt CP qz Press Press Total ft psf +Gcpi -Gcpi +/-Gcpi -------------------------------------- ------------------------------ W I n:,:11w a 10,42 1A9 1.00 0.80 43,46 21.47 37.64 4 e . W ndw a r d 0 1 i15 1.vu 0.80 41.19 1?.92 16.10 W :,dw 3!, 0. 4 1 •0, 6'+,' 4 19.9;9 • 6 0 0 0 0 0 0 0 0 Roof Loq..ti.*: *,PP Pressure Pressure 6 . • a: . ae +GCPi(psf)-GCpi(psf) .. ------------------------ -- - - ------------------------- max C 0 00 • 00 -04 a a , •.� ` - 4 2. 4, En:! to a 0 0 :. -0 0 0 0 0 0 -42 240 :0 0 0 0 0 0 a 2 -1 V's 4 7 ram. a • 0 V: :. • 0 •0: 09 :0 • a 4 tripped End 149.41' to 68;-56 ft.l -0.30 19.54 -3.37 Notes - Normal to Ridge date .( ) Pet' F14 '27. 4-1 Note. 7, Since Theta' > 10 Deg base caics on Mean Nt )dote (2) Wall 4Roof Pressures. a Qh*(G'Cp - GCPi) Note (3) fGCpi . Positive Internal,Bldg Press; -GCPi - Negative rnternal Bidq Press Note (4) Total, Pressure - Leeward Presss *'Windward Press (For + or. - GCPi") :tote (5) (lipped ends considered as parallel to ridge for all. theta. Note (6) Ref Pig 27.4-1, No mal,to R3d4ti (Theta>=10),'.Theta- 14.0 Deg,.h/l= 0_30 Note M x- Along Building ridge,_ Y - Normal to Buildinq Ridge. Z = vertical' Note 18) MIN'- Minimum pressures on Walla = 9.6 psf'snd Roof . 4:8 psf Note (9) Area* - Area of the surface projected onto a vertical, plane normal,to wind. MWMS-Wall Pressures for Wind Normal to 68 58 ft wall (Along Ridge) All pteesarot s l wza are, sia:�eti upon ASO lea. an, with a Load Factor, of . G wall Cp Leeward Wall -0 46 Side Walls 0.70 Pressure Pressure +CC3ai (psf) - - -GCpi (psf) ----- -25.71 . 953 -34.82 -18.64 wall slev Ka Kzt Cp qz Press Press Total €t Psf +GCpi -GCpi +/-GCpi ----------- ----------------------------------- WI ndward 28.99 1.16 1,,00;0.80 46.19 23.33 39.50 49.03 Windward 20.42 1.09 1.00 4':80 43;46 21.47 37.64 47.17 Windward 10.42 1.03 1.00 0..80 41.1.9 19.92 36.10 45-63 Windward 0.4Z 1.03 1.00 0.80 41.19, 19.92 36.1.0 45.63 Roof - Dist from Windward Edge Cp Pressure Pressure +GCp i (pe f) -Gcpi (psf ) ------------------------------------------- Roof: 0.0 ft to 12.4 ft 0.9_- 6_ -42.46`----26.28 Roof: 12.4 ft to 24.7 ft -0190 -42.46 -26.28 Roofs 24.7 ft to 49.4 f>_ -0.50 -27.16 11.01 Roof. 44.4 ft to 81.8 ft -0.30 -15.54 -3.37 Notes - Along Ridge Note (1) Ref Fig 27.4-1, Parallel to Ridge (All"), h11- 0.30 Nate ( ; X Along Building ridge, f Normal to Building Ridge, Z--Vertical Note t3; MIN - Minimum pressures on Walls = 9.6 psf and Roof - 4.8 psf t.cte <4i Area* = Area of the ,surface projected onto a vertical plane normal to wino. Total Base Reaction Summary Description FIX tr'y Fz Mx My Mz Kip Kip Kip K-ft - K-ft X-ft --- ------ Normal ------ --------------------------------- to Ridge Walls-?C, xf *GCpi .0 7f.5 165.3 1052.3 .0 011,`F '.a� vl a. Ridge galls Orly +CCpi .0 0.0 .0 323.1 .0 - '-.4.Fa4 to ca dge na113+,roof -GCpi .0 88.7 ."5.4 Normal .o . idge Walls Gamy -GCpi 0 ?0,0 .0 923. .0 Normal to Ridge walls-^oof MIN 0 11.e .0 307.0 .0 Ali, R e Walls -Roof -GCpi 58.2 .0 161.4 .0 -1f70.7 Alr�r; Ridge walls Only *GCpi 65.0 .0 .0 .0 -6n8.7 .4 ?.long Ridge walls -Roof -GCpi 58.2 .0 70.7 .0 -1670.7 G Alone: F.tdge walls 'only -G^_pi 65.0 .0 .0 .0 -668.7 0 Ai<,tl i,dge Walls4ikoof VIN 1.6.3 '0 .0 .0 -203.0 Notes Applying to MWFRS Reactions: ote ?>t _r Fig _ .4 Note 5, Use greater of Shear calculated with or wzt.hou-, roof. -;v 2 8._=11(' _ ridge, y - Normal to Buildinq P.id;e, 'G -- vertical rM.IN Y .7 ,pressures vn Walls - 9.6 psf and Roof - 4.8 psf A area _ tt7e area of the surface onto a vertical plane normal tc wLns;- "Jhrr;z z lriH Cesi • i?7,*0P ssq• f*a• Wind Pressure on Components and Claddinye (Oh •3OePirt*414 •• C:oercac.en,, Zone 'a" _ ' ft Doscriptror. Width rsp4. sn r•a M% Z-1 Min eSae P Min P • • • ft fw-• •ft"i • • • :Alp • GUO g'a• psf a - �' •- '--•----•-•- w-•----------- ------------------------------e--a ••• • • • • •e• • e • • • • • • • • • • • •• •• • • • •• •• ••• • • • ••• • • 4 4 WiRti 4 Z.06 5.00 10.0 5 1.00 -1.40 5 t.01„ -70,99 DOOR 1.50 6.67 16.7 4 0 6 -1.06 51.25 55.75 DOOR ;50 6.67 16.7 5 0."96 -1..32 51.25 -67.46 Ycr;Co;dg. s Clad. Table '6-.3 Case i 1.12 0hcc:.00256*V, 2*Khcc"i it*Kd 44.93 Rsf •• ••• • • • • • •• • •• • • • • ••• • •• ••• •• • • • •• • • • • • • • • • • • • • • • • • •• • • •• • • • • • • • • • • • •• • • • • • • • • . ..... . ... . ...... . .... .... . . .... . ov-