Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
REV-16-1262
Miami Shores Village Building Department 10050 N.E.2nd Avenue, Miami Shores, Florida 33138 Tel: (305) 795-2204 Fax: (305) 756-8972 INSPECTION LINE PHONE NUMBER: (305) 762-4949 BUILDING PERMIT APPLICATION 'UILDING ❑ ELECTRIC ❑ ROOFING PLUMBING ❑ MECHANICAL PUBLIC WORKS MAY102016 BY. FBC20Iy— Master Permit No. RO"4 — 1 5 i'yj22 "1 Sub Permit No. ..EV1 b - 1 26 2 REVISION ❑ EXTENSION ❑ RENEWAL ❑ CHANGE OF ❑ CANCELLATION ❑ SHOP CONTRACTOR DRAWINGS JOB ADDRESS: 1 a01 htr.• a A- on City: Miami Dade Zip: ,01 f!b Folio/Parcel#: 11 - V g.O010 •' �ti� Is the Building Historically Designate: Yes NO X Miami Shores County: Occupancy Type: P.'1 Load: Construction Type: 'I , Flood Zone: BFE: FFE: OWNER: Name (Fee Simple Titleholder): Q✓-t-Nb;=•Q Phone#: 'P 4 (p T3 ('13 Address: j ZOt t4s 't4 asT' City: M115.1.AI •t-t.C1X.7 State: Zip: Tenant/Lessee Name: Phone#: — Email: 4 -We• VI tC•FJ �°i -�-"CT• IJ�i"� CONTRACTOR: Company Name: (IAC �.t/S G / J c� Jl G Phone#: (/) %'.2 d�'a'"^: J 2 8 r -o2v City? DAV(E State: f-1.- zip: 2 3325 Qualifier Name: 3-0 L U 1 S G 0+1.f V✓ 22_- Phone#: State Certification or Registration #: Certificate of Competency #: DESIGNER: Architect/Engineer: At--TOE\O • Phone#: 905 24,1 D21 Address: 605 4(4 City: Mt.A. -4t State: i L Zip: 16:0v . •e Value of Work for this Permit: $ Co, t200. Square/Linear Footage of Work: Tye oW❑ Addition Alteration n New X1 Repair/Replace ❑ Demolition C�(�( t'2L/���( oY'1. �escriptiori�`"of Work, r Specify color of color thru tile: 0 Submittal Fee $ Permit Fee $ CCF $ CO/CC $ Scanning Fee $ Radon Fee $ DBPR $ Notary $ Technology Fee $ Training/Education Fee $ Double Fee $ Structural Reviews $ Bond $ TOTAL FEE NOW DUE $ i! b LI . oo (Revised02/24/2014) Bonding Company's Name (if applicable) Bonding Company's Address City State Zip Mortgage Lender's Name (if applicable) Mortgage Lender's Address City State Zip Application is hereby made to obtain a permit to do the work and installations as indicated. I certify that no work or installation has commenced prior to the issuance of a permit and that all work will be performed to meet the standards of all laws regulating construction in this jurisdiction. I understand that a separate permit must be secured for ELECTRIC, PLUMBING, SIGNS, POOLS, FURNACES, BOILERS, HEATERS, TANKS, AIR CONDITIONERS, ETC OWNER'S AFFIDAVIT: I certify that all the foregoing information is accurate and that all work will be done in compliance with all applicable laws regulating construction and zoning. "WARNING TO OWNER: YOUR FAILURE TO RECORD A NOTICE OF COMMENCEMENT MAY RESULT IN YOUR PAYING TWICE FOR IMPROVEMENTS TO YOUR PROPERTY. IF YOU INTEND TO OBTAIN FINANCING, CONSULT WITH YOUR LENDER OR AN ATTORNEY BEFORE RECORDING YOUR NOTICE OF COMMENCEMENT." Notice to Applicant: As a condition to the issuance of a building permit with an estimated value exceeding $2500, the applicant must promise in good faith that a copy of the notice of commencement and construction lien law brochure will be delivered to the person whose property is subject to attachment. Also, a certified copy of the recorded notice of commencement must be posted at the job site for the first inspection which occurs seven (7) days after the building permit is issued. In the absence of such posted notice, the inspection will not be approved and a reinspection fee will be charged. Signature NER or AGENT The foregoing instrument was acknowledged before me this Signature CONTRACT The foregoing instrument was acknowledged before me this 4/14 day of M,4.'S" , 20 14 , by WO" day of M. rl ' , 20 l iQ • , by yrs►►►►mrraik -1 r{ i who t fLV l s61.4-c.<Y uho isP,.liib( lipio9 me or who has produced me or who has produced aP _ . •.;,ccine,•n15 °._ • .��, pjs identification and who did take an faath.; 4'c 0 6' : * NOTARY PUBLIC: =* �® ' EEB60600 o S � , o.,••P''0Ugh�st5�;�¢•'.* O's�� Sign: / /, '°08LIC, s1P;s`c,„��`�� Print: 17_�% ./ilill ►iu"' 5 ��i-t�L • Seal: **s*********************s*s*****s*/s*s* *** APPROVED BY (Revised02/24/2014) •a°"'G 26, 20 t, identification and who did take an oat ;mac 'a� ' oPEO600 cJ� p/B O NOTARY PUBLIC: Sign: Print: Seal: Plans Examiner r r LIC Sj P�F 1ebt est . Zoning Structural Review Clerk STRUCTURAL CALCULATIONS INTERIOR REMODELING IN A RESIDENCE OF BERNARD LEE & DEMETRIO T LORIS. 1201 NE 94 ST MIAMI SHORES, FL 33138 DATE: MAY 6, 2016 STRUCTURAL DESIGN~ TC ENGINEERING, INC CA LIC. No 30288 ANTONIO CANELAS, P.E. LIC. No. 74099 .... • • • • .... . • . .. • • ••• • . . . . • • • • • • • • • • • • • .... • .. .. .... THESE CALCULATIONS HAVE BEEN PREPARED IN ACCORDANCE WITH THE FOLLI WING CODES • AND STANDARDS: • • • • FLORIDA BUILDING CODE 2014 • ASCE 7-10 • ACI-318-11 • AISC MANUAL OF STEEL CONSTRUCTION, AISC 360-10 14 EDITION. • ACI530-11 • NDS FOR WOOD CONSTRUCTION, NDS-12 (2012 EDITION) • • • • • . . •• • • • • • • .. • THE ENGINEER WHO'S SEAL APPEARS BELOW ASSUMES RESPONSIBILITY FOR ALL THE ENCLOSED MANUAL AND COMPUTER GENERATED CALCULATIONS THAT ARE A PART OF THIS PACKAGE OF STRUCTURAL DESIGN CALCULATIONS. TOTAL NUMBER OF CALCULATION PAGES: 15 TC ENGINEERING, INC CA LIC. No 30288 ANTONIO CANELAS, P.E. LIC. No. 74099 7815 SW 24 ST SUITE 111 MIAMI FL, 33155 305 261 0321 INDEX DESCRIPTION PAGES ' • 1- WIND LOAD CALCULATION •..••; 1 TO,B,,• 2- WOOD BEAM DESIGN . 9 TO.1'3'• • 3-WOOD LEDGER DESIGN • • • 14 TO.15 • • •••• • . • • • •• •• •••• THESE CALCULATIONS HAVE BEEN PREPARED IN ACCORDANCE WITH THE FOLLOWING CODES • AND STANDARDS: •• • • • FLORIDA BUILDING CODE 2014 • ASCE 7-10 • ACI-318-11 • AISC MANUAL OF STEEL CONSTRUCTION, AISC 360-10 14 EDITION. • ACI530-11 • NDS FOR WOOD CONSTRUCTION, NDS-12 (2012 EDITION) • • • . • •• • •.•• • • •• • THE ENGINEER WHO'S SEAL APPEARS BELOW ASSUMES RESPONSIBILITY FOR ALL THE ENCLOSED MANUAL AND COMPUTER GENERATED CALCULATIONS THAT ARE A PART OF THIS PACKAGE OF STRUCTURAL DESIGN CALCULATIONS. TOTAL NUMBER OF CALCULATION PAGES: 15 TC ENGINEERING, INC CA LIC. No 30288 ANTONIO CANELAS, P.E. LIC. No. 74099 7815 SW 24 ST SUITE 111 MIAMI FL, 33155 305 261 0321 • • • • • •• • • • ‘toll I1II : G E NS •• `9 • No ;74099%• . f• /I S! ; STATE OF 4..../.0*, 41. 0Rl\.••. t. S�ONAL ENo``% . WIND LOAD CALCULATION ...1 ... • . . . .• .... . .. . .. . .... . • .. • . • . . .... • • • • . .... . . . • • .... .... . • .. • • • • • • .. • • • • •. ..• .... • • .. • Date Company Address City State File Location: _:\2016\HA.RRY SANCHEZ\1201 NE 94 ST\CALCS\W ND.wnd MecaW1nd. = ro v 2 . 2 . , 7 De_ ..SC 0 Developed by MECA Enterprises, Inc. Copyright w°,rw.mecaenterprises.com 4/29/2016 Name Directional Procedure Simplified Diaphragm Basic Wind Speed(V) = 175.00 mph Structural Category. = II Natural Frequency N/A Importance Factor = 1.00 Damping Ratio (beta) _ , 0.01 Alpha 9.50 At = 0.11 Am = 0.15 Cc = 0.20 Epsilon = 0.20 Slope of Roof = 2.817778 : Ht: Mean Roof Ht = 15.09 ft RHt: Ridge Ht = 16.67 ft OH: Roof Overhang at Eave= 2.00 ft Bldg Length Along Ridge = 84.00 ft Project No. Designed By Description . Customer Name : Proj Location . Building (Ch 27 Part 2) Exposure Category Flexible Structure Kd Directional Factor C No 0.85 Zg 900.00 ft Bt 1.00 Bm = 0.65 1 = 500.00 f.. Zmin = 15.00 ft 12 Slope of Roof(Theta) = 13.21 Deg Type of Roof = GABLED Eht: Eave Height = 13.50 ft Overhead Type = OH w/ soffit Bldg Width Across Ridge= 23.00 ft Gust Factor Calculations Gust Factor Category I Rigid Structures - Simplified Method Gustl: For Rigid Structures (Nat..Freq.>1 Hz) use 0.85 Gust Factor Category II Rigid Structures - Complete Analysis Zm: 0.6*Ht lzm: Cc*(33/Zm)'0.167 Lzm: 1*(Zm/33)"Epsilon Q:(1/(1+0.63*((3+Ht)/LzW0.63))A0.5 Gust2: 0.925*((1+1.7*lzm*3.4*Q)/(1+1.7*3.4*lzm)) = 0.85 = 15.00 ft = 0.23 427.06 ft = 0.94 = 0.89 Gust Factor Summary Not a Flexible Structure use the Lessor of Gustl or Gust2 = 0.85 Table 26.11-1 Internal Pressure Coefficients for Buildings, GCpi GCPi Internal Pressure Coefficient = +/-0.18 • • • • • • •• • Topographic Adjustment 0.33*z = 1.00 • Kzt (0.33*z): Topographic factor at elevation 0.33*z 1.00 Vtopo: Adjust V per Para 27.5.2: V * [Kzt(0.33*z)]"'0.5 = 175.00•//h0 •• •••• MWFRS Diaphragm Building Wind Pressures per Ch 27 Pt 2 Ali pressures shown are based upon ASD Design, with a toad Factor of .6 • • •• •• • • • • • • • • • • •• • • • •••• • ••• • • • •• • • • • • •••• • • •••• • • • • •••• • • • • •• • • • • • • • •• • • • • See Fig Palrappe wind pressures P'ra4 3 See Th e 27.6- . Povb 'Roof PRe ur s. See Table 274 2 Gabled Roof +x ear Wind MWFRS. Pressures for Wind Normal to 84 ft wall (Normal to Ridge) . • .. • • • • •••• • • • • .. • . ... • •• .• ..• • • • • • • • • • • • l • • • .... • • • • • • • • • • • .. .. • .... • • • .. WALL PRESSURES PER TABLE 27.6-1 L/B: Bldg Dim in Wind Dir / Bldg Dim Normal to Wind Dir h: Height to top of Windward Wall. ph: -Net Pressure at top Of wall (windward leeward) p0: Net Pressure at bottom of wall. (windward + leeward) 0.27 = 13.50 ft • 38.70 psf • 38.70 psf ps: Side .wall pressure acting away.from wall = .54 * ph -20.90 psf pl: Leeward wall pressure acting away from wall = .38 * ph = -14.71 psf pwh: Windward wall press @ top acting toward wall = ph-pl 23.99 psf pw0: Windward wall press @ bot acting toward wall = p0-pl = 23.99 psf ROOF PRESSURES PER TABLE 27.6-2 h: Mean Roof Height = 15.085 ft Lambda: Exposure Adjustment Factor = 1.000 Slope: Roof Slope = 13.21 Deg Table 27.6-2 indicates a slope less than 9.46 Deg is flat, but provides no values for Zone 1 and 2 between 9.46 Deg and 14 Deg, so any slope < 14 deg is treated as flat. Zone Load Casel Load Case2 psf psf 1 .00 .00 2 .00 .00 3 -37.94 .00 4 -33.83 .00 5 -27.74 .00 Note: A value of '0' indicates that the zone/load case is not applicable. ROOF OVERHANG LOADS (FIGURE 27.6-3): LOAD CASE 1: Povhl: Overhang pressure for zone 1. Povh3: Overhang pressure for zone 3 LOAD CASE 2: Povhl: Overhang pressure for zone 1 Povh3: Overhang pressure for zone 3 • .00 psf -28.45 psf _ .00 psf • .00 psf Normal to Ridge - Base Reactions - Walls+Roof +GCpi •••• • • • • •••• Description Press Area Fx Fy Fz Mx Ry • • •• Mz • • • • • • psf ft^2 Kip Kip Kip K-ft K-ft K-ft • • • • •• • Roof (0 to h/2) Roof (h/2 to h) Roof (h/2 to h) Roof (h to 2h) Roof (0 to h/2) Roof (h to 2h) Windward Wall Windward Wall Windward Wall Leeward Wall Side Wall Side Wall Side Wall Side Wall - 37.94 478 .00 -4.15 17.66 93.5 •••. ' .0 • • • - 33.83 514 .00 -3.98 16.93 -13.1 •rIP• .4 • • • - 33.83 137 .00 1.06 4.50 13.9 • .0 • .0 -27.74 . 856 .00 5.42 23.10 -69.1 ••b• .1 • • - 37.94 173 .00 -•1.50 6.37 59.1 ••• O•• .0•••• - 27.74 173 .00 1.09 4.66 -43.2 •• •i9• •d••••• 23.99 420 .00 10.08 .00 110.9 .0 .0 • 23.99 420 .00 10.08 .00 60.5 .••.�•• .0 • •• 23.99 294 .00 7.05 .00 12.3 • .0 • 9 • . - 14.71 1134 .00 16.68 .00 112.6 • .0• : • • - 20.90 311 -6.49 .00 .00 .0 •43.18 • .0 •o•••• - 20.90 311 6.49 .00 .00 .0 -43.8 • Q••.•• • • -20.90 43 -0.89 .00 .00 .0 13.0 .0•• • - 20.90 43 0.89 .00 .00 .0 -13.0 .0 Total .00 5304 .00 41.84 73.23 337.4 .0 .0 Normal to Ridge - Base Reactions - Walls Only +GCpi Description Press Area • Fx Fy . Fz Mx, My Mz psf ft'•2 ' Kip Kip Kip K-ft K-ft K-ft Windward Wall Windward Wall Windward Mali Leeward Wall Side .Wall Side Wall Side Wall . Side Wall 23.99 420 .00 10.08 .00 110.9 .0 .0 23.99 420 .00 -10.08 .00 60.5 .0 .0 23.99 294 .00' 7.05 ,.00 12.3 .0 .0 - 14.71 1134 .00 16.68 ' .00' 112.6 .0 .0 -20.90 f 311 -6.49 -.00 .00. . .0 43.8' .0 -20.90• 311 66.49 .00 .00 '.0 -43.8 .0 - 2 43 -0.89 .00 .00 '.0 13.0 .0 0.90 - 20.90' .43• 0.89 .00 . .00 .0 -13.0 .0 Total .00 2975 .00 43.89 .00 Normal to Ridge - Base Reactions - Walls+Roof -GCpi Description Press Area psf ft"2 Fx Fy F.ip Kip 296.2 .0 .0 Fz Mx . My Kip K-ft K-ft N.z K-ft Windward Wall Windward Wall Windward Wall Leeward Wall Side Wall Side Wall Side Wall Side Wall 23.99 23.99 23.99 -14.71 - 20.90 -20.90 - 20.90 -20.90 420 .00 10.08 420 .00 10.08 294 .00 7.05 1134 .00 16.68 311 -6.49 .00 311 6.49 .00 43 -0.89 .00 43 0.89 .00 .00 .00 .00 .00 .00 .00 .00' .00 110.9 .0 .0 60.5 .0 .0 12.3 .0 .0 112.6 .0 .0 .0 43.8 .0 .0 -43.8 .0 .0 13.0 .0 .0 -13.0 .0 Total ' .00 2975 .00 43.89 .00 Normal to Ridge - Base Reactions - Walls Only -GCpi Description Press psf Area Fx ft"2 Kip , EY Kip Fz Kip 296.2 .0 ..0 Mx My Mz K-ft K-ft K-ft Windward Wall Windward Wall Windward Wall Leeward Wall Side Wall Side Wall Side Wall Side Wall 23.99 23.99 23.99 - 14.71 -20.90 - 20.90 -20.90 - 20.90 420 .00 10.08 420 .00 10.08 294 .00 7.05 1134 .00 . 16.68 311 -6.49 .00 311 6.49 .00 43 -0.89 .00 43 0.89 .00 .00 110.9 .0 .0 .00 60.5 .0 .0 .00 12.3 .0 .0 .00 112.6 .0 .0 .00 .0 43.8 .0 .00 .0 -43.8 .0 .00 .0 13.0 .0 .00 .0 -13.0 .0 Total .00 2975 .00 43.89 .00 296.2 .0 .0 Normal to Ridge - Base Reactions - Walls+Roof MIN Description Press Area* Fx psf ft"2 Kip Fy Fz Kip Kip Mx K-ft My Mz K-ft K-ft Total Notes Note Note Note .00 0 .00 .00 .00 .0 .0 ; • • • • - Normal to Ridge (1) X= Along Building ridge, Y = Normal to Building Ridge, (2) MIN = Minimum pressures on Walls = 9.6 psf and Roof = (3) Area* = Area of the surface projected onto a vertical MWFRS Pressures for Wind Normal to 23 ft wall (Along Ridge) WALL PRESSURES PER TABLE 27.6-1 L/B: Bldg Dim in Wind Dir / Bldg Dim Normal to Wind Dir h: Height to top of Windward Wall ph: Net Pressure at top of wall (windward + leeward) p0: Net Pressure at'bottom of wall (windward + leeward) ps: Side wall pressure acting away from wall = .64 * ph pl: Leeward wall pressure acting away from wall = .27 * ph pwh: Windward wall press @ top acting toward wall = ph-pl pw0: Windward wall press @ bot acting toward wall = p0-pl ROOF PRESSURES PER TABLE 27.6-2 h: Mean Roof Height Lambda: Exposure Adjustment Factor Slope: Roof Slope • • •• •• • Z = Vertical 4.8 psf • plane wind. • • • • 3.65•• •• 16.67•it•••• 34.16r sf• 33.97 psf • • • • • -21.86 f • -9.22 psf 24.94 psf '24.75 psf 15.085 ft 1.000 13.21 Deg •••• • • ••• • • • •• • ••.•••• •• • • • • • • •••• • • •••• • • • • •••• • • • •• • • Table 27.6-2 indicates a slope less than 9.46 Deg'is flat, but provides no values for Zone 1 and 2 between 9.46 Deg and 14 Deg, so any slope < 14 deg is treated as flat. Zone Load Casel Load Case2 psf 2 3 psf .00• .00 -37.94 .00 .00 .00 • • • • •• • • • • • -33.83 .00 -27.74 .00 • Note: A value of, '0' indicates that the zone/load case is not applicable. ROOF OVERHANG LOADS (FIGURE 27.6-3),: LOAD -CASE 1: . Povhl: Overhang pressure for zone 1 Povh3: Overhang pressure for zone 3 .00 ps'f -28.45 psf LOAD CASE 2: Povhl: Overhang pressure for zone 1 .00 psf Povh3: Overhang pressure for zone 3 = .00 psf Along Ridge - Base Reactions - Walls+Roof.+GCpi Description Press Area 'Fx Fy Fz Mx My Mz psf ft"2 Kip Kip Kip K-ft K-ft K-ft Roof (0 to h/2) -37.94 89 .00 -0.77 3.29 7.1 12.8 • -29.5 • ▪ • Roof (0 to h/2) -37.94 89 .00 0.77 3.29 -7.1-12Z.8• •29.5 • ••• Roof (0 to h/2) -37.94 15 .00 -0.13 0.57 5.3 -21! • -5.1 . ••• Roof (0 to h/2) -37.94 15 .00 0.13 0.57 -5.3-dd•a••• 5.1• • • • Roof (h/2 to h) -33.83 89 .00 -0.69 2.93 6.3 -9.0. :e. 21.1 Roof (h/2 to h) -33.83 89 .00 0.69 2.93 -6.3 -90A1 21.1 • Roof (h/2 to h). -33.83 15 .00 -0.12 0.51 4.7-5..•/•• -3.7• • Roof (h/2 to h) -33.83 15 .00 0.12 0.51 -4.7-15,.•'••• 3.7. Roof (h to 2h) -27.74 178 .00 -1.13 4.81 10.4-1,..2.64.-21.9 Roof (h to 2h) -27.74 178 .00 1.13 4.81 -10.4. -93.02 • 21.9.•••• • Roof (h to 2h) -27.74 31 .00 -0.20 0.84 7.8-Zb•.2•• -3.8 •••• Roof (h to 2h) -27.74 31 .00 0.20 0.84 -7.8 -lia3 •• 3.8 • Roof (>2h) -27.74 636 .00 -4.03 17.17 37.0 2:9.(1 : 60.8 Roof (>2h) -27.74 636 .00 4.03 17.17 -37.0 259.0 -60.8: • Roof (>2h) -27.74 111 .00 -0.70 2.99 27.7 :5.2.6. 10.60 Roof (>2h) -27.74 111 .00 0.70 2.99 -27.7 4401 • -10.6 .... Windward Wall 24.90 115 2.86 .00 .00 .0 -31.5 .D • • Windward Wall 24.84 115 2.86 .00 .00 .0 -17.1 .0" • Windward Wall 24.79 81 2.00 .00 .00 .0 -3.5 .0 Leeward Wall -9.22 311 2.86 .00 .00 .0 -19.3 .0 Side Wall -21.86 1134 .00 • 24.79 .00 167.4 .0 .0 Side Wall -21.86 1134 .00 -24.79 .00 -167.4 .0 .0 Windward Wall 24.94 43 1.07 .00 .00 .0 -15.5 .0 Leeward Wall -9.22 43 0.39 .00 .00 .0 -5.7 .0 Total .00 5304 12.04 .00 66.23 .0 -210.2 .0 Along Ridge - Base Reactions - Walls Only +GCpi Description Press Area Fx Fy Fz Mx My Mz psf ft'2 Kip Kip Kip K-ft K-ft K-ft Windward Wall 24.90 115 2.86 .00 .00 .0 -31.5 .0 Windward Wall 24.84 115 2.86 .00 .00 .0 -17.1 .0 Windward Wall 24.79 81 2.00 .00 .00 .0 -3.5 .0 Leeward Wall -9.22 311 2.86 .00 .00 .0 -19.3 .0 Side Wall -21.86 1134 .00 24.79 .00 167.4 .0 .0 Side Wall -21.86 1134 .00 -24.79 .00 -167.4 .0 .0 Windward Wall 24.94 43 1.07 .00 .00 .0 -15.5 .0 Leeward Wall -9.22 ,43 0.39 .00 .00 .0 -5.7 .0 Total .00 2975 12.04 .00 .00 .0 -92.7 .0 Along Ridge - Base Reactions - Walls+Roof -GCpi Description Preis Area Fx Fy Fz Mx, My Mz psf ft"2 'Kip Kip Kip K-ft K-ft K-ft Windward Wall 24.90 115 2.86 .00 .00 .0 -31.5 .0 -Windward Wall 24.84 115 2.86 .00 .00 .0 -17.1 .0 Windward Wall 24.79 81 2.00 .00 .00 .0 -3.5 .0 Leeward Wall-9..22' .311 2.86 .00 .00 .0. -19.3 .0, • Side. Wall -21.86 1134 .00 24.79 .00 • 167.4 :0 .0 • 'Side Mall -21.86 1114 . .00 -24.79 .b0 -167.4 • .0 .0 Windward Wall 24.94 43 1.07 .00 .00 .0 -15.5 .0 Leeward Wall -9.22 43 0.39 .00 .00 ,0 -5.7 .0 Total .00 2975 12.04 .00 .00 .0 -92.7 .0 Along Ridge - Base -Reactions - Wa11g Only -GCpi Description Press Area . Fx Fy Fz Mx My Mz psf ft"2 Kip Kip Kip K-ft K-ft K-ft Windward Wall 24.90 115 2.86 .00 .00 .0 -31.5 .0 Windward Wall 24.84 115 2.86 .00 .00 .0 -17.1 .0 Windward Wall 24.79 81 2.00 .00 .00 .0 -3.5 .0 Leeward Wall -9.22 311 2.86 .00 .00 .0 -19.3 .0 Side Wall -21.86 1134 .00 24.79 .00 167.4 .0 .0 Side Wall -21.86 1134 .00 -24.79 .00 -167.4 .0 .0 Windward Wall 24.94 43 1.07 .00 .00 .0 -15.5 .0 Leeward Wall -9.22 43 0.39 .00 .00 .0 -5.7 .0 Total .00 2975 12.04 .00. .00 .0 -92.7 .0 Along Ridge - Base Reactions - Walls+Roof MIN •••• • • • • Description Press Area* Fx Fy Fz Mx M]t • 1z • •••• psf ft"2 Kip Kip Kip K-ft K-ft•• Aft • • • • ++• ••••r----•••• • Total .00 i • 0 .00 .00 .00 .0 •.0•.0 • • • • • Notes - Along Ridge Note (1) X= Along Building ridge, Y = Normal to Building Ridge, Z = Vert!eal••• •••• •••••• Note (2) MIN = Minimum pressures on Walls = 9.6 psf and Roof 4.8 psf • • Note (3) Area* = Area of the surface projected onto a vertical plane normal to wind. •••• • Total Base Reaction Summary Description Fx Fy Fz Kip Kip Kip • • • • • • • • • Mx MY •••• •Mz •••• K-ft K-ft K-ft • • • •• • Normal to Ridge walls+Roof +GCpi .0 41.8 73.2 337.4 .0 .0 Normal to Ridge Walls Only +GCpi .0 43.9 .0 296.2 .0 .0 Normal to Ridge walls+Roof -GCpi .0 43.9 .0 296.2 .0 .0 Normal to Ridge Walls Only -GCpi .0 43.9 .0 296.2 .0 .0 Normal to Ridge Walls+Roof MIN .0 .0 .0 .0 .0 .0 Along Ridge Walls+Roof +GCpi 12.0 .0 66.2 .0 -210.2 .0 Along Ridge Walls Only +GCpi 12.0 .0 .0 .0 -92.7 .0 Along Ridge Walls+Roof -GCpi 12.0 .0 .0 .0 -92.7 .0 Along Ridge Walls Only -GCpi 12.0 .0 .0 .0 -92.7 .0 Along Ridge Walls+Roof MIN .0 .0 .0 .0 .0 .0 Notes Applying to MWFRS Reactions: Note (1) Per Fig 27.4-1, Note 9, Use greater of Shear calculated with or without roof. Note (2) X= Along Building ridge, Y = Normal to Building Ridge, Z = Vertical Note (3) MIN = Minimum pressures on Walls = 9.6 psf and Roof = 4.8 psf Note (4) MIN area is the area of the surface onto a vertical plane normal to wind. Note (5) Total Roof Area (incl OH Top) = 2329.69 sq. ft Note (6) LC = Load Case (Some pressures can be zero,'ref ASCE 7-10 Ch 27 Pt 2) Wind Pressure on Components and Cladding (Ch 30 Part 1) ••• • • • • •• • • • • Gable Roof 745! • • All pressures shown are based upon ASD Design, with a Load Factor of .5 •• • Width of Pressure Coefficient Zone "a" = Description 3.00 ft • •••• • • •••• • ••• • • • •• • • Width Span Area Zone Max Min Max P 401.21., • • ft ft ft"2 GCp GCp psf pgf••• • Wall 0 -10 Wall 0 -10 Wall 11-20 Wall 11-20 Wall 21-30 Wall 21-30 Wall 31-40 Wall 31-40 Wall 41-50 Wall 41-50 Wall 51-100 Wall 51-100 Wa11101-200 Wa11101-200 Wall 201-500 Wa11201-500 Wa11501-1000 Wa11501-1000 Roof 0-10 Roof 0-10 Roof 0-10 Roof 11-20 Roof 11-20 Roof 11-20 Roof 21-30 Roof 21-30 Roof 21-30 Roof 31-40 Roof 31-40 Roof 31-40 Roof 41-50 Roof 41=50 Roof 41-50 Roof51-100 Roof51-100 Roof51-100 Roof101-200 Roof101-200 Roof101-200' Roof201-500 Roof201-500 Roof201-500 Roof501-1000 Roof50.1,-1000 Roof501-1000 e7^i••• •••• 1.00 5.47 10.0 4 1.00 -1.10 40.10 ;13•.500 • • 1.00 5.47 10.0 5 1.00 -1.40 40.10 -53.�� ••••_ 1.00 5.74 11.0 4 0.99 -1.09 39.85 :4.3'AS• • 1.00 5.74 11.0 5 0.99 -1.39 39.85 953..10: • • 1.00 7.93 21.0 4 0.94 -1.04 38.17 e41.57 1.00 7.93 21.0 5 0.94 -1.29 38.17 1,49 ag•3• • 1.00 9.64 31.0 4 0.91 -1.01 37.15-41.55• •••• 1.00 9.64 31.0 5 0.91 -1.23 37.15 -47.80 • • • •• • 1.0011.10 41.1 4 0.89 -0.99 36.42 -39.82 1.00 11.10 41.1 5 0.89 -1.18 36.42 -46.33 1.00 12.37 51.0 4 0.88 -0.98 35.85 -39.25 1.00 12.37 51.0 5 0.88 -1.15 35.85 -45.2C 1.00 17.41 101.0 4 0.82 -0.92 34.07 -37.47 1.00 17.41 101.0 5 0.82 -1.05 34.07 -41.64 1.00 24.56 201.1 4 0.77 -0.87 32.28 -35.68 1.00 24.56 201.1 5 0.77 -0.94 32.28 -38.05 1.00 38.77 501.0 4 0.70 -0.80 29.90 -33.30 1.00 38.77 501.0 5 0.70 -0.80 29.90 -33.30 1.00 5.47 10.0 1 0.50 -0.90 23.11 -36.70 1.00 5.47 10.0 2 0.50 -1.70 23.11 -63.89 1.00 5.47 10.0 3 0.50 -2.60 23.11 -94.47 1.00 5.74 11.0 1 0.49 -0.90 22.83 -36.56 1.00 5.74 11.0 2 0.49 -1.68 22.83 -63.19 1.00 5.74 11.0 3 0.49 -2.58 22.83 -93.64 1.00 7.94 21.0 1 0.44 -0.87 20.92 -35.60 1.00 7.94 21.0 2 0.44 -1.54 20.92 -58.41 1.00 7.94 21.0 3 0.44 -2.41 20.92 -87.89 1.00 9.64' 31.0 1 0.40 -0.85 19.77 -35.03 1.00 9.64 31.0 2 0.40 -1.45 19.77 -55.54 1.00 9.64 31.0 3 0.40 -2.31 19.77 -84.46 1.00 11.10 41.1 1 0.38 -0.84 18.94 -34.62 -1.00 11.10 41.1 2 0.38 -1.39 18.94 -53.46 1.00 11.10 41.1 3 0.38 -2.23 18.94 '-81.96 1.00_ 12.37 51.0 1 _0.36 -0.83 18.30-34.3.0- 1.00 12.37 51.0 2 0.36 -1.35 18.30=5-1.86 , O,„ Q 2 1.00 12.'37 51.0 3 0.36 -2.18 18.30 -80.04 1.00 17.41 101.0 1 0.30 -0.80 16.31 -33.30 '1.00 17.41 101.0 2 0.30 21.20 16.31 -46.90 1.00 17.41 101.0 3 0A0 -2.00 16.31 -74.08 1.00 24.56 201.1 1 0.30 -0.80 16.31 -33.30 1.00 24.56 201.1 2 0.30 -1.20 16.31 -46.90 1.00 24.56 201.1 3 0.30 -2.00 16.31 -74.08 1.00 38.77 501.0 1 0.30 -0.80 16.31 -33.30 1.00 .38.77 501.0 2* 0.30 -1.20 '. 16.31 -46.90 1.00 38.77 501,.0 3 -0:30 -2.00 16.31 -74.08 Khcc:Como. & Clad. Table 6-3 Case 1 Qhcc:.00255*V"2*Khcc*Kht*Kd = 0.85 33.98 psf •• • • • • • •• • • • • • •• • ••• • •••• • • • • ••• •• , • •••• • ••• • • • • • • • • •••• • • •... • • • • • • . • . • • • • • • • • • WOOD BEAM DESIUR .2 • • • • • . • Title Block Line 1 ' You can change this area' using the "Settings" menu item and then using the "Printing & Title Block" selection. • Title Block Line 6 x1Zwood*beam i • Title : Dsgnr: Project Desc.: Project Notes : 'Jbb•# • Printed: 28 APR 2016, 8'49PM 7 : "•_ an'"FBe: Pa20161HARRY SANCHEZ11201'NE 94 STLC813-2x12 wood beam.ec6 1 ENERCALC; I1CA NC1963:201'1, Builld:611'.6.23„Ver6.11.6.23: Description : 3-2x12 wood beam Material Properties Analysis Method : ‘ Allowable Stress Design Load Combination 2005 IBC & ASCE 7-05 Wood Species : Southern Pine Wood Grade : No.2: 2" - 4" Thick : 12" Wide Beam Bracing : Completely Unbraced Fb - Tension Fb - Compr Fc - Prll Fc - Perp Fv Ft Calculations per NDS 2005, IBC 2009, CBC 2010, 'ASCE 7-05 E :.Modulus of Elasticity Ebend- xx 1,400.0ksi Eminbend - xx 510.0ksi 750.0 psi 750.0 psi 1,250.0 psi 565.0 psi 175.0 psi 450.0 psi Density 35.440pcf D(0.066) L(0.0532) * f * + r :,r - cc + r` M` „�. .p r "kit" „' i r • »x �,.. a��'._. r ., t 4. a ...+ arv,•.�., . F_ .. 3-2x12 • • • • ••• • • •••••• • • • • Span = 16.750 ft • • • • •••• • ... 1 • • • • • • •••� F"A 15i edrloads Beam self weight calculated and added to loads Uniform Load : D = 0.0660, L = 0.05320 Tributary Width = 1.0 ft h DEsTar UMMARY ',' .,.. 7 Maximum Bending Stress Ratio Section used for this span fb : Actual FB : Allowable Load Combination Location of maximum on span Span # where maximum occurs Maximum Deflection Max Downward L+Lr+S Deflection Max Upward L+Lr+S Deflection Max Downward Total Deflection Max Upward Total Deflection 0.784 1 3-2x12 583.72 psi 744.17psi +D+L+H 8.375ft Span # 1 •• • • •• .• • • Service loads entered. Load Factgrs 1NUI.toe applie�I,jprFalculatio�t�.; • • • Maximum Shear Stress Ratio Section used for this span fv : Actual Fv : Allowable Load Combination Location of maximum on span Span # where maximum occurs 0.127 in Ratio = 0.000 in Ratio = 0.314 in Ratio = 0.000 in Ratio = 1581 0 <360 639 0 <240 • ' ••••• • • • • • • • = . • •• • • 0.166 : 1 • ••3-ex12 :•• • • •.29,08 psi 175.00 psi +D+L+H 0.000 ft Span # 1 • Maximum,Forces SeStresses for.l_oad Combinations;. Load Combination Max Stress Ratios Segment Length Span # M +D Length =16.750 ft 1 +D+L+H Length = 16.750 ft 1 +D+0.750Lr+0.750L+H Length =16.750 ft 1 +D+0.750L+0.750S+H Length =16.750 ft 1 +D+0.750 Lr+0.750L+0.750W+H Length =16.750 ft 1 +D+0.750L+0.750S+0.750W+H Length =16.750 ft 1 +D+0.750 Lr+0.750 L+0.52 50 E+H Length =16.750 ft 1 +D+0.750 L+0.750 S+0.5250 E+H V Cd CFN Cr Cm Ct 0.467 0.099 1.000 1.000 1.000 0.784 0.166 1.000 1.000 1.000 0.705 0.149 1.000 1.000 1.000 0.705 0.149 1.000 1.000 1.000 0.705 0.149 1.000 1.000 1.000 0.705 0.149 1.000 1.000 1.000 0.705 0.149 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Summary of Moment Values Summary of Shear Values Mactual fb-design Fb-allow 2.75 347.86 4.62 583.72 4.15 524.76 4.15 524.76 Vactual fv-design Fv-allow 744.17 0.58 17.33 175.00 744.17 0.98 29.08 175.00 744.17 744.17 4.15 524.76 744.17 4.15 524.76 744.17 4.15 524.76 744.17 0.88 26.14 175.00 0.88 26.14 175.00 0.88 26.14 175.00 0.88 26.14 175.00 0.88 26.14 175.00 • • •• • 3-2x12 wood beam Max Stress Ratios 7Vertic611466ti6nS Unfactored, Load Combination Support 1 Support 2 Title Block Line 1 You can change this area using fne "Settings" menu item and then using the "Printing & Title Block" selection. . Title Block Line 6 Wood Beam. Description : Load Combination Segment Length Span # M V C d C FN Cr Cm C t Mactual fb-design Fb-allow Vactual , fv-design Fv-allow Length =16.750 ft 1 0.705 0.149 1.000 1.000 1.000 1.000 1.000 4.15 524.76 744.17 0.88 26.14 175.00 ^;Overall Maximum Deflections--.Unfactored Loads; 3 ,;,?!ems; Load Combination Span Max. "" Defl Location in Span Load Combination Max. "+" Defl Location in Span Title : Dsgnr: Project Desc.: Project Notes : Printed: 26 APR 2016, 9,19PM File::P 12016WARRY.SANCHEZ11201 NE 94 STTCALCSI3-2x12 wood beam ec6 •s' :.; <,�� ENERCALC; INC.19i33-2D1]� Build 611'.6.23, Ver611 6 23 Summary of Moment Values Summary of Shear Values D+L 1 0.3144 8.459 Support notation : Far left is #1 Values in KIPS 0.0000 0.000 Overall MAXimum 1.103 1.103 D Only 0.657 0.657 L Only 0.446 0.446 D+L 1.103 1.103 .•• • • • • • ••.• • • . • •. • . • • • • • • • • .. • • . • • • • • • • • • • • ••.• • •••• • • • • •• •• .•.• • • . • • . • • • • • .• • • • • • • • •• • •••• • • • • • Title Block Line 1 You can change this area using the "Settings" menu item and then using the "Printing & Title Block" selection. Title Block Line 6 x12 wood jolstsA, Description : 2x12 wood joists Material Properties Analysis Method Allowable Stress Design Load Combination 2006 IBC & ASCE 7-05 Wood Species : Southern Pine Wood Grade : No.2: 2" - 4" Thick : 12" Wide Beam Bracing : Completely Unbraced *Title Dsgnr: Project Desc.: Project Notes : Printed 28APR201E 9:14PM ,,File:"p:120161ha ry sanchez11201 ne 94 cficalcs12x12 wood ioist.ec5. ',h 's .ENERCALC, INC:19B3-2011, Build•6.11.6.23, Ver.6.11.6.23N V" trAttigetrn Calculations per NDS 2005, IBC 2009, CBC 2010, ASCE 7-05 Fb - Tension 750.0 psi Fb - Compr 750.0 psi Fc - PO 1,250.0 psi Fc - Perp 565 psi Fv 175 psi Ft 475.0 psi E : Modulus of Elasticity . Ebend- xx 1,400.0ksi Eminbend - xx 510.0ksi Density 35.44pcf Repetitive Member Stress Increase D(0.021) L(0.0166) W(-0.05) t v " z 7,5 2x12 Span = 16.750 ft • . . .. . • .... • . • • • • • ..• • • • •• • • • • • RP. Beam self weight calculated and added to loads, Uniform Load : D = 0.0210, L = 0.01660, W = -0.050 , Tributary Width �DESIGIV `SUMMARY : ;7y` �>1 Maximum Bending Stress Ratio = 0.993 1 Section used for this span 2x12 555.35 psi 559.14 psi +D+L+H 8.375ft Span # 1 fb : Actual FB : Allowable Load Combination Location of maximum on span Span # where maximum occurs Maximum Deflection Max Downward L+Lr+S Deflection Max Upward L+Lr+S Deflection Max Downward Total Deflection Max Upward Total Deflection = 1.0 ft • Service loads entered. Load Facfrorsi alculatiops.; • • • . . .. •• '...•' Maximum Shear Stress Ratio Section used for this span fv : Actual Fv : Allowable Load Combination Location of maximum on span Span # where maximum occurs 0.119 in Ratio = 0.000 in Ratio = 0.299 in Ratio = -0.358 in Ratio = 1689 0 <360 671 561 • 0.158 : 1 • •••ix12 • • • • 27,66 psi 175.00 psi +D+L+H 0.000 ft Span # 1 I Maximum Forces & Stresses forLoad Combinations Load Combination Segment Length Max Stress Ratios Span # M V C d C FN +D Length =16.750 ft 1 +p+L+H Length =16.750 ft 1 +D+0.750Lr+0.750L+H Length =16.750 ft 1 +D+0.750L+0.750S+H Length =16.750 ft 1 +D+W+H Length =16.750 ft 1 +D+0.750Lr+0.750L+0.750W+H Length =16.750 ft 1 +D+0.750L+0.750S+0.750 W+H Length =16.750 ft 1 0.598 0.095 1.000 1.000 1.000 0.993 0.158 1.000 1.000 1.000 0.895 0.142 1.000 1.000 1.000 0.895 0.142 1.000 ' 1.000 1.000 0.591 0.094 1.000 1.000 1.000 0.002 0.000 1.000 1.000 1.000 0.002 0.000 1.000 1.000 Summary of Moment Values Summary of Shear Values Cr Cm C t Mactual fb-design Fb-allow 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.88 334.56 559.14 1.46 555.35 559.14 1.32 500.15 559.14 1.32 500.15 -0.87 330.48 0.00 1.37 0.00 1.37 559.14 559.14 559.14 559.14 Vactual fv-design Fv-allow 0.19 16.67 175.00 0.31 27.66 175.00 0.28 24.91 175.00 0.28 24.91 175.00 0.19 16.46 175.00 0.00 0.07 175.00 0.00 0.07 175.00 Title Block Line 1 You can change this area using the "Settings" menu item and then using the "Printing & Title Block",selection. Title Block Line 6 Wood, Beams°:y; Description : Load Combination Segment Length 2x 12 wood joists Title : Dsgnr:. Project Desc.: Project Notes : Job # Printed: 28 AP 2018, 9:14PM , r r File:: p:12016tharry sanchez11201 ne 94 st\calcs\2x12 wood toist.ec,G. f .,,-:'ENERCALC,INC.1983-2011,Build611t623,"Ver6116:23 :<m Max Stress Ratios Span # M V C d C FN C r C m C t +D+0.750Lr+0.750L+0.5250E+H 1.000 1.150 1.000 1.000 Length =16.750 ft 1 0.895 0.142 1.000 1.000 1.150 1.000 1.000 +D+0.750L+0.750S+0.5250E+H 1.000 1.150 1.000 1.000 Length =16.750 ft 1 0.895 0.142 1.000 1.000 1.150 1.000 1.000 +0.60D+W+H 1.000 1.150 1.000 1.000 Length=16.750 ft 1 0.830 0.132 1.000 1.000 1.150 1.000 1.000 rrOverall Maximum DeflectionseUnfactored}Loads;_ , ri.. . . Load Combination Span Max.'-" Defl Location in Span Summary of Moment Values Summary of Shear Values Mactual fb-design Fb-allow Vactual fv-design Fv-allow 1.32 500.15 559.14 0.28 24.91 175.00 1.32 500.15 559.14 0.28 24.91 175.00 -1.22 464.30 559.14 0.26 23.13 175.00 Load Combination Max. "+" Deft Location in Span 1 0.0000 0.000 W Only -0.3582 8.459 Uerttcal.Reactions 'Unfaciored }e' , Support notation : Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum -0.419 -0.419 D Only 0.211 0.211 L Only 0.139 0.139 W Only -0.419 -0.419 D+L 0.350 0.350 D+W -0.208 -0.208 D+L+W -0.069 -0.069 • • • • • • • • • • • • • • • • •• • • • • • • • • • • •• • • • • • •.•• • • • • • • •••• • • • • • • • • • •• •• •••• • • • • • • • • • • • • • • • • • • •• • • • • • • • • • • • • • .. • . • • •• •••• . • . .. • • ••• •• • .. • • • • • • ••• • • •••• • • • .. .. .... • • ••• • • • • • • WOOD LEDGER DESIGN... ......�..3 • • • • • •••• • • • • • ..• Wood Ledaer ROOF Data Uplift Force= 419 Lbslft Gravity D+L= • 350 Lbslft Bolt spacing= 16 in Bolt Diameter= ,. 0 625,, in Ledger thickness (b) = 14 in Ledger depth (h) = 11.25 in Number of ledgers (n)= 2 Ledger Area = , 33.75 in2 Ledger Inertia Ix = 355.96 in4 Ledger Modulus of Section Sx = 63.28 in3 Fb', allowable bending stress= 750 psi Fv', allowable shear stress = .:,_.,175 psi Controling force (max of Uplift vs Gravity) Force= 419 Lbslft Moment max= 79.78 Lb-ft V max = 339.11 Lb Checking bending and shear of Wood Ledger fb<Fb' fb = Mmax = 15.13 psi S fv=3.V = 2.b.h Cheking Dowel Action. Load per Bolt ( for Uplift )= Load per Bolt ( for Gravity )= Bearing Area = n x b x bolt dia. = 30.14 psi OK 558.67 Lb 466.67 Lb 1.88 in2 Checking Dowel Type Fastener for Uplift 1184 .740 Lb 1184 Lb > 558.67 Checking Dowel Type Fastener for Gravity Z = 740 Lb 814 Lb 814 > 466.67 419 Lbslft bolt spacing 1 1 m c.—c- I m I Cd = CM= Ct = C9 = OK Cd = CM = Ct = C9 = OK 1.6 C = 1 1 Cog = 1 1 Cd; = 1 1 C'tn= 1 = Cog = Cd; = Ctn = Checking Anchor Bolt Shear=Load per bolt= 558.67 Lb Tension M=Load per bolt x n.b = 1676 Lb -in Tension= M /(2/3 x h/2) = 446.9333 Lb Wedge Anchor = Hilti KB3 Anchor Bolt diameter = 0.625 in Embedment Depth = '5.5 in Concrete F'c = 3000 psi Ultimate shear in Concrete= 1'8315 Ibs Allowable Shear. in Concrete = 3037.085 Ibs Ultimate Tension in concrete = .13850 Lbs Allowable Tension in Concrete = • 3116.25 Lbs Combine Stresses appliedtension \ 7 appbeds hear albwabletension , allow ableshear 0.33 Edge dist= Spacing = • Actual 5.5 in 16 in Reduction Factor Shear Tension ledge spacing 0.67 0.99 0.9 1 OK • • • • • • • • • • • • • • • •• • • • • • • • • •• • • • • • • • • • • • • • • • • • • • • • • • • •• •• • • • • • • • • • • • • • • • • • •• • • ••• • • • • •• •