Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
RC-15-3160
_ t�"•�� �r�- •.,� � 'tom +.._ , ��� _`.°'" .Z•� -1 / �+. -:jT, Yt:`._. trry,�,. ,dl •�'~�'•� st i''��T� s:`'.{[ 'l:Ut ..�� ;+V .'� Tr •t �• '1t,,,1,, L .A•��l t•-hi;h! fi i Lim 'J •S1T`;. al t J • .{;.thi Vig.� � /�; ' �� .� � y• � � � r �la V :•�.' ...yyy"`V((( .rt .,• '' i" 'ip:• _v-'r}. i T.4.�i�. .•-<�>V.�+a�a 4e` �!. � ! M +1 t� �.w•..:L_�;{�••'.,,_•i''�+�j '.�,.�,_:.�`�*,-'_T��...4•_�� ��F.;., `���•w\�3�'#,�`'Jk%... " "��-- !Y7j, ' ��y ^:•k{ •'_'--.: .�.:"'��S��i�iY .::Xh:" ..`'j• �, s �. '7R•h�. r•- -iGl�:. :..t'ST.F� .� ._." 919..•r, n. - rr � C4 r� � �y}� •� YYtt"vv' . .1 ,,�:,fir � � .�•: :� .. . 1 i t WLI5 — • .r .tlCll:_• 1p7a.:� a A i . LE a I ' blit- �, ';t �r� ?,,,.•� - •s.T;.�.•.-�-,ter _. ' J . ;,� ,,.... ` � •... �, r _ r, �" '•4` �.p'�t W,�"' t�iG.t ice,} �," a'f�S,_ � • i • u c�,J+)• �a , •"+C? •moi ,•*, t y •` ;. .1 � �'�s�- � y -�r `�..^y 4�a�SXf< � � _} �1 � pp7jf{ '� '' , `➢.". �; •+Ki Y; -1 ={• l' �t �.�tti��' �aY r ; ��.'���' t'• ry • '- c f �.- y `57 1��--•S�i.� �� Y ifti .�/� r T. •aw �� f �J{J{{ff T�1 •t: r � �- _ ff.?•.. 5 •i{ �"L( � t x F R` ff .�• .; o ;1 « c- Y`- � r t t�• a +_>'4M ,r1- �.n/�,��~'!�l}r� ;T��}f1+��-i['..yuy�}� � `S�����'t.• �` •��i�1 � �M, t ti _� �rJ ; �� ��� 1�( .� `y��"5,�_ y 1'n# R r;�l '1 -�' rl}.v .:Tii;K'L ;L.'ITL`r •a7:usa fi't ' 4 v' ; ti �_ r;2 ��1!�.. :�k� f,Lt }� 1 Ma�X:, INSPECTION RECORDPOST ON SITE • Permit NO. R C-12-15-316 0 VIES h��► Miami Shores Village Permit Type:Residentira onstructlon Islas?" 10050 N.E.2nd Avenue �� Miami Shores,FL 33138-0000 Work Classification:Addition/Alteration `wsHo*° Phone: (305)795-2204 Fax: (305)756-8972 �tORNA C �„ Issue Date: 3/17/2016 Expires: 09/13/2016 r INSPECTION REQUESTS: (305)762-4949 or Log on at httpsJ/bidg.miamishl ' 'llage.com/cap REQUESTS ARE ACCEPTED DURING 8.30AM-3:30PM FOR THE FOLLOWING BU9NES�$@ i Requests must be received by 3 pm for following day inspections. �., `d Residential Construction �, .1 ^ Parcel #A 132050160010 )wner's Name:ALFONSO DEL CASTI'LLO `�'� Owner's Phone: (305)613-5552 .Job Address: 1051 NE 92 Street � w Total Square Feet: 00 . Number: �• y� J Total Job Valuation: $ 301000.00 EW4WORK IS ALLOWED MONDAY THROUGH SATURDAY, 7:30AM-6:OOPM.NO WORK IS ALLOWED ON Contractor(s) Phone Pri ary Contractor SUNDAY OR HOLIDAYS. GMB CONSTRUCTION.INC (305)967-3640 Yes BUILDING INSPECTIONS ARE DONE MONDAY THROUGH THURSDAY. ROOFING INSPECTIONS ARE DONE MONDAY THROUGH FRIDAY. NO BUILDING INSPECTIONS DONE ON FRIDAY. spa.-. �, �.�,� '�"' J�„� c. , .!'G sn.4w�� 474 WWI Yr/ iti C- ,r {le MAI? 4-S P-�.,c 4 6 NO INSPECTION WILL BE MADE UNLESS THE PERMIT CARD IS DISPLAYED AND HAS BEEN APPROV . PLANS ARE EADLY.AVAILABLE. ITIS THE PERMIT APPLICANT'S RESPONSIBILITY TO ENSURE THAT WORK IS ACCESSIBLE AND EXPOSED FOR INSPECTION PURPOSES. NEITHER THE BUILDING OFFICIAL NCR THE CI'Y SHALL BE LIABLE FOR EXPENSE ENTAILED IN THE REMOVAL OR REPLACEMENT OF ANY MATERIAL REQUIRED TO ALLOW INSPECTION. ) WARNING TO OWNER: YOUR FAILURE TO RECORD A NOTICE OF COMMENCEMENT MAY RESULT IN YOUR PAYING TWICE FOR IMPROVEMENTS TO YOUR PROPERTY. A NOTICE SOF COMMENCEMENT MUST BE RECORDED AND POSTED ON THE JOB SITE BEFORE THE FIRST INSPECTION. IF YOU l INTEND TO OBTAIN FINANCING, CONSULT WITH YOUR LENDER OR AN r ATTORNEY BEFORE COMMENCING WORK OR RECORDING YOUR NOTICE OF COMMENCEMENT. INSPECTION RECORD STRUCTURAL INSPECTION DATE INSP I11 NSPECTION DATE INSP ZONING 7INSPECT10h DATE INSP Foundation Zoning Final Stemwall ZONING COMMENTS SlabWater Service Columns 1 st Lift.) 2"d Rough Columns 2nd LiftTop Out Tie Beam Fire Sprinklers Truss/Rafters Septic Tank Roof Sheathing Sewer Hook-up Bucks Roof Drains Windows/DoorsELECTRICAL Gas Interior Framing INSPECTION DATE INSP LP Tank Insulation Temp rary Pole Well Drywall Grid, D 30 Da Temporary-- Lawn Sprinklers D all Pool Bonding Main Drain Firewall Pool Deck Bonding Po©I Piping Wire Lath Pool Wet Niche Backflow Prevento Pool Steel 11 Inder round Interce tor- Pool Deck Footer Groun ,6` Catch Basins Final Pool Slab Condensate Drains Final Fence Wall Rou2 inal Screen Enclosure Ceiling Rouy _ DrivewayRough PLUMBING COMMENTS M DrivewayBase Tele hone Rou h Tin Ca • Tele hone Final Roof in Progress TV Rough Mop in Progress TV Final Final Roof Cable Rough Shutters Attachment Cable Final Final Shutters Intercom Rough Rails and Gua ---rdrails—I Intercom Final — w ADA compliance Alarm Rough INSPECTION DATE INSP Alarm Final Underground Pipe DOCUMENTEV Fire Alarm Rough Soil Bearing Cert Fire Alarm Final Rough Soil Treatment Cert IService Work With Floor Elevation Sure Vebtilation Roug .J Reinf Unit Mas Cert ELECTRICAL COMMENTS 40 Hood Rough Insulation Certificate , Pressure Test Spot Survey h► � Final Hood Final Survey2)' _ Final Ventilation Truss Certification Final Pool Heater STRUCTURAL COMMENTS Final Vacuum 1) lu 141 MECHANICAL COMMENTS i INSPECTION JDATE INSP Final Sprinkler Final Alarm ARCWITECT RUBEN TRAVIESO, AR 000 8229 ARTCHITECTURE ASSOCIATES INC AA26002SU 2219 5 RED ROAD, MIAMI, FL, 33155. (18(o) 260-1522, rubentravlesolegmall.com March 22, 2017. To: Building Official Village of Miami Shores Building Department 10-050 NE 2nd Avenue Miami Shores, FI. 33138 Re: 1070 NE 93 Street Permit Number: RC-12-15-3160 Folio#: 11-3205-016-0010 Attn.: Building Official I, Ruben Travieso, Architect, having performed and approved the required inspections at the renovation and addition. I hereby attest that, to the best of my knowledge, belief and professional judgment, the structural and envelope components of the above referenced renovation are in compliance with the approved Plans and other approved Permit Documents. I also attest that, to the best of my knowledge, belief and professional judgment, the approved Permit Plans Represents the as-built condition of the structural and envelope component of said structure. This document is being prepared in accordance with chapter 1 of the Florida Building Code and must be submitted to the Village of Miami Shores Building Department in conjunction with the application for a Certificate of Completion for the above referenced structure. Should you have any questions or need any additional information please do not hesitate to contact me. Sincerely, /74 Architect Ruben Travieso. AR 000 8229. . PC CS-- J P O+ b INTERIOR REMODELING 1051 NE 92 Street JAN 5 2016 r REPONSE - REVIEW COMMENTS �;i BUILDING 1. Single family home should be classified as an R-3 R: See updated note at A-1 2. Level 3 alterations should comply with chapter 9 of the Florida Building Code 2014 R: See updated note at A-1 3. The triangular openings at the open side of stair, formed by the riser, tread and bottom rail of a guard, shall not allow passage of a sphere 6 inches (153 mm) in diameter. R: See updated Proposed Stair Detail at A-2 PLUMBING FBC 107.1 Health Department approval required for onsite sewage disposal. R: (N/A) Existing Septic System to remain. Permits # 19286 and 19298 FBCR P2708.3 Shower control valves. Individual shower and tub/shower combination valves shall be equipped with control valves of the pressure-balance, thermostatic-mixing or combination pressure-balance/thermostatic-mixing valve types with a high limit stop in accordance with ASSE 1016 or CSA B125. The high limit stop shall be set to limit water temperature to a maximum of 120°F (490C). In-line thermostatic valves shall not be used for compliance with this section. R: See updated information on Plumbing Fixture Connection Schedule at P-1 FBCR P2903.2 Maximum flow and water consumption. As per Miami-Dade O'rd. Sec. 8-31 plumbing fixtures shall meet the local water flow restrictions adopted by Miami-Dade County Water and Sewer (water closet 1.28gpm, lavatory 1.5gpm, shower heads 1.5gpm and kitchen faucets 1.5gpm). R: See Plumbing Fixture Connect. Schedule at P-1 and attach. Miami-Dade Ord. Sec. 8-31 2.1.1.1 Single Flush Toilets The effective flush volume of Single Flush Toilets shall not exceed 1.28 gallons (4.8 liters). The effective flush volume is the average flush volume when tested in accordance with ASME Al 12.19.2. 2.1.1.2 Dual Flush Toilets The effective flush volume of Dual Flush Toilets shall not exceed 1.28 gallons (4.8 liters).The effective flush volume is defined as the composite,average flush volume of two reduced flushes and one full flush when tested in accordance with ASME Al 12.19.2 and ASME Al 12.19.14. 2.1.2 Showerheads installed shall have a maximum flow rate of 1.5 gallons per minute (gpm) or display the EPA WaterSense label when available. A showerhead is defined as including the following types of emitters: a traditional showerhead, rain system, waterfall, bodyspray, bodyspa, or jet. 2.1.3 Maximum flow rate of lavatory faucets or the lavatory accessory must conform to applicable requirements in ASME A112.18.1/CSA 13125.1 and NSF/ANSI Standard 61, Section 9. 2.1.3.1 The maximum flow rate shall not exceed 1.5 gpm (5.7 liters) at a pressure of 60 psi at the inlet,when the water is flowing. 2.1.4 The maximum flow rate for kitchen faucets must conform to applicable requirements. 2.1.4.1 The maximum flow rate shall not exceed 1.5 gpm (5.7 liters) at a pressure of 60 psi at the inlet,when the water is flowing. Installation of flow restrictors in existing kitchen faucets satisfies this requirement. 2. 2 Equipment Standards 2.2.1 Clothes washers installed shall be front horizontal ortop loading models with (1)a water factor (WF) rating of 8 gallons per cycle per cubic foot capacity or lower as identified under Energy Star label or (2) display an EPA WaterSense label when available.WF is the number of gallons used per cycle per cubic foot of the clothes washer capacity. The lower the WF, the more water-efficient the clothes washer. 2.2.2 Dishwashers installed shall use 6 gallons or less of water per cycle and be Energy Star labeled or EPA WaterSense labeled when available. 3. SUB-METERING Water deliveries to multi-unit complexes are often recorded by one master meter, while individual dwelling units are not metered. '+ Submetering is the use of separate meters in the individual supply ` m lines to apartments, condominiums, stores, or offices where the main facility or building is still billed by the water utility frgm•a.. master meter. .: Multi-unit complexes will be required to install separate sub- •• meters throughoutthe property.The installation of sub-meters srpll be consistent with all major water-using functions and;mont1ly ••• •:' ••• • records shall be available upon request. Cooling towers aidotlier • ;• : common areas of multi-unit complexes housing shall comply with • Section 6 of this guide. : : ••• • 4 2.1.1.1 Single Flush Toilets The effective flush volume of Single Flush Toilets shall not exceed 1.28 gallons (4.8 liters). The effective flush volume is the average flush volume when tested in accordance with ASME Al 12.19.2. 2.1.1.2 Dual Flush Toilets The effective flush volume of Dual Flush Toilets shall not exceed 1.28 gallons (4.8 liters).The effective flush volume is defined as the composite,average flush volume of two reduced flushes and one full flush when tested in accordance with ASME Al 12.19.2 and ASME Al 12.19.14. 2.1.2 Showerheads installed shall have a maximum flow rate of 1.5 gallons per minute (gpm) or display the EPA WaterSense label when available. A showerhead is defined as including the following types of emitters: a traditional showerhead, rain system, waterfall, bodyspray, bodyspa, or jet. 2.1.3 Maximum flow rate of lavatory faucets or the lavatory accessory must conform to applicable requirements in ASME A112.18.1/CSA 13125.1 and NSF/ANSI Standard 61, Section 9. 2.1.3.1 The maximum flow rate shall not exceed 1.5 gpm (5.7 liters) at a pressure of 60 psi at the inlet,when the water is flowing. 2.1.4 The maximum flow rate for kitchen faucets must conform to applicable requirements. 2.1.4.1 The maximum flow rate shall not exceed 1.5 gpm (5.7 liters) at a pressure of 60 psi at the inlet,when the water is flowing. Installation of flow restrictors in existing kitchen faucets satisfies this requirement. 2. 2 Equipment Standards 2.2.1 Clothes washers installed shall be front horizontal ortop loading models with (1)a water factor (WF) rating of 8 gallons per cycle per cubic foot capacity or lower as identified under Energy Star label or (2) display an EPA WaterSense label when available.WF is the number of gallons used per cycle per cubic foot of the clothes washer capacity. The lower the WF, the more water-efficient the clothes washer. 2.2.2 Dishwashers installed shall use 6 gallons or less of water per cycle and be Energy Star labeled or EPA WaterSense labeled when available. 3. SUB-METERING Water deliveries to multi-unit complexes are often recorded by one master meter, while individual dwelling units are not metered. ` Submetering is the use of separate meters in the individual supply lines to apartments, condominiums, stores, or offices where the f ' 'Yi.ta 4, main facility or building is still billed by the water utility frogre • . . master meter. Multi-unit complexes will be required to install separate sub- meters throughoutthe ub-metersthroughoutthe property.The installation of sub-meterashau• •�� • • • • ••• • be consistent with all major water-using functions and nAprthli • records shall be available upon request. Cooling towers and•othdr' •�� :. ;• common areas of multi-unit complexes housing shall comply with • • Section 6 of this guide. ••� • ••• ••••• • • • 4 Permit NO. RC-12-15-3160 Miami Shores Village Permit Type:Residential Construction 10050 N.E.2nd Avenue NE MLJR ' Work Classfcation:Addition/Alteration " Miami Shores,FL 33138-0000 r t Permit Status:APPROVED Phone: (305)795-2204 FLORIDA Issue Date:311712016 F Expiration: 09/13/2016 Project Address Parcel Number Applicant 1051 NE 92 Street 1132050160010 Miami Shores, FL Block: Lot: ALFONSO DEL CASTILLO Owner Information Address Phone Cell ALFONSO DEL CASTILLO 1051 NE 92 Street (305)613-5552 MIAMI SHORES FL 33138- 1051 NE 92 Street MIAMI SHORES FL 33138- Contractor(s) Phone Cell Phone Valuation: $ 30,000.00 GMB CONSTRUCTION INC (305)967-3640 (305)613-5572 Total Sq Feet: 00 Approved:In Review Available Inspections: Comments: Inspection Type: Date Approved::In Review Final PE Certification Date Denied: Drywall Type of Construction: INTERIOR REMODEL FOR 4 BATHF Occupancy:Single Family Miscellaneous Stories: 1 Exterior: Window Door Attachment Front Setback: Rear Setback: Tie Beam Left Setback: Right Setback: Final Bedrooms:3 Bathrooms:4 Framing Plans Submitted:Yes Certificate Status: Insulation Certificate Date: Additional Info: Truss Insp Bond Return: Classification:Residential ColumnsFoundation Fees Due Amount Pay Date Pay Type Amt Paid Amt Due Window and Door Buck CCF $18.00 Fill Cells Columns CO/CC Fee Invoice# RC-12-15-58135 Wire Lathe $50.00 03/17/2016 Credit Card $ 1,122.00 $200.00 DBPR Fee $13.50 Review Electrical DCA Fee $13.50 12/22/2015 Check#:3871 $200.00 $0.00 Review Electrical Education Surcharge $6.00 Review Building Permit Fee $900.00 Review Building Plan Review Fee(Engineer) $120.00 Review Building Plan Review Fee(Engineer) $120.00 Review Building Scanning Fee $57.00 Review Mechanical Technology Fee $24.00 Review Mechanical Total: $1,322.00 Review Plumbing F.Termite Letter F.Elevation Certificate Review Plumbing Review Plumbing Review Planning Review Planning Review Structural Review Structural Declaration of Use OWNERS AFFIDAVIT: I certify tthii1 pll the foregoing information is accurate and that all work will be done in compliance with all applicable laws regulating construction and zog"Fuiermore,I authorize ove-named contractor to do the work stated. March 17, 2016 Authorized ner — pp ica Contractor / Agent Date March 17,2016 2 Miami Shores Village --- - -Building Department Department 'DEC 2'2 2015 10050 N.E.2nd Avenue, Miami Shores, Florida 33138 LBYj: Tel:(305)795-2204 Fax:(305)756-8972 INSPECTION LINE PHONE NUMBER:(305)762-4949 FBC 20I,� BUILDING Master Permit PERMIT APPLICATION sub Permit No. EgDIIILDING ❑ ELECTRIC ❑ ROOFING ❑ REVISION ❑ EXTENSION ❑RENEWAL ❑PLUMBING ❑ MECHANICAL [—]PUBLIC WORKS ❑ CHANGE OF CANCELLATION ❑ SHOP CONTRACTOR _ DRAWINGS JOB ADDRESS: A _A�L' 92 ' City: Miami Shores County: Miami Dade ZiD: Folio/Parcel#: �� 1)?-bf-10lce '-� Id Is the Building Historically Designated:Yes NO .- Occupancy Type:_ Load: Construction Type: Flood Zone: BFE: FFE: OWNER: Name(Fee Simple Titleholder): �C }y1�W Phone#: Address: �,'� � �s(•. City: 7 Stater Zip: !33/3 Tenant/Lessee Name: Phone#: Email: CONTRACTOR:Company Name: �wo Phone#: 1 Address: �f Zg Wer � 4-03 City: AhRA 04-11 Jl UMC State: Zip: 3?/4*0/ Qualifier Name: fiLAT'aub ?�66',' Phone#: State Certification or Registration#: Certificate of Competency#: DESIGNER:Architect/Engineer: Phone#: Address: - City: State: Zip: Value of Work for this Permit:$ Square/Linear Footage of Work: Type of Work: ❑ Addition Alteration ❑ New ❑ Repair/Re lace p E] Demolition Description of Work: IL-Z'414 Specify color of color thru tile: i _`1Qi&--14j j \kr];dtc, L , Wx(� ZeM^ QdLACeru,F-:Ac Submittal Fee$ A000 Permit Fee$ , 1 2 0�}[�^ CCF /�2.(X] CO/CC$ Scanning Fee$ 5?.t(~� 0 Radon Fee$ 1 J'S DBPR$ J S 0 Notary$ - C/ Technology Fee$ a4 - CD'�- Training/Education Fee$ • 00 Double Fee$ Structural Reviews$ 0 Bond$ TOTAL FEE NOW DUE$ It ZZ •V (Revised02/24/2014) Bonding Company's Name(if applicable) c Bonding Company's Address City State Zip Mortgage Lender's Name(if applicable) Mortgage Lender's Address City State Zip Application is hereby made to obtain a permit to do the work and installations as indicated. I certify that no work or installation has commenced prior to the issuance of a permit and that all work will be performed to meet the standards of all laws regulating construction in this jurisdiction. I understand that a separate permit must be secured for ELECTRIC, PLUMBING, SIGNS, POOLS, FURNACES, BOILERS, HEATERS,TANKS,AIR CONDITIONERS, ETC..... OWNER'S AFFIDAVIT: I certify that all the foregoing information is accurate and that all work will be done in compliance with all applicable laws regulating construction and zoning. "WARNING TO OWNER: YOUR FAILURE TO RECORD A NOTICE OF COMMENCEMENT MAY RESULT IN YOUR PAYING TWICE FOR IMPROVEMENTS TO YOUR PROPERTY. IF YOU INTEND TO OBTAIN FINANCING, CONSULT WITH YOUR LENDER OR AN ATTORNEY BEFORE RECORDING YOUR NOTICE OF COMMENCEMENT." Notice to Applicant: As a condition to the issuance of a building permit with an estimated value eding$2500, the applicant must promise in good faith that a copy of the notice of commencement and construction lien law br chur will be delivered to the person whose property is subject to attachment. Also,a certified copy of the recorded notice of comme ceme must be posted at the job site for the first inspection which occurs seven (7) days after the building permit is issued. Int obse ce of such posted notice, the inspection will not be approved and a reinspection fee will be charged. Signature Signature OWNER or AGENT C NTRACTOR 't The for going instrument was acknowledged before me this The foregoing instrument as acknowledged before me this day of 120 lif , by 4k day of 20 1 J by ►�--�1 kkjLk Cps'"f4.,who is personally known to who is personally known to me or who has produced as me or who has produced as identification and who did take an oath. identification and who did take an oath. NOTARY PUB lilI NOTARY BLIC: Notary Pudic State of Florida ef Patriga Faggionato ! Notary Public State d Florida A My Commission EE 179869 . Patricia Faggionato @ Expires 03I1S12018^ My Commission EE 179669 Sign: Sign: ora Expires 03115/2016 Print: Print: Seal: Seal: *sss********..**********..****■* *ss*s*�t***ss**************s******************r*******s********************e APPROVED BY Plans Examiner ��7 �✓ J Zoning Structural Review Clerk (Revised02/24/2014) STATE OF FLORIDA DEPARTMENT OF BUSINESS AND PROFESSIONAL REGULATION CONSTRUCTION INDUSTRY LICENSING BOARD (850) 481 390 1940 NORTH MONROE STREET TALLAHASSEE FL 32399-0783 BIAGGI, GUSTAVO MILTON GMB CONSTRUCTION INC 7929 WEST DRIVE APT 703 NORTH BAY VILLAGE FL 33141 Congratulations! With this license you become one of the nearly �. one million Floridians licensed by the Department of Business and Professional Regulation. Our professionals and businesses range ; Oil; STATE OF FLORIDA k� from architects to yacht brokers,from boxers to barbeque restaurants, DEPARTMENT OF BUSINESS AND I and they keep Florida's economy strong. PROFS%-fd dAE'tGULATION Every day we work to improve the-way we do business in order to � CGC 15 14518�r� "m�. ��'08/31/2014 I" serve you better. For information about our services,please log onto Yrs' , - 4- www.myfloridalicense.com. There you can find more information � -CERTIFIED GZ�C�� about our divisions and the regulations that impact you,subscribe J! B!ACGI,SUS I �rCN to department newsletters and learn more about the Department's GMB CONS ' initiatives. :7 Our mission at the Department is:License Efficiently, Regulate Fal We constantly strive to serve you better so that you can serve your customers. Thank you for doing business in Florida, 1.1 -.IS CERTIFIEVI undef:tt a provisions'of Ch'.489 FS and congratulations on your new license! ' > wrcatan darA AUG 31,•2016' L14083WW4216 p .;.+- .n--.. a. ~�S�V'�{}4#..4.s�-..wY�+-•.� �v1�,r/�4f{{�w�w7ilYd DETACH HERE RICK SCOTT,GOVERNOR KEN LA.WSON, SECRETARY STATE OF FLORIDA DEPARTMENT OF BUSINESS AND PROFESSIONALREGULATION CONSTRUCTION.INDUSTRY LICENSING BOARD - i a . f -.' -CGC1514518 .tv # The-GENERAL CONTRACTOR t'-Natned below IS CERYIFIED ,11`Under thewprovrsions of Chapter 489`FS: Expir6tW' deter-AUG 31I.2016 4 . tea•,-,,,,� .,,' , `SIAGGI,.�EISTAI(.(r3�MIL�'(`��uA4:�„_�r�'"� '�L .L,,,r .`. r ..,. `GMB'CONSTRUC'TIOIINC"^ ,rN ;`�lEST`�RV792RIVE.AP ORTH-'BAYVtt + , h. a pr'.'�!+' !'6!. '"` '�'' _._•�:�.�t MAw•"'�„�- N'(l6 a,y^'R' 'r.y4.� 4[�MY,.'�w 'l. `R.'' 4.�',w tt�t t �1 +,+. i ter,/ It ,r'�✓ f,'.:f ''r` .r""°'-Via...,.-•^^..�^'ryvsM' ��',.�wR"!�'Yr�,f�� V�!�`' "`�;`•.yk�" .V�� '-w M1, � . _•t� ISSUED: 08131IM14 DISPLAY AS REQUIRED BY LAW SEO 1.14083=04216 Local usties Tai. a el .:. Miami-Dade Dun `gam ar a •'E'F . :rs' n.NGT A MLL 00 NOWAY BVS ttcSZ ALl4NtE/LOCATIfSN 'RECM"O.. .EXPIA' GO+cogs# }�aMN ;.. . ���wy�nAc�t eP'r a riC 30,-2016. 920-VuEq OR 03 1 `C �RTis+►'. :uiuSi.�SC�i:z'�ll.yCu No tt"l�Cj3AY'St1l tGE R 331 '.�"14'1 -puts uantto covnw conte,. chapter SA-Art.8'&Q OWNER SEC.TYPE OF SU"ESSi y fta- =<VSO GMB C6NSTRUCTION INC 196 GENERAL BUILENNG COPVTtiACTT3R Oa t'�X C LLECT •CGC154459°v gY.TAX CpL1.EC7dA Workel(s) is $45.00 09 j2'4/20315 t:REDITCARD-I 5-0408015 9 Thisl�tal 8usraess Fax l eiFt o �grcc d[114e tL tilt Business tax The Receipt is not a Hcensa. �arR::$:ac�ti5ca@cattEtt�e3esE.etsgsmlifrcs�ioas.toQokosuass:Hatderrrr�s!-.=am?}y.witkerry;u:rrrel�+-i,�a, aieenp�it�MalrW�Ygwarybrwsaa,6raa4o.w##hap}3yWtbsbns�s: '.` TM RECEWt NO.&hoveawat be dlsphga on Al commercial vshkhs-Miaoii-ll�tle Coda Sec 8a-276. For more hdiorlimdon.vishwww.m' - ACQM CERTIFICATE OF LIABILITY INSURANCE I DATE(MM/DD/YYYY) PRODUCER THIS CERTIFICATE IS ISSUED AS A MATTER OF INFORMATION RIVERS INSURANCE AGENCY INC ONLY AND CONFERS NO RIGHTS UPON THE CERTIFICATE HOLDER. THIS CERTIFICATE DOES NOT AMEND, EXTEND OR 2879 west 2nd Ave ALTER THE COVERAGE AFFORDED BY THE POLICIES BELOW. Hialeah, FL 33010 (305)888-3627 INSURERS AFFORDING COVERAGE NAIC# INSURED GMB CONSTRUCTION INC INSURER A COLONY INSURANCE COMPANY GUSTAVO BIAGGI INSURER B: PROGRESSrVE ERPRESS INSURANCE CCHYANY 7929 WEST DRIVE #703 INSURER C: NORTH BAY VILLAGE, PL 33141 INSURER D: INSURER E: COVERAGES THE POLICIES OF INSURANCE LISTED BELOW HAVE BEEN ISSUED TO THE INSURED NAMED ABOVE FOR THE POLICY PERIOD INDICATED.NOTWITHSTANDING ANY REQUIREMENT,TERM OR CONDITION OF ANY CONTRACT OR OTHER DOCUMENT WITH RESPECT TO WHICH THIS CERTIFICATE MAY BE ISSUED OR MAY PERTAIN,THE INSURANCE AFFORDED BY THE POLICIES DESCRIBED HEREIN IS SUBJECT TO ALL THE TERMS,EXCLUSIONS AND CONDITIONS OF SUCH POLICIES.AGGREGATE LIMITS SHOWN MAY HAVE BEEN REDUCED BY PAID CLAIMS. UORPOLI Y E TIVE POLICY EXPIRATION LTR RD POLICY NUMBER DATE MM/DEFFDIYY DATE LIMITS GENERAL LIABILITY EACH OCCURRENCE s 1.000.000 X COMMERCIAL GENERAL LIABILITY PREM SES Es oecurerm $ 100 OOO CLAIMSMADE ®OCCUR MED EXP(Any one person) $ 5,000 A R $1,000 PD DED GL3996900 04/02/2015 04/02/2016 PERSONAL SADV INJURY s 1,000,000 GENERAL AGGREGATE S 1,000,000 GEN'L AGGREGATE LIAR APPLIES PER: PRODUCTS-COMPIOPAGG s 2,000,000 POLICY JE°T F7 LOC AUTOMOBILE LIABILITY COMBINED SINGLE LIMIT ANYAUTO (EeecoideM) $ ALL OWNEDAUTOS BODILYINJURY $ 25,000 XSCHEDULED AUTOS B X HIRED AUTOS 04557579-4 02/12/15 02/12/16 BODILYINJURY X NON-OWNEDAUTOS (Peroccident) $ 50,000 X PIP $1,000 DED PROPERTY DAMAGE $ 25,000 N GARAGE LIABILITY AUTO ONLY-EA ACCIDENT $ ANYAUTO OTHERTHAN EAACC $ AUTOONLY. AGG $ EXCESSA)MBRELLA LIABILITY EACH OCCURRENCE s OCCUR FICLAIMSMADE IAGGREGATE $ s DEDUCTIBLE $ RETENTION S $ WORKERS COMPENSATIONAND T RY LIMITB ER EMPLOYERS'LIABILITY E.L.EACH ACCIDENT $ ANY PROPRIETORIPARTNERfEXECUTIVE OFFICER/MEMBER EXCLUDED? E.L.DISEASE-EA EMPLOYEE.$ Kyes,describe under SPECIAL PROVISIONS below E,L.DISEASE-POLICY LIMIT $ OTHER DESCRIPTION OF OPERATIONS/LOCATIONS I VEHICLES/EXCLUSIONS ADDED BY ENDORSEMENT/SPECIAL PROVISIONS LICENSE#CGC1514518 CERTIFICATE HOLDER CANCELLATION SHOULD ANY OF THE ABOVE DESCRIBED POLICIES BE CANCELLED BEFORE THE EXPIRATION CITY OF MIAMI SHORES DATE THEREOF,THE ISSUING INSURER WILL ENDEAVOR TO MAIL30 DAYS WRITTEN BUILDING DEPARTMENT NOTICE TO THE CERTIFICATE HOLDER NAMED TO THE LEFT,BUT FAILURE TO DO SO SHALL 10050 NE 2 AVE IMPOSE NO OBLIGATION OR LIABILITY OF ANY KIND UPON THE INSURER,ITS AGENTS OR MIAMI SHORES, FL 33138 REPRE9eNTAT1VE3. AUTHOR ED R RE ENT TIT ACORD25(2001108) 0ACORD CORPORATION 1998 .a JEFF ATWATER STATE OF FLOWDA CHIEF FINANCIAL OFFICER i3EP14RTI9AEN3'OF FtNANC4AL SERVICES DIVISION OF WORKERS'COMPENSATION ••CERTIFICATE OF ELECTION TO BE EXEMPT FROM FLORIDA WORKERS'COMP.ENSATUON LAW x CONSTRUCTION INDUSTRY EXEMPTION Thro cites OW the individual tasted below tw elected to be exempt from FIS 1NorkeW CompenWion f*. EFFECTIVE DATE: 31412014 EXPIRATION DATE: 31312016 PERSON: BIAGGI GUSTAVO FEIN: 2239SM90 BUSINESS NAME AND ADDREW: GM8 CONSTRUCTION INC 7929 WEST OR 0703 NORTH BAY VILLAGE F1 33141 SCOPES OF BUSINESS OR TRADE: LICENSED GENERAL CONCRETE WORK FLOOR COVERING CONTRACTOR INCIDENTAL TO TH INSTALLATION-R Pursuant to Chapter 440.05(14),F.S.,an officer of a corporation who eteds exemption faun this dwipw by O+9'a cerfiticate of stection undw this mon may not recover benefit or compentoon under tits chapter.Pureuark to t 440.05(12),F.S.,Cela of etsctian to be�..aptly on.`Y &:t�=— of the boniness or trade eded onto notice of skictlon to be exempt.Pumuard to Chapter 440AW13),F.S.,Notices of elecdon to be exempt Qnd eertfit of election to be exempt shall be sut"t to revocation if,at any time atter the Rung of the notloe or the iasuar:oe of the certlRcate,the person named on the nonce o certiti de no longer meets the roq*emwts of this sadm for%wJvnoe of a oeracate.The department steal revoke a ate at SM time for fatkne of Ow person named on the certifto to meet the requirernma of this section. DFS-F2-0WC-252 CERTII=ICATE OF ELECTION TO BE EXEMPT REVISED 07-12 QUESTIONS?(8501413-18(39 ♦SNoeFs Gi soon ,,,,,?, Miami V Village - -�� Building Department 0t1Dp' 10050 N.E.2nd Avenue Miami Shores, Florida 33138 Tel: (305) 795.2204 Fax: (305) 756.8972 Notice to Owner — Workers' Compensation Insurance Exemption Florida Law requires Workers' Compensation insurance coverage under Chapter 440 of the Florida Statutes. Fla. Stat. § 440.05 allows corporate officers in the construction industry to exempt themselves from this requirement for any construction project prior to obtaining a building permit. Pursuant to the Florida Division of Workers' Compensation Employer Facts Brochure: An employer in the construction industry who employs one or more part-time or full-time employees,including the owner,must obtain workers' compensation coverage. Corporate officers or members of a limited liability company (LLC) in the construction industry may elect to be exempt if: 1. The officer owns at least 10 percent of the stock of the corporation, or in the case of an LLC,a statement attesting to the minimum 10 percent ownership; 2. The officer is listed as an officer of the corporation in the records of the Florida Department of State,Division of Corporations;and 3. The corporation is registered and listed as active with the Florida Department of State,Division of Corporations. No more than three corporate officers per corporation or limited liability company members are allowed to be exempt. Construction exemptions are valid for a period of two years or until a voluntary revocation is filed or the exemption is revoked by the Division. Your contractor is requesting a permit under this workers' compensation exemption and has acknowledge that he or she will not use day labor,part-time employees or subcontractors for your project.The contractor has provided an affidavit stating that he or she will be the only person allowed to work on your project.In these circumstances,Miami Shores Village does not require verification of workers' compensation insurance coverage from the contractor's company for day labor,part-time employees or subcontractors. BY SIGNING BELOW YOU ACKNO EDGE THAT YOU HAVE READ THIS NOTICE AND UNDERSTAND ITS CONTENTS. Signature: _4244A!2!�_=�r State of Florida County of Miami-Dade The foregoing was acknowledge before me this day of ,20 1r . By 4 J1JW1((Q who is personally known to me or has produced as identification. Notary: Notary Public State of Florida 4 SEAL: Pat' Faggionato My C mission EE 179869 orw Expire 03/15/2016 GMB Construction, Inc 7929 West Dr., #703 North Bay Village, FL, 33141 305.613.5572 17-Dec-15 Starte of Florida County of Miami-Dade Before me this day personally appeared Gustavo Biaggi who, being dully sworn,deposes and says: That he will be the only person working on the project located at: 1051 NE 92nd st, Miami Shores, FL 33138 Sworn(or sffirmed)and subsc ibed befor me this 17th dat of December,2015 by Personally Known ��ANNotary Pup'c State rida Patricia F gion o My Commiss EE 179869 aid Expires 03/1 6 - I liilll iilil illii Illll liiii VIII iilll fill liil C:FN 2015RO537300 OR BK 24744 Pss 4733-4734 (2P9s) This document was prepared by: RECORDED 08/1412015 14:24.48 DEED TAX $7Y50000 Thomas Ringel, Esq. HARVEYORUVINr CLERK.OF COURT Markowitz, Ringel, Trusty & Hartog, P.A. MIAMI-DADE COUNTYY FLORIDA 9130 South Dadeland Boulevard, Suite 1800 Miami, FL 33156 (305) 670-5000 After recording return to: ISABEL S. MARTINEZ, PL 2655 Le Jeune Road, Suite 809 Coral Gables, FL 33134 (305) 441-2284 Parcel ID Number: 11-3205-016-0010 Warranty De (�, This Indenture,Made this day of July, 2015 A.D., Between ROBERT GROSS and CARMEN A. GROSS, husband and wife whose address is: 16985 S.W. 93rd Street #3-212, Miami, ~FL 33196 of the County of Miami-Dade, state of Florida, grantors,and ALFONSO DEL CASTILLO and ANA MARIA JIMENEZ GARRIDO, husband and wife whose address is: 1051 N.E. 92nd Street, Miami Shores, FL 33138 .of the County of Miami-Dade, State of Florida,grantee. Witnesseth that the GRANTORS,for and in consideration of the sum of ------------------------TEN DOLLARS ($10)-----------------------DOLLARS, and other good and valuable consideration to GRANTORS in hand paid'by GRANTEE, the receipt whereof is hereby acknowledged, have granted, bargained and sold to the said GRANTEE and GRANTEE'S heirs, successors and assigns forever, the following described land, situate,lying and being in the County of Miami-Dade State of Florida to wit: ALL OF BELVIDERE COURT, ACCORDING TO THE MAP OR PLAT THEREOF AS RECORDED IN PLAT BOOK 39, PAGE 11, PUBLIC RECORDS OF MIAMI-DARE COUNTY, FLORIDA F/K/A LOTS 2, 3, 19, 20, 21 AND 22, BLOCK 3, BELVIDERE PARK, ACCORDING TO THE -MAP OR PLAT THEREOF AS RECORDED IN PLAT BOOK 16, PAGE 71, PUBLIC RECORDS OF MIAMI-DADE COUNTY, FLORIDA. Subject to restrictions, reservations and easements of record, if any, without intent to reimpose same and taxes subsequent to December 31, 2014. and the grantors do hereby fully warrant the title to said land,and will defend the same against lawful claims of all persons whomsoever. 15-064OR OR BK 29744 PG 4734 �. • LAST PAGE Warranty Deed Parcel ID Number: 11-3205-016-0010 Page 2 of 2 In Witness Whereof,the grantors have hereunto set their hands and seals the day and year first above written. Signed,sealed and delivered in our presence: r (Seal) Witne s #1 as to both ROBERT GROSS Printed Name: T la-r),..hs (L%AJc►4W%- (Seal) Wit s #2 as to both CARMEN A. GR S nted Name: k, ('q ` C�,Q�{'Y�.t STATE OF FLORIDA COUNTY OF MIAMI-DADE The foregoing instrument was acknowledged before me this 1 day of July, 2015 by ROBERT GROSS and CARMEN A. GROSS, husband and wife who are ( �rsonally known to me or who( )produced their Florida driver's license as identification. �\11\NIilliitlitlfF� , Printed Name: �•� *= Notary Public #Ff 136258 ••. �deA��o My Commission Expires: f f �i i ••,,C giwo•A••••.•�`ev� 15-0640R 1 ' 7 PSTRUCTURAL. ENGINEERS 4960 SW 52nd Street, Suite #407, Davie, FL 33314 C (305)219-2344 Q (954) 533-3237 F (954) 533-2117 E-Fax (954)697-7697 E pfiallo@plfengineers.com ttlItI11r#r111�f� Field Report 0 100 • STATE OF 441 Project: Date: v l Z /�o %,�Sse o R Address: ` / Permit Number: 31 46 Description: Status: ❑ Size of concrete grade beams, clear covers and ❑ Pass ❑ Fail placement of the steel reinforcement. Masonry cells, column sizes, clear covers and Pass ❑ Fail placement of the steel reinforcement. Grout placement in filled cells. Pass ❑ Fail `Q Size of concrete beams clear covers and Pass ❑ Fail placement of steel reinforcement. Truss Installation, permanent lateral bracing -- Pass ❑ Fail Installation and connections. ti(IOae WOO aJ4 H woo '�* Steel Connections (welding and or Bolting) Pass ❑ Fail Comments: It4giz a �pme-t Inspector: Pedro L. Fiallo, P.E. 0 Alexander Reig, E.I. Yf , _ ' Z�3 ° , STRUCTURAL. a. r.l ENGINEERS _ _4 14' 960 SW52nd Street, Suite#407, Davie; FL 33314 C (305)219-2344 O(954)533-3237 F(954)533-2117 E-Fax(954)697-7697 . E pfiallo@pfrengineers.com Field Report Project: Date:_ Address: N6— 77, 57— Permit Number: Alla t k u. 5l24y 9-S Description: Status: ❑ Size of concrete grade beams, Gear covers and ❑ Pass ❑ Fail placement of the steel reinforcement. ❑ Masonry cells, column sizes, clear covers and ❑ Pass ❑ Fail placement of the steel reinforcement. ❑ Grout placement in filled cells. ❑ Pass ❑ Fail ❑ Size of concrete beams&slabs, clear covers and ❑ Pass ❑ Fail placement of steel reinforcement. ❑ Truss Installation, permanent lateral bracing ❑ Pass ❑ Fail Installation and connections. ❑ Steel Connections(welding and or Bolting) ❑ Pass 0 Fail Commence: I,tl ab,a Q V Au '. Inspector: Pedro L Fiallo, P.E. ' ❑ Alexander Reig, E.I. No 6100. STATE OF vJS •• .....•• fONAI. '% "Ililllt►1106% 1 ,�a MIAMI•DADE C 15- 316C) Good afternoon, As per our conversation, this is to confirm that for the interior remodeling for 1051 NE 92 ST folio: 11-3205-016-0010 no verification form is needed and WASD does not require an upgrade to the existing service-line,due-to only.-interior renovations. If the-customer requests a larger service line this can be granted tapping through NE 92 ST but will not be required at this time. If you have any questions please feel free to reach out to me. Thank you, Krystel De Armas, New Business Rep Krystel.DeArmas@miamidade.gov Miami-Dade Water& Sewer Department NEW CUSTOMER DIVISION Phone: 786-268-5131 1, ' 3575 South LeJeune Rd Miami FI 33146 L� miamidade.gov/water �� Connect With Us on Twitter I Facebook QUALITY.VALUE.ECONOMIC GROWTH. z WINW IAMIlA1E.91/NATER DYYYY)7 CERTIFICATE OF LIABILITY INSURANCE DATE R"�'V°016 PRODUCER THIS CERTIFICATE IS ISSUED AS A MATTER OF INFORMATION RIVERS INSURANCE AGENCY INC ONLY AND CONFERS NO RIGHTS UPON THE CERTIFICATE HOLDER THIS CERTIFICATE DOES NOT AMEND, EXTEND OR 2879 West 2nd Ave ALTER THE COVERAGE AFFORDED BY THE POLICIES BELOW. Hialeah, FL 33010 (305)888-3627 INSURERS AFFORDING COVERAGE NAIC#I INSURED GMB CONSTRUCTION INC INSURER A: COLONY INSURANCE COMPANY GUSTAVO BIAGGI INSURER 8: PROGRESSIVE tXMZSS INSURANCE COMPANY 7929 WEST DRIVE #703 INSURER C: NORTH BAY VILLAGE, FL 33141 INSURER D: INSURER E: COVERAGES THE POLICIES OF INSURANCE LISTED BELOW HAVE BEEN ISSUED TO THE INSURED NAMED ABOVE FOR THE POLICY PERIOD INDICATED.NOTWITHSTANDING ANY REQUIREMENT,TERM OR CONDITION OF ANY CONTRACT OR OTHER DOCUMENT WITH RESPECT TO WHICH THIS CERTIFICATE MAY BE ISSUED OR MAY PERTAIN,THE INSURANCE AFFORDED BY THE POLICIES DESCRIBED HEREIN IS SUBJECT TO ALL THE TERMS,EXCLUSIONS AND CONDITIONS OF SUCH POLICIES.AGGREGATE LIMITS SHOWN MAY HAVE BEEN REDUCED BY PAIDCLAIMS. POLICY EXPIRATION LTA -POLICY-NUMBER LIMITS GENERAL LIABILITY EACH OCCURRENCE s 1,000,000 COMMERCIAL GENERAL.LIABILITY PREMISES Ea ocarence $ 100,000 CLAIMSMADE ®OCCUR MEDEXP(AoYoroAem) $ 5,000 A R SIA00 PD DED GL0051889-01 04/02/16 04/02/17 PERSONAL&ADV INJURY $ 1,000,000 GENERAL AGGREGATE Is 1.000.000 GEMLAGGREGATELIMIT APPLIES PER: PRODUCTS-COMP/OPAGG s 2,000,000 POLICY T LOC . AUTOMOBILE LIABILITY COMBINED SINGLE LIMIT s ANYAUTO (EaaoddW) ALL OWNED AUTOS (PwI URY $ 25,000 $ SCHEDULED AUTOS $ HIRED AUTOS 04557579-5 02/12/16 02/12/17 BODILYINJURY NON-OWNEDAUTOS (Paraceident) s 50,000 X PIP $1,000 DED PROPERTY DAMAGE s 25,000 GARAGE LIABILITY AUTO ONLY-EAACCIDENT $ ANYAUTO OTHERTHAN EAACC $ --._ AUTOONLY: AGG S EXCESSAIMBRELLA LIABILITY EACH OCCURRENCE s OCCUR CLAIMS MADE AGGREGATE s s DEDUCTIBLE s RETENTION s s WORKERS COR[PENSATIONAND EMPLOYERS'LIABtL1TY E.L. ACHACCIDENT s A PROPRIETORNkARTNEMEXECUrIVE �s�EACWOED7 E.L.DISEASE-EA EMPLOYE S fturidw SPECWI�PROOVISIONS bebw E.L.DISEASE-POLICY LIMB I s OTHER DESCRIPTION OF OPERATIONS I LOCATIONS/VEHICLES/EXCLUSIONS ADDED BY ENDORSEMENT/SPECIAL PROVISIONS LICENSE#CGC1514518 CERTIFICATE HOLDER CANCELLATION VILLAGE OF MIAMI SHORES SHOULD ANY OF THE ABOVE DESCRIBED POLICIES BE CANCELLED BEFORE THE EXPIRATION 10050 NE 2 AVE DATE THEREOF,THE ISSUING INSURER WILL ENDEAVOR TO MAIL30 DAYS WRITTEN NOTICE TO THE CERTIFICATE HOLDER NAMED TO THE LEFT,BUT FAILURE TO DO SO SHALL MIAMI SHORES, FL 33138 IMPOSE NO I OBLIGATION OR LIABILITY OF ANY KIND UPON THE INSURER.ITS AGENTS OR REPRESEI+6ATA/ES. AUTHOR ES A r t s ACORD26(2004=) �! C/ // A`CORD CORPORATION 1988 a - �� 3t 66 5 ORFS G logo Miami shores Village ' "eye Building Department 'A fte Iva Z-OR 10050 N.E.2nd Avenue Miami Shores, Florida 33138 Tel: (305) 795.2204 Fax: (305) 756.8972 CERTIFICATE OF OCCUPANCY/COMPLETION CHECK LIST Building permit card. ❑ Surveys (2 copies) Final as built- Required Items: Elevations of buildings showing all intended setbacks from property lines and other existing structures. Ingress+ Egress, required parking spaces, Wheel stops, stripping, and all paving to exterior. ❑ rtificate of Elevation—(Sealed by surveyor). Expiration date required on the form. Certificate of Insulation. ❑ Certificate of Soil Treatment(Final treatment-original)\ CHAPTER 2913-5 TERMITE PROTECTION: "This Building has received a complete treatment for the prevention of subterranean termites. Treatment is in accordance with the rules and law as established by the Florida Department of Agriculture and Consumer Services." ❑ Health Department Approval Letter(On septic or private water). Note: If the house is on septic tank, approval letter is required from Health Dpt. ❑ Soil Compaction Letter(Density report is required) ❑ Final certification letter from the Engineer/Architect(on masonry, trusses, special structure, etc) ❑ Backflow preventor certificate (Required on commercial projects only) ❑ Declaration of use. (Recorded in Miami-Dade Clerk of Courts) PLEASE NOTE THAT THE SAME ITEMS ARE REQUIRED FOR TEMPORARY CO • Emergency CO (Without 24 Hrs Processing)Additional fee is$80.00. • Temporary CO (Up to 90 days max) $75.00. • Residential CO $150.00 • Residential CC $50.00 • Commercial CO and CC$200.00 .a . WIS JEFF ATWATER CHIEF FINANCIAL OFFICER STATE OF FLORIDA DEPARTMENT OF FINANCIAL SERVICES DIVISION OF WORKERS'COMPENSATION **CERTIFICATE OF ELECTION TO BE EXEMPT FROM FLORIDA WORKERS'COMPENSATION LAW CONSTRUCTION INDUSTRY EXEMPTION This certifies that the individual listed below has elected to be exempt from Florida Workers'Compensation law. EFFECTIVE DATE: 3/16/2016 EXPIRATION DATE: 3/16/2018 PERSON: BIAGGI GUSTAVO M FEIN: 223955890 BUSINESS NAME AND ADDRESS: GMB CONSTRUCTION INC 7929 WEST DR#703 NORTH BAY VILLAGE FL 33141 SCOPES OF BUSINESS OR TRADE: LICENSED GENERAL CONCRETE WORK FLOOR COVERING CONTRACTOR INCIDENTAL TO TH INSTALLATION-R Pursuant to Chapter 440.05(14),F.S.,an officer of a corporation who elects exemption from this chapter by filing a certificate of election under this section may not recover benefits or compensation under this chapter.Pursuant to Chapter 440.05(12),F.S.,Certificates of election to be exempt...apply only within the scope of the business or trade fisted on the notice of election to be exempt.Pursuant to Chapter 440.05(13),F.S.,Notices of election to be exempt and certificates of election to be exempt shall be subject to revocation if,at any time after the filing of the notice or the issuance of the certificate, the person named on the notice or certificate no longer meets the requirements of this section for issuance of a certificate.The department shall revoke a DFS-F2-DWC-252 CERTIFICATE OF ELECTION TO BE EXEMPT REVISED 08-13 QUESTIONS?(850)413.1609 i INTERIOR REMODELING 1051 NE 92 Street '_C - REPONSE - REVIEW COMMENTS CEjVED JAN2016 BUILDING IB3 1 1. Single family home should be classified as an R-3 R: See updated note at A-1 2. Level 3 alterations should comply with chapter 9 of the Florida Building Code 2014 R: See updated note at A-1 3. The triangular openings at the open side of stair, formed by the riser, tread and bottom rail of a guard, shall not allow passage of a sphere 6 inches (153 mm) in diameter. R: See updated Proposed Stair Detail at A-2 PLUMBING FBC 107.1 Health Department approval required for onsite sewage disposal. R: (N/A) Existing Septic System to remain. Permits # 19286 and 19298 FBCR P2708.3 Shower control valves. Individual shower and tub/shower combination valves shall be equipped with control valves of the pressure-balance, thermostatic-mixing or combination pressure-balance/thermostatic-mixing valve types with a high limit stop in accordance with ASSE 1016 or CSA B125. The high limit stop shall be set to limit water temperature to a maximum of 120°F (490C). In-line thermostatic valves shall not be used for compliance with this section. R: See updated information on Plumbing Fixture Connection Schedule at P-1 FBCR P2903.2 Maximum flow and water consumption. As per Miami-Dade Ord. Sec. 8-31 plumbing fixtures shall meet the local water flow restrictions adopted by Miami-Dade County Water and Sewer(water closet 1.28gpm, lavatory 1.5gpm, shower heads 1.5gpm and kitchen faucets 1.5gpm). R: See Plumbing Fixture Connect. Schedule at P-1 and attach. Miami-Dade Ord. Sec.•$;31 ...... ...... .... . ..... ***goo ...... ...... 00 • �=vim M a 2.1.1.1 Single Flush Toilets The effective flush volume of Single Flush Toilets shall not exceed 1.28 gallons (4.8 liters). The effective flush volume is the average flush volume when tested • in accordance with ASME Al 12.19.2. 2.1.1.2 Dual Flush Toilets The effective flush volume of Dual Flush Toilets shall not exceed 1.28 gallons (4.8 liters).The effective flush volume is defined as the composite,average flush volume of two reduced flushes and one full flush when tested in accordance with ASME Al 12.19.2 and ASME Al 12.19.14. 2.1.2 Showerheads installed shall have a maximum flow rate of 1.5 gallons per minute (gpm) or display the EPA WaterSense label when available. A showerhead is defined as including the following types of emitters: a traditional showerhead, rain system, waterfall, bodyspray, bodyspa, or jet. 2.1.3 Maximum flow rate of lavatory faucets or the lavatory accessory must conform to applicable requirements in ASME A112.18.1/CSA 13125.1 and NSF/ANSI Standard 61, ` Section 9. ' 2.1.3.1 The maximum flow rate shall not exceed 1.5 gpm (5.7 liters) at a pressure of 60 w psi at the inlet,when the water is flowing. 2.1.4 The maximum flow rate for kitchen faucets must conform to applicable requirements. 2.1.4.1 The maximum flow rate shall not exceed 1.5 gpm (5.7 liters) at a pressure of 60 psi at the inlet,when the water is flowing. I Installation of flow restrictors in existing kitchen faucets satisfies this requirement. 2. 2 Equipment Standards 2.2.1 Clothes washers installed shall be front horizontal ortop loading models with(1)a water factor (WF) rating of 8 gallons per cycle per cubic foot capacity or lower as identified under Energy Star label or (2) display an EPA WaterSense label when available.WF is the number of gallons used per cycle per cubic foot of the clothes washer capacity. The lower the WF, the more water-efficient the clothes washer. 2.2.2 Dishwashers installed shall use 6 gallons or less of water per cycle and be Energy Star labeled or EPA WaterSense labeled when available. 33 SUB-METERING Water deliveries to multi-unit complexes are often recorded by t• ' ' one master meter,while individual dwelling units are not metered. .� Submetering is the use of separate meters in the individual supply lines to apartments, condominiums, stores, or offices where the :: • main facility or building is still billed by the water utility from a '�• < master meter. ' Multi-unit complexes will be required to install separate sub- • meters throughout the property.The installation of sub-meters shall be consistent with all major water-using functions and monthly records shall be available upon request. Cooling towers and other common areas of multi-unit complexes housing shall comply with Section 6 of this guide. 4 2.1.1.1 Single Flush Toilets The effective flush volume of Single Flush Toilets shall not exceed 1.28 gallons (4.8 liters). The effective flush volume is the average flush volume when tested in accordance with ASME Al 12.19.2. 2.1.1.2 Dual Flush Toilets The effective flush volume of Dual Flush Toilets shall not exceed 1.28 gallons (4.8 liters).The effective flush volume is defined as the composite,average flush volume of two reduced flushes and one full flush when tested in accordance with ASME Al 12.19.2 and ASME Al 12.19.14. , 2.1.2 Showerheads installed shall have a maximum flow rate of 1.5 gallons per minute (gpm) or display the EPA WaterSense label when available. A showerhead is defined as including the following types of emitters: a traditional showerhead, rain system, waterfall, bodyspray, bodyspa, or jet. 2.1.3 Maximum flow rate of lavatory faucets or the lavatory accessory must conform to applicable requirements in ASME A112.18.1/CSA 13125.1 and NSF/ANSI Standard 61, Section 9. 2.1.3.1 The maximum flow rate shall not exceed 1.5 gpm (5.7 liters) at a pressure of 60 psi at the inlet,when the water is flowing. 2.1.4 The maximum flow rate for kitchen faucets must conform to applicable requirements. 2.1.4.1 The maximum flow rate shall not exceed 1.5 gpm (5.7 liters) at a pressure of 60 psi at the inlet,when the water is flowing. Installation of flow restrictors in existing kitchen faucets satisfies this requirement. 2. 2 Equipment Standards 2.2.1 Clothes washers installed shall be front horizontal ortop loading models with(1)a water factor (WF) rating of 8 gallons per cycle per cubic foot capacity or lower as identified M I under Energy Star label or { (2) display an EPA WaterSense label when available.WF is the number of gallons used per cycle per cubic foot of the clothes washer capacity. The lower the WF, the more water-efficient the clothes washer. 2.2.2 Dishwashers installed shall use 6 gallons or less of water per cycle and be Energy Star labeled or EPA WaterSense labeled when available. :3. SUB-METERING ' Water deliveries to multi-unit complexes are often recorded by one master meter,while individual dwelling units are not metered. •••• Submetering is the use of separate meters in the individual supply .. lines to apartments, condominiums, stores, or offices where the ' ' main facility or building is still billed by the water utility from a .. • master meter. Multi-unit complexes will be required to install separate sub- •' meters throughoutthe property.The installation of sub-meters shall be consistent with all major water-using functions and monthly records shall be available upon request. Cooling towers and other i common areas of multi-unit complexes housing shall comply with Section 6 of this guide. l ♦S�oRFs Miami shores Village Building Department 10050 N.E.2nd Avenue Miami Shores, Florida 33138 Tel: (305) 795.2204 Fax: (305) 756.8972 RECEIPT PERMIT#: RC t S 3 CSO DATE: 0? Z- ❑ Contractor V\Owner ❑ Architect Picked up 2 sets of plans and (other) 2 Address: (0 S( Nc--- s� 2 Sy From the building department on this date in order to have corrections done to plans And/or get County stamps. I understand that the plans need to be brought back to Miami Shores Village Building Department to continue permitting process. Acknowledged by: PERMIT CLERK INITIAL: gTp RESUBMITTED DATE: PERMIT CLERK INITIAL: '� Miami Shores Village ,SNoREs G't Building Department logo 10050 N.E.2nd Avenue Miami Shores, Florida 33138 `FATES INB� Tel: (305) 795.2204 �L0R1DA Fax: (305) 756.8972 JANUARY 19, 2016 Permit No: RC-12-15-3160 PLUMBING — OSVALDO DIAZ 1.1FBC 107.1 Health Department approvals required for onsite sewage disposal Plan review is not complete, when all items above are corrected, we will do a complete plan review. If any sheets are voided, replace them with new revised sheets and place behind the most current page. " Miami 5t1oREs G Shores Village N Building Department ` J_ ,. 10050 N.E.2nd Avenue Miami Shores, Florida 33138 oo Tel: (305) 795.2204 �l0R1Dp' Fax: (305) 756.8972 January 5, 2016 f Permit No: 15-3160 ' J Building Critique VI/Single family y home should be classified as an R-3 2. Level 3 alterations should comply with chapter 9 of the Florida Building Code 2014 3. The triangular openings at the open side of stair, formed by the riser,tread and bottom rail of a guard, shall not allow passage of a sphere 6 inches(153 mm) in diameter. Ismael Naranjo Building Official Plan review is not complete, when all items above are corrected, we will do a complete plan review. If any sheets are voided, remove them from the plans and replace with new revised sheets and include one set of voided sheets in the re-submittal drawings. sSNORES G "MiamiShores Village Building Department 11110- 10050 N.E.2nd Avenue �hy� Miami Shores, Florida 33138 FNres �e� Tel: (305) 795.2204 �ZOR 10 Fax: (305)756.8972 January 11, 2016 Permit No: RC15-3160 PLUMBING — OSVALDO DIAZ RC-15-3160 1051 NE 92 ST 12/22/15 1. 1 FBC 107.1 Health Department approval required for onsite sewage disposal.FBCR P2708.3 Shower control valves. Individual shower and tub/shower combination valves shall be equipped with control valves of the pressure-balance, thermostatic-mixing or combination pressure-balance/thermostatic-mixing valve types with a high limit stop in accordance with ASSE 1016 or CSA 8125. The high limit stop shall be set to limit water temperature to a maximum of 120°F (490C). In-line thermostatic valves shall not be used for compliance with this section. 2. FBCR P2903.2 Maximum flow and water consumption. As per Miami-Dade Ord. Sec. 8-31 plumbing fixtures shall meet the local water flow restrictions adopted by Miami-Dade County Water and Sewer (water closet 1.28gpm, lavatory 1.5gpm, shower heads 1.5gpm and kitchen faucets 1.5gpm). Plan review is not complete, when all items above are corrected, we will do a complete plan review. If any sheets are voided, remove them from the plans and replace with new revised sheets and include one set of voided sheets in the re-submittal drawings. PLF STRUCTURAL ENGINEERS, INC. JOB TITLE STRUCTURAL REPAIRS CA# 30758 4960 SW 52nd ST, Suite#407, Davie, FL 33314 JOB NO. SHEET NO. / O: (954)533-3237 Fax: (954)533-2117 CALCULATED BY DATE email:pfiallo@plfengineers.com CHECKED BY PF DATE ' CS12 Ver 2013.07.01 www.struware.com 6-0 a RECEV D1 221% FEB f2 2016 BY: c 0 q-� STRUCTURAL CALCULATIONS FOR STRUCTURAL REPAIRS 1051 NE 92 ST MIAMI SHORE Pedro L. Fiallo, P.E FL Lic.:76100 00 . .. . . . . ... . .. ... .. . . . .. ... ... ... ... 1ST .. . . . . . . . . . .. . . . . . . . . ... . . . . ... . . . . . . . . . . . . . .. .. . . . .. .. ... . . . ... . . TABLE OF CONTENTS M DESCRIPTION PAGES • Wind Loads Design.................................................2-6 • Wood connectors design ...............................................7-13 • Wood Connectors (Products Approval)...............................14-25 • Steel beams and columns calculations and connections......26-33 • Wood rafters and ceiling members design. Load breakdown and members verifications..........................................................34-50 • Wood-wood connections .....................................................51-58 • Analysis results for additional rafters...............................59-64 • Wood ledger 1 verification .........................................65 • Costume made hanger B plate connection.....................66-69 • Wood ledger 3 verification .........................................70 • Steel beam's head connector plate verification...............71-74 • Shoring connections calculations...............................75-78 .. ... . . . . . .. . .. . . . . ... . .. ... .. . . . .. .. . . . . . . . . . .. . . . . . . . . ... . . . . ... . . . . . . . . . . . . . .. .. . . . .. .. ... . . . ... . . PLF STRUCTURAL ENGINEERS, INC. JOB TITLE STRUCTURAL REPAIRS CA#30758 4960 SW 52nd ST,Suite#407, Davie, FL 33314 JOB NO. SHEET NO. 2 " - O: (954)533-3237 Fax: (954)533-2117 CALCULATED BY DATE email:pfiallo@plfengineers.com CHECKED BY PF DATE www.struware.com Code Search Code: ASCE 7-10 Occupancy: Occupancy Group= R Residential Risk Category& Importance Factors: Risk Category= 11 Wind factor= 1.00 use 0.60 NOTE: Output will be nominal wind pressures Snow factor= 1.00 Seismic factor= 1.00 Type of Construction: Fire Rating: Roof= 0.0 hr Floor= 0.0 hr Building Geometry: Roof angle (9) 3.75/12 17.4 deg Building length (L) 49.4 ft Least width (B) 45.0 ft Mean Roof Ht (h) 20.9 ft Parapet ht above grd 0.0 ft Minimum parapet ht 0.0 ft Live Loads: Roof 0 to 200 sf: 20 psf use 20.0 psf 200 to 600 sf. 20 psf over 600 sf: 20 psf .. ... . . . . . .. . .. . . . . ... . .. ... .. . . . .. . ... ... ... ... . .. . . . . . . . . . .. 000 Goo . . . . ... . . . . ... . . . . . . . . . . . . . .. .. . . . .. .. ... . . . ... . . PLF STRUCTURAL ENGINEERS, INC. JOB TITLE STRUCTURAL REPAIRS CA#30758 4960 SW 52nd ST,Suite#407, Davie, FL 33314 JOB NO. SHEET NO. 3 O: (954)533-3237 Fax: (954)533-2117 CALCULATED BY DATE email:pfiallo@plfengineers.com CHECKED BY PF DATE _ r Wind Loads : ASCE 7- 10 Ultimate Wind Speed 175 mph Nominal Wind Speed 135.6 mph Risk Category 11 Exposure Category C Enclosure Classif. Enclosed Building Intemal pressure +/-0.18 Directionality (Kd) 0.85 Kh case 1 0.911 Kh case 2 0.911 Type of roof Gable V(z) I Speed-up --� Topographic Factor (Kzt) Z ,� Topography Flat � � +(up"And] ` X(downwind) Hill Height (H) 80.0 ft HJ2 Half Hill Length(Lh) 100.0 ft LhHl2 H Actual H/Lh = 0.80 Use H/Lh = 0.50 Modified Lh = 160.0 ft ESCARPMENT From top of crest:x= 50.0 ft Bldg up/down wind? upwind ZA6 V(Z) H/Lh= 0.50 Ki = 0.000 I ASpeed-up x/Lh= 0.31 KZ= 0.792 V(Z) x(upwind) T x(downwind) z/Lh= 0.13 K3= 1.000 �- H/2 H At Mean Roof Ht: Lh H/2 Kzt=(1+KjK2K3)^2= 1.00 .. . . . . . 2D RIDGE or 3D AXISYMMETRICAL HILL Gust Effect Factor Flexible structure if natural frequency<1 Hz(T>1 second). h= 20.9 ft However,if building h/B<4 then probably rigid structure(rule of thumb). B= 45.0 ft h/B= 0.47 Rigid structure /z(0.6h)= 15.0 ft G = 0.85 Using rigid structure default . .. . . . . ... . .. ... .. . . . .. •• • • • • • • • • • •• • • • • • • • • ••• • • • • ••• • • • • • • • • • • • • • •• •• • • • •• •• ••• • • • ••• • • PLF STRUCTURAL ENGINEERS, INC. JOB TrrLE STRUCTURAL REPAIRS CA#30758 4960 SW 52nd ST,Suite#407,Davie,FL 33314 JOB NO. SHEET NO. 0:(954)533-3237 Fax:(954)533-2117 CALCULATED BY DATE email:pfiallo@plfengineers.com CHECKED BY PF DATE Nominal Wind Pressures Wind Loads -Components & Cladding : h <= 60' Kh(case 1)= 0.91 h= 20.9 ft Base pressure(qh)= 36.4 psf a= 4.5 ft Minimum parapet ht= 0.0 ft GCpi= +/-0.18 Roof Angle(8)= 17.4 deg Type of roof= Gable Roof GCp+/-GCpi Surface Pressure(psf) User input Area 10 sf 50 sf 100 Sf 10 sf 50 sf 100 sf 29 sf 500 sf Negative Zone 1 -1.08 -1.01 -0.98 -39.3 -36.8 -35.7 -37.6 -35.7 Negative Zone 2 -1.88 -1.53 -1.38 -68.4 -55.7 -50.2 -60.0 -50.2 Negative Zone 3 -2.78 -2.36 -2.18 -101.2 -85.9 -79.4 -91.1 -79.4 Positive All Zones 0.68 0.54 0.48 24.8 19.7 17.5 21.4 17.5 Overhang Zone 2 -2.20 -2.20 -2.20 -80.1 -80.1 -80.1 -80.1 -80.1 Overhang Zone 3 -3.70 -2.86 -2.50 -134.7 -104.2 -91.0 -114.5 -91.0 Overhang pressures in the table above assume an internal pressure coefficient(Gcpi)of 0.0 Overhang soffit pressure equals adjacent wall pressure reduced by internal pressure of 6.6 psf Parapet qp= 0.0 psf Surface Pressure(psf) User input Solid Parapet Pressure 10 sf 100 sf 500 sf 50 sf CASE A=pressure towards building(pos) CASE A:Interior zone: 0.0 0.0 0.0 0.0 CASE B=pressure away from bldg(neg) Comer zone: 0.0 0.0 0.0 0.0 CASE B: Interior zone: 0.0 0.0 0.0 0.0 Comer zone: 0.0 0.0 0.01 0.0 Walls GCp+/-GCpi Surface Pressure(psf) Use input Area 10 sf 100 sf 500 sf 10 sf 100 sf 500 sf 21 sf 29 sf Negative Zone 4 -1.28 -1.10 -0.98 -46.6 -40.2 -35.7 -44.5 43.6 Negative Zone 5 -1.58 -1.23 -0.98 -57.5 -44.7 -35.7 -53.4 -51.6 Positive Zone 4&5 1.18 1.00 0.88 43.0 36.5 32.0 40.9 40.0 • •• • • • • ••• • • ••• ••• ••• ••• • •• • • • • • • • • • •• • • • • • • • • ••• • • • • ••• • • • • • • • • • • • • • •• •• • • • •• •• ••• • • • ••• • • PLF STRUCTURAL ENGINEERS, INC. JOB TITLE STRUCTURAL REPAIRS CA#30758 4960 SW 52nd ST,Suite#407, Davie, FL 33314 JOB NO. SHEET NO. (o 0:(954)533-3237 Fax:(954)533-2117 CALCULATED BY DATE - email:pfiallo@plfengineers.com CHECKED BY PF DATE Nominal Wind Pressures Location of C&C Wind Pressure Zones 7 11 21 2a fill C' •.J Roofs w/ 6 s 10° Walls h<_60' Gable,Sawtooth and and all walls &alt design h<90' Multispan Gable 05 7 degrees& Monoslope roofs h>60' Monoslope<-3 degrees 3°<0:5 10° h<_60'&alt design h<90' h<_60'&alt design h<90' I I I I I I I I �,� I;, • C a I (� I ?',{ I(2 I I;�3 �•1 1't I JIf`=�1 �;i.�>i�• a -1 jI Monoslope roofs Multispan Gable& Hip 7° < 0 <-271 1 1 10°<0:5 30° Gable 7° <0:5 45° I I h<-60'&alt design h<90' I I 71 Sawtooth 10°<9 <- 45° h 5 60'&alt design h<90' , r ••• •• • • ••PE� 1. r �l Lb •W• ••• • • ••• • T` •• • • • • •T*`•L •Ty T` •• e*ei roofs Q�;W: ••• h 5 60'&alt d6si§n'h<90• _ PLF STRUCTURAL ENGINEERS, INC. Project Name: 1051 NE 92 St.Miami Shores CA# 30758 Project No.: 150907 Sheet No.: - 4960 SW 52nd ST, Suite#407, Davie, FL 33314 Calculated By: Date: Ph: (954) 533-3237 Fax: (954) 533-2117 Checked By: Date: email: pfiallo@plfengineers.com - 60Obt C7012 UPLt��' Aq 2q Psf w z —so/ 2. F-V 4,�X 5 P a� 121 — 2 IG�r'� -G R.5"55 Q�4 X 2,4' 1 PJE4 tJ�1� 1852 /b,,+ Di b x 2-3 /bsl.�Y i of -- /d /d� = X65 ` ` / Y2� 60 U2= ��( /�T^�N/ / 8,�-10 s �✓� u/oo ' 90,4J 2 .9 000 . . . . . .. ConS�aoe�inc �Gre .szf�s n� �DaNEc r C4-1.Cg s�. r 05 IA-W0N f1 7`,A -/2 .. ... . . . .. cc,)t 47 .� f�,��'�.�',.�-Fig Gr �i.G _Evf� �% �i��a•�'�r'�U-s-t WA 'el .. . . . . . . . . Up&o ��{� /2 GIJ�a SfOr, P✓ lC,9yp;/J. •Y:�►:r: Ob�� ��� 4• • • 999�• • • • • • • • • • • • • 7OML vpu-' _ PLF STRUCTURAL ENGINEERS, INC. Project Name: 1051 NE 92 St.Miami Shores CA# 30758 Project No.: 150907 Sheet No.: 4960 SW 52nd ST, Suite#407, Davie, FL 33314 Calculated By: Date: Ph: (954) 533-3237 Fax: (954) 533-2117 Checked By: Date: email: pfiallo@plfengineers.com �i 2d V!-rY L© u�oo� rood . l5 sf'X 2,-? �G,rhS l�e - • ��S� � 2,�i - 2, � /bs1 �f I h,5 dl". e' �� ,t 2,4 a l6-t f LL ' 30Ipsf- x ,2 ��X is, i'= 12 D rr ►—C �.5, 122s /x/(,1911 ��o F—T 21 -57 Upl(O ; t5/�x (— >, � x �,�' = —/ 55,5 )Z-,,s i OF Als) .. ... . . . . . .. . .. . . . . ... . .. ... .. . . . .. . ... ••0: •. •o: . . . . . . .. . . . . . . . . . .. . • . • . . . . ... . . . . •.• . . . . . . . . . . . . . .. .. . . . .. .. ... . . . ... . . _ PLF STRUCTURAL ENGINEERS, INC. Project Name: 1051 NE 92 St.Miami Shores CA# 30758 Project No.: 150907 Sheet No.: �1� 4960 SW 52nd ST, Suite#407, Davie, FL 33314 Calculated By: Date: Ph: (954) 533-3237 Fax: (954) 533-2117 Checked By: Date: email: pfiallo@plfengineers.com DrxuN: /9/�,Z /dam T iQbl �L l/bo %bs �- cr71 4 h j 2 b 'l/ s 4 Sx,� x Cg X Z = 5, 3 �n ose 0% so ( • or ••• ••• ••• . T • •• • • • • • • • • 1, 6Dt_+ 1, 6 : 2x ��3� ©S 4- ►; 6 r 12231 t ILS : ;-?,B s ... • • • • • . • • • i los x •• ,• • • • ►� = 2 $ er `� = 11 /5� % .':14 i :`'J k 67 1 b s 45-r o �U 5�iarr - C3`Mi4 1�s �= 464 5 _ PLF STRUCTURAL ENGINEERS, INC. Project Name: 1051 NE 92 St.Miami Shores CA# 30758 Project No.: 150907 Sheet No.: Of) 4960 SW 52nd ST, Suite#407, Davie, FL 33314 Calculated By: Date: Ph: (954) 533-3237 Fax: (954) 533-2117 Checked By: Date: email: pfiallo@plfengineers.com cv�vvL c d2 S"x 12, /go,s UX.: �5/.5,,6 s � �5, 7 Psf 442 �oVC s P � � x �9b, 11;s 26 S NirC fir( GDS/nXC //6/- V(v NV 35g— /2 r,(1l (8 s�e�r er s r� 2 suers Z 1' 3 . .. . . . . .. . •• • • • • • • • • • • • • • • • • • • • •• •• • • • •• •• ••• • • • ••• • • _ PLF STRUCTURAL ENGINEERS, INC. Project Name: 1051 NE 92 St.Miami Shores CA# 30758 Project No.: 150907 Sheet No.: to, 4960 SW 52nd ST, Suite#407, Davie, FL 33314 Calculated By: Date: Ph: (954) 533-3237 Fax: (954) 533-2117 Checked By: Date: email: pfiallo@plfengineers.com U�A W -2- - 50.2 �sf F(1'91 -3 P 5012- f� yr�, sl- _ � �o�A4-s se�acV.� 607"e.7(ov �V, Vv.C1 ItVVR T_ /2 � � /� ���rils w°a� rr�>ry �- � .z� (4) •• ••• • • • • • •• • •• • • • • ••• • •• ••• •• • • • •• • ••• ••• ••• • • goo • • • • • • •• • • • • • • ••• • • • • ••• • • • •• •• • • • •• •• ••• • • • ••• • _ PLF STRUCTURAL ENGINEERS, INC. Project Name: 1051 NE 92 St.Miami Shores CA# 30758 Project No.: 150907 Sheet No.: 6Z) 4960 SW 52nd ST, Suite#407, Davie, FL 33314 Calculated By: Date: Ph: (954) 533-3237 Fax: (954) 533-2117 Checked By: Date: email: pfiallo@plfengineers.com , �yN�CCTb� � �awN �1,; -><-r(� �oorr`✓ty� P� Psi p�. Ao?7:5 vs Psis I 4 ,� �a' _ 62 64 16s� f )< 33215 fbs f LL -X I, 33t 5,3` 28f, 9F- lLs -- cow luL1e � U wn� 3 g 3 8 A4&1'el So,, sP �� -e r� 5/A/p501v !`MGUS 26- 3 ltl 2.0 m«n7�r • . . . ���. ��•Qp dl rr "-w r • .. . . . . .. . .. ... .. . . . .. ••• •�1�i�:Y��'[% ••�°�!/ "-t CHIC •• • • • • • • • • ••• • • • • ••• • • • • • • • • • • • • • •• •• • • • •• •• ••• • • • ••• • _ PLF STRUCTURAL ENGINEERS, INC. Project Name: 1051 NE 92 St.Miami Shores CA# 30758 Project No.: 150907 Sheet No.: l3 4960 SW 52nd ST, Suite#407, Davie, FL 33314 Calculated By: Date: Ph: (954) 533-3237 Fax: (954)533-2117 Checked By: Date: email: pfiallo@plfengineers.com Sty •� j�h�rr�� coh�iP ios re+ rc� ,ref i v �,u. , =IOD/2 J0457 T. 6 ale wro0 �2<1n!� ;S�`x 3.S'.r- 521 x 3 1,2 X 4os,/x 3, �; ,2/0 / / DC + LL M 7- -41 h J v8� /6S of t �am laB A u,�/�h rna�•� r��m�Pr� �- � �� �,.1. = x'10 /�s �'' �'°/ate ����' i�psf .. ... . . . . . .. 'S��G/,QGt' `O/J/7�-1 per' ••• ��Z'����••• ••• ••• QBolds ... . . . . ... . . IM2 _ S 00802 Used for Florida State Wide Product Approval # FL11473 Products on this Report which are approved: Product FL# Product FL# DETAL20 11473.1 LGUM210-2-SDS 11473.12 FGTR 11473.2 LGUM210-3-SDS 11473.13 FGTRE 11473.2 LGUM210-4-SDS 11473.14 FGTRHL 11473.2 LGUM26-2-SDS 11473.12 FGTRHR 11473.2 LGUM26-3-SDS 11473.13 HETA12 11473.3 LGUM26-4-SDS 11473.14 HETA16 11473.3 LGUM28-2-SDS 11473.12 HETA20 11473.3 LGUM28-3-SDS 11473.13 HETA24 11473.4 LGUM28-4-SDS 11473.14 HETA40 11473.4 LGUM410-SDS 11473.15 HETAL12 11473.5 LGUM46-SDS 11473.15 HETAL16 11473.5 LGUM48-SDS 11473.15 HETAL20 11473.5 LTA1 11473.16 HGAM10 11473.6 META12 11473.17 HGUM5.25 11473.7 META14 11473.17 HGUM5.50 11473.7 META16 11473.17 HGUM7.00 11473.8 META18 11473.17 HGUM7.25 11473.8 META20 11473.18 HGUM9.00 11473.8 META22 11473.18 HHETA12 11473.9 META24 11473.18 HHETA16 11473.9 META40 11473.18 HHETA20 11473.9 MSTAM24 11473.19 HHETA24 11473.10 MSTAM36 11473.19 HHETA40 11473.10 MSTCM40 11473.19 HM9 11473.6 MSTCM60 11473.19 HTSM16 11473.11 MTSM16 11473.2 HTSM20 11473.11 MTSM20 11473.2 • 0 f SIMPSON-9TKON'o=TIE 60WAY, INC is Florida Building Code, Residential 2007 Edition R101.2.1 Scope R4407 HVHZ Masonry R4408 HVHZ Steel R4409 HVHZ Wood 11.ALLOWABLE LOADS: The tables that follow reference the allowable loads for the aforementioned products. TABLE 1 ALLOWABLE LOADS AND FASTENERS FOR TRUSS TO MASONRY OR CONCRETE WALL CONNECTORS Fasteners Allowable Uplift Loads Length 160 No. Ga Lh Southern(n.) CMU Concrete Truss/Rafter (CMU (Tit ret Pine/Douglas Fir- Spruce-Pine-Fir Larch MTSM16 16 16 7-10d 4-'/4X2'/4 4-'/4X13/4 875 755 MTSM20 16 20 1 7-10d 4-1/4X2'/ 4-'/4X13/4 875 755 HTSM16 14 16 8-10d 4-%X2'/4 4-'/4X13/4 1175 1010 HTSM20 14 20 10-10d 4-'/4X2'/4 4-'/4X13/4 1175 1010 HM9 18 - 4-SDS'/4X1'1/2 5-'/4X2'/4 5-'/4X13/4 805 690 HGAM10 ' 14 - 4-SDS'/4X1''/s 4'/4X2'/4 4-'/4X2'/4 850 850 Notes: 1. Loads include a 60%load duration increase on the fastener capacity for wind loading where allowed by the Florida Building Code. Loads do not include a stress increase on the strength of the steel. No further increases are permitted. Reduce loads where other loads govern. 2. HM9 allowable F1 load shall be 635 lbs(DFL/SYP)&545 lbs(SFP),and allowable F2 load shall be 200 lbs(DFL/SYP)& 170 lbs(SPF). 3. HGAM10 allowable F1 load shall be 1005 lbs(DFL/SYP)&870 lbs(SFP),and allowable F2 load shall be 1105 lbs (DFUSYP)&950 lbs(SPF). 4. Allowable loads for the HGAM10 are for one connector. A minimum rafter thickness of 2'/i'must be used when framing anchors are installed on each side of the joist or truss. HGAM10 i HNI9 - F `, '�t Wit•... "�� `: ��^ \ •fin Moisture barrier 4 V not shown .. ... . . • • . .. Figure 1 •• •� •Frgure2.. • Figure 3 Typical MTSMM/HTSM Application •• •T;plcatHWIn$t;Jlajiplh Typical HGAM10 Installation • •.. .•• •.• •.. • .. . • • . . . • • • •• . • • • • • . . Page 7 of 13 ••• • • • ••• . . Simpson Strong-Tie . . . • . • . . • • . .. .. • . . .. .. •.. . • . ..• . . --------D vvwv VlillllV Page 1 of 3 B0.,in",De0atl'.entq BCIS Home Log Inv User Registration Hot Topics € Submit Surcharge ; Stats&Facts ( Publications•f� �® usiries ] �Sir BCIS Site Map t Links Search PraeSSI � Product Approval ! USER:Public User Regulation '-0-uct 6val Fteng>Pmt or Application h>Apolication List>App iicaQon Detail / FL# FL16294-R2 VVV Application Type Revision Code Version 2014 Application Status Approved ✓ Comments Archived Fj Product Manufacturer Nu-Vue Industries Inc. Address/Phone/Email 1055 E 29th street Hialeah,FL 33013 (305)694-0397 vtolat@sbcglobal.net Authorized Signature Maria Guardado vtolat@sbcg lobal.net Technical Representative Address/Phone/Email Quality Assurance Representative Address/Phone/Email Category Structural Components Subcategory Wood Connectors Compliance Method Evaluation Report from a Florida Registered Architect or a Licensed Florida Professional Engineer 2 Evaluation Report-Hardcopy Received Florida Engineer or Architect Name who developed Vipin N.Tolat the Evaluation Report Florida License PE-12847 Quality Assurance Entity National Accreditation&Management Institute Quality Assurance Contract Expiration Date 12/31/2016 Validated By Jesus Gonzalez, P.E. Validation Checklist-Hardcopy Received Certificate of Independence FL16294 R2 COI sFL16294 R2 COI s�nD205s Referenced Standard and Year(of Standard) Standard rd Year AISI 5100 2010 ASTM D1761 2006 • • • • ; ••• 2012 • •• • • • • ••• • Equivalence of Product Standards ••• ••: ••: ••• : : ••• Certified By Sections from the Code • ••• ••• 09: ••• • • • • • • • • • •• • • • • • • • • • •• • • • • • • • • ••• • • • • ••• • • • • • • • • • • • • • •• •• • • • •• •• https://www.floridabuilding.org/pr/pr_app dtl.aspx?param=wGhVXQWtDgsNc735fObM... 12/11/2015 .. . . . .. ... .. . . . . . . . . .. 000 . . . . . • .. . . . ... . . . • •.. . . . . . . . . . . .. .. . . . .. .: .:. Page 2 of 3 Product Approval Method Method 1 Option D Date Submitted 08/31/2015 Date Validated 09/01/2015 Date Pending FBC Approval 09/07/2015 Date Approved 10/16/2015 Summa of Products FL# Model,Number or Name Description 16294.1 ABS,AB7,NVHC 37,Tables 16 and 18a e angle Clips and 5 wa 17 9 9 9 P y grip clip Limits of Use Installation Instructions Approved for use in HVHZ:Yes FL16294 R2 II sgan034 odf Approved for use outside HVHZ:Yes Verified By: Vipin N.Tolat,P.E. PE 12847 Impact Resistant:N/A Created by Independent Third Pa Design Pressure:N/A Other: Evaluation Reports m Yes FLi6294 R2 AE scan0349pdf Created by Independent Third Party: Yes 16294.2 NVBH 24 and NVUH 26,Tables 2 Joist hangers and 3 Limits of Use Installation Instructions Approved for use in HVHZ:Yes FL16294 R2 II scan0349.odf Approved for use outside HVHZ:Yes Verified By: Vipin N.Tolat,P.E.PE 12847 Impact Resistant:N/A Created by Independent Third Party:Yes Design Pressure:N/A Other: Evaluation Reports FL16294 R2 AE scan0349.ndf Created by Independent Third Party:Yes 16294,3 NVHCR,NVHCL, NVSTA,NVHTA 18 gage Hurricane clips and 14 gage single and double Tables 9,10,11 straps Limits of Use Installation Instructions Approved for use in HVHZ:Yes FL16294 R2 II s an0349 odf Approved for use outside HVHZ:Yes Verified By: Vipin N.Tolat,P.E. PE 12847 Impact Resistant:N/A Created by Independent Third Party:Yes Design Pressure:N/A Other: Evaluation Reports FL16294 R2 AE scanQ34 odf Created by Independent Third Party:Yes 16294.4 NVJH,NVSO Tables 12 and 13 18 Gage and 16 Gage Joist hangers Limits of Use Installation Instructions Approved for use in HVHZ:Yes FL16294 R2 II ccan0349 j)df Approved for use outside HVHZ:Yes Verified By: Vipin N.Tolat,P.E.PE 12847 Impact Resistant:N/A Created by Independent Third Pa Design Pressure:N/A Party:Yes Other: Evaluation Reports FL15294 R2 AE scan0349 odf Created by Independent Third Party:Yes i ll, 16294.5 NVRT,Table 4 14 Gage Flat and twisted rafter ties. Limits of Use Installation Instructions Approved for use in HVHZ:Yes FL16294 R2 11 scan0 49 odf Approved for use outside HVHZ:Yes Verified By: Vipin N.Tolat,P.E.PE 12847 Impact Resistant:N/A Created by Independent Third Pa Design Pressure:N/A Party:Yes Other: Evaluation Reports FL.162.94 R2 AF s an0 4g rrif Created by Independent Third Party: Yes 1 G I 16294.6 NVSNP3,NV 358,NV 458,Tables Skewed Nail Plate and 14 Gage double straps. 6,7,8 Limits of Use Installation Instructions Approved for use in HVHZ:Yes FL16294 R2 11 cran0349nrif Approved for use outside HVHZ:Yes Verified By: Vipin N.Tolat,P.E.PE 12847 Impact Resistant:N/A •• 000 0 0 ••• Crea"by Independent Third Party: Yes Design Pressure:N/A . • •• • . • "uation Reports Other: • •• • • • • fL161P94 R2 AE scan0349, df •• 000 •• • . rgated by Independent Third Party:Yes 16294.7 NVSTA,NVHTA Tables 20 and 21 14 Gage Single and Double Straps Limits of Use • ••• ••• ••• Approved for use in HVHZ:*ves• • • Pi1s=al tipn Instructions Approved for use outside HVN�:Y • •• • • FL162J4 R2 II scan0349 odf • • • !/erg iep B:: Vipin N.Tolat,P.E.PE 12847 Impact Resistant:N/A •• • • . tidateti by Independent Third Party:Yes Design Pressure: N/A Evaluation Reports Other: ••• • • • • ••• • • • • • • • • • • • • https://www.floridabuilding.org/pr/pr app cftl.aspx?param=WG1NXQwtDgsNc735f0bM... 12/11/2015 •• • • • •• ••• •• • • 4:6 • • • • 0:6 • • • • • • • • • • •• •• • • • •• •• • • • ••• • • • ••• l8 Page 8 • T ABLE 6 — SKEWED NAIL PLATE I Fastener Product� Steel Schedule Allowable Lcads {lbs) �3� Code Geuge Each End Gravity Aplin NVSNP3 i6 J 1�fa 1Ys• t3(a (6) 8d x 1)4" 594 ! 594 334' For Uplift, use two NVSNP3, one at top chord and one at bottom chord of the supporting ♦ and supported � c c Trusses in compliance with section 2321.7 of the FBC. • CD=1.0-Grovity '4a' 33b' CD=1.6-Uplift Supporting Tuss • i -Ne' %7 t OP & bottom • 0 die" 3117 chord 1- p p 33§" • 0 Supported 'cuss Top a 'ifs tY," tY;" 34a dt bottom chord .Hole pattern is holes -Xe" dia oror max mrror image of the i oppsite side NVSNP3 Installation 144 G Strops NV358%NV458 TABLE 7 - NV358-2 Ply Seat TABLE 8 - NV458-3 Pty Seat Assembly 14G Strap Dimension Total No. Total No. Allowable Total No. Total No. Allowable Product Product H of Fasteners of Fosteners Loods lbs of Fasteners of Fasteners Code Code (inches) in 2 Straps in at ( 7 in 2 Straps in Seat Loads (lbs) 10d x 3" 10d x 3" Uplift L7 t.2 10d x 3" 10d x 3" UMO u ' -12 NvrH7s 72 N &-14 NVTH18 14 C 8 G 8 2245 7961 1839 8 8 2245 2783 2078 '6 (1 -76 NVTH2O 16 10 8 2525 2206 2068 10 8 2525 3131 2338 12 8 2806 2452 2298 12 8 2806 3479 2597 NVTH24 20 14 8 3086 2697 2528 14 8 3086 3827 2857 -22 NVTH2fi 22 F 16 8 3367 2942 2758 M-24 NVTH28 24 i6 8 3357 4175 3177 *4%-26 NVTH30 26 CD=1.6 for Uplift, L1 & L2. fYs" Nva -32 NVTH36 32 , fV 4 -44 NVTH48 44 3'NV358 436'NV458 1Y4- 1 2 t � a 13; d F- 0 ryyz� 3>E"NV358' 2 ply—t NV358 516"NV458 j3 ply seat NV458 a _� I H UPUFT Holes Dia.�(6 Side View 140NVIH W* , i�t^e'dl4'Nin.Pi+t/4'QEn. C,oncretr Hales•• Oia.32%' Eorotrele Ae beam e Qet termed CMssonrO • aY4L1 =Soles • ••• • ••• • 431' • • • s • • • ••i i • • • • • • 18G Seat Detail • • • •• • • • • • . l 6? Page 6 TABLE 4 NVRT — Flat and Twisted Rafter Ties 1"x14 G NVRT Wood to Wood Length Product 16d Fasteners Maximum Uplift Load (lbs) (in) Code Gouge TOTAL In Mega me m�er* Flat Ties Twisted Ties 12 NVRT-1214 6 3 588 5 588 5 8 4 725 724 16 NVRT-16 14 10 5 861 860 18 NVRT-18 14 12 6 998 996 20 NVRT-20 14 14 7 1135 1132 22 NVRT-22 14 NVRT Wood to Concrete No. of 16d nails No. of J" diameter Maximum Uplift 24 NVRT-24 14 to Wood Framing Tapcons to Concrete Load (lbs) 30 NVRT-30 14 3 3 588 5 36 NVRT-36 14 V 4 4 722 4$ NVRT-48 14 5 4 856 6 5 991 Notes: 7 5 1125 1, Specify "F" for Flat and "T" for Twisted when 1" 1 ordering, 4 z 4 Do not Use circled ' hates 2. Fastener volues are based on a minimum 14" 16d thick wood members. O 1" 3. * Indicates no. of nails in each connected 11 O #02r "7apcons woad member. !24, ITW topcons shall be embedded a minimum of }f- 1j" into concrete vebeom or tiebeam formedwith concrete filled masonry. ITW topcons shall !� have a min, edge distance of 24" and minimum NVRT Anchor staggered spacing of %a as shown. Notes dia. All 5. Use only in Non—HVHZ. 6, For Uplift loads CD-1.6 UPLIFT tcnc° •.ii• ' a D�° e • e • • • • s a • e - Y, e s e e s e e e e e • e 1 �p i' �— LENGTH 1 FLAT HALF HALF i Connected Connected to truss •to wsl� • • • • • • •♦♦♦ • • • • 2j* min. edge distance e e o o e • • e e e e » • s ep �� 4 Y • • • • TWISTED Tie Beam formed with • ••• ••• ••• on•a^ete•fiiled mosonary or • • • • • condFet le beom •• • • • • • • • • • •• • • • • • • • • ••• • • • • ••• • • • • • • • • • • • • • •• •• • • • •• •• SIM200804 Used for Florida State Wide Product Approval # FL11468 Products on this Report which are approved: Product FL# Product FL# Product FL# Product FL# HGU5.25-SDS 11468.1 HGUS26-2 11468.7 HGUS7.37/10 11468.13 MGU3.63-SDS 11468.21 HGU5.50-SDS 11468.1 HGUS26-3 11468.7 HGUS7.37/12 11468.13 MGU5.25-SDS 11468.21 HGU7.00-SDS 11468.1 HGUS26-4 11468.7 HGUS7.37/14 11468.13 MGU5.50-SDS 11468.21 HGU7.25-SDS 11468.1 HGUS28 11468.8 HHGU5.50 11468.14 MGU7.00-SDS 11468.21 HGU9.00-SDS 11468.1 HGUS28-2 11468.8 HHGU7.00 11468.14 MSCPT2 11468.22 HGUQ210-2 11468.2 HGUS28-3 11468.8 HHGU7.25 11468.14 MSCPT2-2 11468.22 HGUQ210-3 11468.2 HGUS28-4 11468.8 HHGU9.00 11468.14 MSCPT2-2N 11468.22 HGUQ210-4 11468.2 HGUS3.25/10 11468.9 HHUS210-3 11468.15 MSCPT2N 11468.22 HGUQ26-2 11468.3 HGUS3.25/12 11468.9 HHUS210-4 11468.15 THA426 11468.23 HGUQ26-3 11468.3 HGUS410 11468.10 HHUS5.50/10 11468.15 THGB2 11468.24 HGUQ26-4 11468.3 HGUS412 11468.10 HHUS7.25/10 11468.15 THGB3 11468.24 HGUQ28-2 11468.3 HGUS414 11468.10 HUCQ1.81/11-SDS 11468.16 THGBH2 11468.24 HGUQ28-3 11468.3 HGUS46 11468.10 HUCQ1.81/9-SDS 11468.16 THGBH3 11468.24 HGUQ28-4 11468.3 HGUS48 11468.10 HUCQ210-2-SDS 11468.16 THGBH4 11468.24 HGUQ410 11468.4 HGUS5.25/10 11468.11 HUCQ210-3-SDS 11468.16 THGQ2-SDS3 11468.25 HGUQ46 11468.4 HGUS5.25/12 11468.11 HUCQ310-SDS 11468.17 THGQ3-SDS3 11468.25 HGUQ48 11468.4 HGUS5.50/10 11468.11 HUCQ410-SDS 11468.17 THGQH2-SDS3 11468.25 HGUS2.75/10 11468.5 HGUS5.50/12 11468.11 HUCQ412-SDS 11468.17 THGQH3-SDS3 11468.25 HGUS2.75/12 11468.5 HGUS5.50114 11468.11 HUCQ5.25/11-SDS 11468.17 THGQH4-SDS3 11468.25 HGUS2.75/14 11468.5 HGUS5.62/10 11468.11 HUCQ5.25/9-SDS 11468.17 THGW3-3 11468.26 HGUS210-2 11468.6 HGUS5.62/12 11468.11 HUCQ610-SDS 11468.17 THGW3-4 11468.26 HGUS210-3 11468.6 HGUS5.62/14 11468.11 HUCQ612-SDS 11468.17 THGW4-3 11468.26 HGUS210-4 11468.6 HGUS6.88/10 11468.12 HUS1.81/10 11468.18 THGW4-4 11468.26 HGUS212-3 11468.6 HGUS6.88/12 11468.12 LGU3.25-SDS 11468.19 THJU26 11468.27 HGUS212-4 11468.6 HGUS6.88/14 11468.12 LGU3.63-SDS 11468.19 THJU26-W 11468.27 HGUS214-3 11468.6 HGUS7.25/10 11468.13 LGU5.25-SDS 11468.19 HGUS214-4 11468.6 HGUS7.25/12 11468.13 LUS310 11468.20 HGUS26 11468.7 HGUS7.25/14 11468.13 LUS36 11468.20 2; *00 ... ... ... p.. 0*0 SIMPSON Sj6OI�IG�I*E e,OM'0l N'r, INC ... . . . . ... . . . . . . . . . . . . . .. .. . . . .. .. ... . . . ... . . TABLE 1 HGUS Allowable Loads Dimensions Fasteners Doug Fir Larch/Southern Pine Allowable loads Model No. W H B Carrying Carried Uplift Floor Snow Roof Wind Member Member (160) (100) (115) (125) (160) HGUS2.75/10 23/4 815/16 4 46-16d 16-16d 3630 8370 8615 8780 8940 HGUS2.75/12 23/4 1015/16 4 56-16d 20-16d 4055 8780 9090 9155 9155 HGUS2.75/14 23/4 1413/16 4 66-16d 22-16d 5380 8985 9325 9555 10015 HGUS210-2 3 7/16 9 1/16 4 46-16d 16-16d 3630 8940 8940 8940 8940 HGUS210-3 411/16 91/8 4 46-16d 16-16d 3630 8940 8940 8940 8940 HGUS210-4 611/16 9118 4 46-16d 16-16d 3630 8940 8940 8940 8940 HGUS212-3 415/16 1025/32 4 56-16d 20-16d 4055 9155 9155 9155 9155 HGUS212-4 611/16 101/2 4 56-16d 20-16d 4055 9155 9155 9155 9155 HGUS214-3 415/16 1225/32 4 66-16d 22-16d 5380 10015 10015 10015 10015 HGUS214-4 611/16 121/2 4 66-16d 22-16d 5380 10015 10015 10015 10015 HGUS26 15/8 5 318 4 20-16d 8-16d 1765 3750 3750 3750 3750 HGUS26-2 3 7/16 5 3/8 4 20-16d 8-16d 2325 4110 4730 5140 5460 ! 1 HGUS26-3 415/16 41/2 4 20-16d 8-16d 2325 4110 4730 5140 5465 HGUS26-4 611/16 53/8 4 20-16d 8-16d 2325 4110 4730 5140 5465 HGUS28 1518 7 1/16 4 36-16d 12-16d 3015 5260 5260 5260 5260 HGUS28-2 3 7/16 7 1/16 4 36-16d 12-16d 3220 7115 7925 7925 7925 HGUS28-3 415-16 71/8 4 36-16d 12-16d 3220 7115 7925 7925 7925 HGUS28-4 611116 7118 4 36-16d 12-16d 3220 7115 7925 7925 7925 HGUS3.25/10 3114 85/8 4 46-16d 16-16d 3630 8940 8940 8940 8940 HGUS3.25/12 31/4 105/8 4 56-16d 20-16d 4055 9155 9155 9155 9155 HGUS410 35/8 911/16 4 46-16d 16-16d 3630 8940 8940 8940 8940 HGUS412 35/8 10 7/16 4 56-16d 20-16d 4055 9155 9155 9155 9155 HGUS414 35/8 12 7/16 4 66-16d 22-16d 5380 10015 10015 10015 10015 HGUS46 35/8 4 7/16 4 20-16d 8-16d 2325 4110 4730 5140 5465 HGUS48 35/8 7 1/16 4 36-16d 12-16d 3220 7115 7925 7925 7925 HGUS5.25/10 51/4 9 1/16 4 46-16d 16-16d 3630 8940 8940 8940 8940 HGUS5.25/12 51/4 10 9/16 4 56-16d 20-16d 4055 9155 9155 9155 9155 HGUS5.50/10 51/2 815/16 4 46-16d 16-16d 3630 8940 8940 8940 8940 HGUS5.50/12 51/2 101/2 4 56-16d 20-16d 4055 9155 9155 9155 9155 HGUS5.50/14 5112 12112 4 66-16d 22-16d 5380 10015 10015 10015 10015 HGUS5.62/10 55/8 87/8 4 46-16d 16-16d 3630 8940 8940 8940 8940 HGUS5.62/12 55/8 107/16 4 56-16d 20-16d 4055 9155 9155 9155 9155 HGUS5.62/14 55/8 127/16 4 66-16d 22-16d 5380 10015 10015 10015 10015 HGUS6.88/10 67/8 813/16 4 46-16d 16-16d 3630 8940 8940 8940 8940 HGUS6.88/12 67/8 1013/16 4 56-16d 20-16d 4055 9835 9835 9835 9835 HGUS6.88/14 67/8 1213/16 4 66-16d 22-16d 5380 11110 11110 11110 11110 HGUS7.25/10 71/4 8 7/16 4 46-16d 16-16d 3630 8910 9625 9625 9625 HGUS7.25/12 71/4 10 7/16 4 56-16d 20-16d 4055 9835 9835 9835 9835 HGUS7.25/14 71/4 12 7/16 4 66-16 2 -1 d 3V J. 11110 11110 11110 11110 HGUS7.37/10 73/8 89/16 4 46s16d ;1E;--Ad : 36Z : 8910 9625 9625 9625 HGUS7.37/12 73/8 109/16 4 56-fU ':A14d • 9835 9835 9835 9835 HGUS7.37/14 73/8 129/16 4 66-16d 22-16d 5380 11110 1 11110 1 11110 11110 . ... ... ... ... . .. . . . . . . . . . .. . . . . . . . . Page 8 of 19 Simpson Strong-Tie . . . . . . . . . . ... . . . ... . . r^iC::� n ° _ F ' CA n � ° e- n n^� • n 0 ' •I i Figure 1 Figure 2 Typical HGUS Hanger Typical HHUS Hanger TABLE 2 HHUS Allowable Loads Dimensions Fasteners Doug Fir larch/Southern Pine Allowable loads Model No. W H B Carrying Carried Uplift Floor Snow Roof Wind Member Member (160) (100) (115) (125) (160) HHUS210-3 411/16 9 3 30-16d 10-16d 3580 5455 5900 5900 5900 HHUS210-4 61/8 8 7/8 3 30-16d 10-16d 3610 5530 5900 5900 5900 HHUS5.50/10 51/2 9 3 30-16d 10-16d 3610 5530 6355 6910 7665 HHUS7.25/10 71/4 9 31/* 30-16d 10-16d 3610 5530 6355 6910 7835 ;� aU H . I 1 i � I o Figure 3 Figure 4 Typical HUS Hanger Typical LUS Hanger TABLE 3 HUS and LUS Han er Allowable Loads Dimensions Fhsttjrs; ; Qoug Fir Larch/Southern Pine Allowable loads Model No. •Garry'inn +CernecF• �Jptift Floor Snow Roof Wind W H B •*Member "Member (160) (100) (115) 1 (125) (160) HUS1.81/10 113/16 87/8 3 30-16d 10-16d 3000 4310 4465 4565 4930 LUS310 2 9/16 71/4 2• 6.16d • 4- 6d _M 115'• 1325 1525 1655 2120 LUS36 2 9/16 51/4 2 • 4!-1,6d' -1 d J1GO • 410 470 510 655 •• . . • . • Page 9 of 19 ... . . . . s o* . . Simpson Strong-Tie . . . . . . . . . . . .. .. . . . .. .. 23 ESR-2549 Used for Florida State Wide Product Approval# FL 10655 5 Products on this Report which are SIMPSON STRONG-TIE COMPANY, approved: INC Product FL# Product FL# Product FL# Product FL# HHUS210-2 10655.1 HU36 10655.42 HUC44 10655.82 SUL210 10655.122 HHUS26-2 10655.2 HU38 10655.43 HUC46 10655.83 SUL210-2 10655.123 HHUS28-2 10655.3 HU410 10655.44 HUC48 10655.84 SUL214 10655.124 HHUS410 10655.4 HU412 10655.45 HUC610 10655.85 SUL24 10655.125 HHUS46 10655.5 HU414 10655.46 HUC612 10655.86 SUL26 10655.126 HHUS48 10655.6 HU416 10655.47 HUC614 10655.87 SUL26-2 10655.127 HSUL210-2 10655.7 HU44 10655.48 HUC616 10655.88 SUL414 10655.128 HSUL214-2 10655.8 HU46 10655.49 HUC66 10655.89 SUR210 10655.129 HSUL26-2 10655.9 HU48 10655.50 HUC68 10655.90 SUR210-2 10655.130 HSUL410 10655.10 HU610 10655.51 HUS210 10655.91 SUR214 10655.131 HSUL414 10655.11 HU612 10655.52 HUS210-2 10655.92 SUR24 10655.132 HSUL46 10655.12 HU614 10655.53 HUS212-2 10655.93 SUR26 10655.133 HSUR210-2 10655.13 HU616 10655.54 HUS26 10655.94 SUR26-2 10655.134 HSUR214-2 10655.14 HU66 10655.55 HUS26-2 10655.95 SUR414 10655.135 HSUR26-2 10655.15 HU68 10655.56 HUS28 10655.96 U210 10655.136 HSUR410 10655.16 HUC210-2 10655.57 HUS28-2 10655.97 U210-2 10655.137 HSUR414 10655.17 HUC210-3 10655.58 HUS410 10655.98 U210-3 10655.138 HSUR46 10655.18 HUC212-2 10655.59 HUS412 10655.99 U21 OR 10655.139 HU210 10655.19 HUC212-3 10655.60 HUS46 10655.100 U214 10655.140 HU210-2 10655.20 HUC214-2 10655.61 HUS48 10655.101 U24 10655.141 HU210-3 10655.21 HUC214-3 10655.62 LU210 10655.102 U24-2 10655.142 HU212 10655.22 HUC216-2 10655.63 LU24 10655.103 U24R 10655.143 HU212-2 10655.23 HUC216-3 10655.64 LU26 10655.104 U26 10655.144 HU212-3 10655.24 HUC24-2 10655.65 LU28 10655.105 U26-2 10655.145 HU214 10655.25 HUC26-2 10655.66 LUS210 10655.106 U26R 10655.146 HU214-2 10655.26 HUC28-2 10655.67 LUS210-2 10655.107 U310 10655.147 HU214-3 10655.27 HUC310 10655.68 LUS214-2 10655.108 U314 10655.148 HU216-3 10655.29 HUC310-2 10655.69 LUS24 10655.109 U34 10655.149 HU24-2 10655.30 HUC312 10655.70 '�✓LUS24-2 10655.110U36 10655.150 HU26 10655.31 HUC312-2 10655.71 LUS26 10655.111 10H U410 10655.151 HU26-2 10655.32 HUC314 10655.72 LUS26-2 10655.112 U41 OR 10655.152 HU28 10655.33 HUC314-2 10655.73 LUS28 10655.113 U414 10655.153 HU28-2 10655.34 HUC316 10655.74 LUS28-2 10655.114 U44 10655.154 HU310 10655.35 HUC34 10655.75 LUS410 10655.115 U44R 10655.155 HU310-2 10655.36 HUC36 10655.76 LUS414 10655.116 U46 10655.156 HU312-2 10655.37 HUC38 1065017: •tV-14,1 ••• 10655.117 U46R 10655.157 HU314 10655.38 HUC410 01.065-%Z8.'; ;L:J= •, 10655.118 U610 10655.158 HU314-2 10655.39 HUC412 •1Dt5&29*•: eil-1144 ••� 10655.119 U610R 10655.159 HU316 10655.40 HUC414 10655.80 MUS26 10655.120 U66 10655.160 HU34 10655.41 HUC416 . 10ji5.5.81 •.. ."US29.. ,10655.121 U66R 10655.161 • • • • • • • • • • z� Page 7 of 10 ESR-2549 TABLE 4-ALLOWABLE LOADS FOR THE LUS SERIES JOIST HANGERS DIMENSIONS' COMMON NAILSZ ALLOWABLE LOADS3,4 MODEL (inches) (Quantity-Type) (lbs) NO. Uplift6 Download W H B Header Joists CD=1.33 or =1.6 CI)=1.0 CD=1.15 CD=1.25 LUS24 19/1, 31/8 13/4 4-10d 2-10d 465 640 735 800 \/ LUS26 19/16 43/4 13/4 4-10d 4-10d 930 830 955 1,040 LUS28 19/16 65/a 13/4 6-10d 4-10d 930 1,055 1,215 1,320 LUS210 19/16 713116 13/4 8-10d 4-10d 930 1,275 1,465 1,595 LUS24-2 3'/a 31/6 2 4-16d 2-16d 440 765 880 960 LUS26-2 3'/a 4's/,s 2 4-16d 4-16d 1,140 1,000 1,150 1,250 LUS28-2 3'/a 7 2 6-16d 4-16d 1,140 1,265 1,455 1,585 LUS210-2 3'/a 8'/1s 2 8-16d 6-16d 1,710 1,765 2,030 2,210 LUS214-2 3'/a 1015/1, 2 10-16d 6-16d 1,710 2,030 2,335 2,540 LUS44 39/,6 3 2 4-16d 2-16d 440 765 880 960 LUS46 39/,6 4'/4 2 4-16d 4-16d 1,140 1,000 1,150 1,250 LUS48 39/1, 6% 2 6-16d 4-16d 1,140 1,265 1,455 1,585 LUS410 39/16 8% 2 8-16d 6-16d 1,710 1,765 2,030 2,210 LUS414 39/16 103/4 2 10-16d 6-16d 1,710 2,030 2,335 2,540 For SI: 1 inch=25.4 mm, 1 Ibf=4.45 N. 1.Refer to Figure 4(this page)for definitions of hanger nomenclature(W,H,B). 2.Refer to Section 3.2.3 of this report for nail sizes and required minimum physical properties. 3.Tabulated allowable loads must be selected based on duration of load as permitted by the applicable building code. 4.When LUS Series hangers support joists,they provide torsional resistance,which is defined as a moment of not less than 75 pounds(334 N)times the depth of the joist at which the lateral movement of the top or bottom of the joist with respect to the vertical position of the joist is 0.125 inch(3.2 mm). 5.Joist nails must be driven at a 45 degree angle through the joist into the header/beam(double shear nailing)to achieve the tabulated loads. 6.Allowable uplift loads have been increased for wind or earthquake loading with no further increase is allowed. The allowable uplift loads must be reduced when other load durations govern. • • • C H 0 C 0 • � n B FIGURE 4-LUS SERIES HANGER •• ••• • • • • • •• • •• • • • • ••• • •• ••• •• • • • •• • ••• ••• ••• ••• • •• • • • • • • • • • •• • • • • • • • • ••• • • • • ••• • • • • • • • • • • • • • •• •• • • • •• •• ••• • • • ••• • • Page 5 of 10 ESR-2549 TABLE 2-ALLOWABLE LOADS FOR THE U SERIES JOIST HANGERS DIMENSIONS' FASTENERS2 ALLOWABLE LOADS ' MODEL (inches) (Quantity-Type) 6 lbs Uplift Download No. W H B Headers Joist CD=1.33 or CD=1.0 CD=1.15 Co=1.25 =1.6 10d 16d 10d 16d 10d 16d U24 19/16 3'/e 2 4 2-10dx1'/2 240 445 530 510 610 555 665 U26 19/16 43/4 2 6 4-10dx11/2 480 665 800 765 920 830 1,000 U210 19/16 713/16 2 10 6-10dx11/2 720 1,110 1,330 1,275 1,530 1,390 1,660 U214 19/16 10 2 12 8-10dx1'/2 960 1,330 1,595 1,530 1,835 1,665 1,995 /� U34 29/16 33/6 2 4 2-10dx11/2 240 445 530 510 610 555 665 f R I U36 29/16 53/6 2 8 4-10dx1112 480 890 1,065 1,025 1,225 1,110 1,330 \� U310 29/16 87/8 2 14 6-10dx1'/2 720 1,555 1,860 1,790 2,140 1,940 2,330 U314 29/16 10'/2 2 16 6-10dx11/2 720 1,775 2,130 2,040 2,450 2,220 2,660 U44 39/16 27/8 2 4 2-10d 295 445 530 510 610 555 665 U46 39/16 47/6 2 8 4-10d 590 890 1,065 1,025 1,225 1,110 1,330 U410 39/16 83/6 2 14 6-10d 890 1,555 1,860 1,790 2,140 1,940 2,330 U414 39/16 10 2 16 6-10d 890 1,775 2,130 2,040 2,450 2,220 2,660 U24-2 31/8 3 2 4 2-10d 295 445 530 510 610 555 665 U26-2 31/8 5 2 8 4-10d 590 890 1,065 1,025 1,225 1 1,110 1,330 U210-2 31/8 81/2 2 14 6-10d 890 1,555 1,860 1,790 2,140 1,940 2,330 U66 51/2 5 2 8 4-10d 590 890 1,065 1,025 1,225 1,110 1,330 U610 5'/2 81/2 2 14 6-10d 890 1,555 1,860 1,790 2,140 1,940 2,330 U210-3 51/2 73/4 2 14 6-10d 890 1,555 1,860 1,790 2,140 1,940 1 2,330 U24R 21/16 35/6 2 4 2-10dx1'/2 240 445 530 510 610 555 665 U26R 21/16 55/6 2 8 4-10dx1'/2 480 890 1,065 1,025 1,225 1,110 1,330 U210R 2'/16 91/e 1 2 14 6-10dx11/2 720 1,555 1,860 1,790 2,140 1,940 2,330 U44R 41/16 2% 2 4 2-16d 355 445 530 510 610 555 665 U46R 41/16 45/6 2 8 4-16d 710 890 1,065 '1,025 1,225 1 1,110 1,330 U410R 41/16 8'/8 2 14 6-16d 1,065 1,555 1,860 1,790 2,140 1,940 2,330 U66R 6 5 2 8 4-16d 710 890 1,065 1,025 1,225 1,110 1,330 U610R 6 8'/2 2 14 6-16d 1,065 1,555 1,860 1,790 2,140 1,940 2,330 For SI: 1 inch=25.4 mm,1 Ibf=4.45 N. 1.Refer to Figure 2(this page)for definitions of hanger nomenclature(W,H,B). 2.Refer to Section 3.2.3 of this report for nail sizes and required minimum physical properties 3.Tabulated allowable loads must be selected based on duration of load as permitted by the applicable building code. 4.U Series hangers provide torsional resistance,which is defined as a moment of not less than 75 pounds(334 N)times the depth of the joist at which the lateral movement of the top or bottom of the joist with respect to the vertical position of the joist is 0.125 inch(3.2 mm). 5.The quantity of 10d or 16d common nails specified in the"Header"column under"Fasteners"is required to achieve the tabulated allowable loads shown in the Allowable Download"10d"or"l 6d"columns. 6.Allowable uplift loads are for hangers installed with either 10d or 16d common nails into the supporting header/beam,and have been increased for wind or earthquake loading with no further increase allowed. The allowable uplift loads must be reduced when other load durations govern. �.for U24} � ,.,*max, •,e+ 6 q ' e' � , • ill r. • FIGURE 2-U SERIES HANGER ••• •pfGURLP34-A0$ERIEV eAWOgR FIGURE 3b-HUC SERIES HANGER (See Table 2-above) • • • (See Table 3-Next Paget • (See Table 3,Footnote 3-Next Page) • •• • • • • • • • • ••• • • • • ••• • • • • • • • • • • • • • •• •• • • • •• •• ••• • • • ••• • • PLF STRUCTURAL ENGINEERS, INC. Project Name: 1051 NE 92 St.Miami Shores CA# 30758 Project No.: 150907 Sheet No.: _ 4960 SW 52nd ST, Suite#407, Davie, FL 33314 Calculated By: Date: Ph: (954) 533-3237 Fax: (954) 533-2117 Checked By: Date: email: pfiallo@plfengineers.com COrtb pEEA4Lb0OJiJ N'/ !Y✓-V r ryam%L�Z.l1'YYI'Y�''yy�•�t "t- �G PCcr `�GOYIS I spq w°dmC F rte-�•.E to p s f ,+-) gOp�1� 10,2' .- Aif�7l�Gl,ic. Go�v�N - P= 15( 05 L . �, r3 dips cr, LL ' .. ... . . . . . .. . .. . . . . ... . .. ... .. . . . .. . ... ... ... ... . .. . . . . . . . . . •• . • . • . • . • . . . . . . . . . . . .. .. ..• . .. .. ... . . ... . . Title: Job# Dsgnr: Date: 8:45AM, 4 FEB 16 2� Description Scope: Rev: 580007 - --- - - - ---- ---.--- - -- -- User:KW-0605358,Ver 5.8.0,1-Dec-2003Page 1 (c)1983-2003 ENERCALC Engineering Software Mufti-Span Steel Beam 150907 additional works.ecw:Calculations Description S13-2 General Information Code Ref:AISC 9th ASD, 1997 UBC,2003 IBC,2003 NFPA 5000 Fy-Yield Stress 50.00 ksl Load Duration Factor 1.00 Spans Considered Continuous Over Supports !Span Information Description 16.5 7.4 Span ft 16.50 7.40 Steel Section waxes w8x15 End Fixity Pin-Pin Pin-Pin Unbraced Length ft 1.33 1.33 Loads „ Live Load Used This Span? Yes Yes �J! Dead Load k/ft 0.479 0.479 Live Load k/ft 0.408 0.408 Results Mmax @ Cntr k-ft 19.89 0.03 @ X= It 6.71 7.15 Max @ Left End k-ft 0.00 -22.72 Max @ Right End k-ft -22.72 0.00 fb:Actual psi 23,031.8 23,031.8 Fb:Allowable psi 33,000.0 33,000.0 Bending OK Bending OK fv:Actual psi 4,375.9 3,196.9 Fv:Allowable psi 20,000.0 20,000.0 Reactions & Deflections Shear @ Left k 5.94 6.35 Shear @ Right k 8.69 0.21 Reactions... DL @ Left k 3.21 8.13 LL @ Left k 2.73 6.92 Total @ Left k 5.94 15.05 DL @ Right k 8.13 0.11 LL @ Right k 6.92 0.10 Total @ Right k 15.05 0.21 Max. Deflection in -0.591 0.058 @X= ft 7.48 2.71 Span/Deflection Ratio 335.3 1,524.0 Query Values- - - - - - - -- - - - - Location ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Shear k 5.94 6.35 0.00 0.00 0.00 0.00 0.00 0.00 Moment k-ft 0.00 -22.72 0.00 0.00 0.00 0.00 0.00 0.00 Max. Deflection in 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 •• ••• • • • • • •• •• • • • • • • • • • •• • • • • • • 900 PLF STRUCTURAL ENGINEERS, INC. Project Name: 1051 NE 92 St.Miami Shores CA# 30758 Project No.: 150907 Sheet No.: 2� 4960 SW 52nd ST, Suite#407, Davie, FL 33314 Calculated By: Date: Ph: (954) 533-3237 Fax: (954) 533-2117 Checked By: Date: email: pfiallo@plfengineers.com (SOS Z)lb'e4- 00 2Sx �% \--- !yr//)err 11r"?, ^ e �Q x )_ /fib//x Lf.l�r 1�,6 ✓ ��. P / 5 //Z /65 - ?� cfs .. ... . . . . . .. • . • • .. ... .. . . . .. . •.• •.• •o: •o: . .. . . . . . . . . . •• . • . • . • . • ... . . . . ... . . . . . . . . . . . . . .. .. . . . .. .. ... . . . ... . . Title: Job# Dsgnr: Date: 12:31 PM, 9 FEB 16 ��' Description Scope _ Rev: 580008 User:KW-0605358,Ver 5.8.0,1-Dec-2003Steel Column Page 1 (c)1983-2003 ENERCALC Engineering Software 150907 additional works.ecw:Calculalions Description STEEL COLUMN General Information Code Ref:AISC 9th ASD, 1997 UBC,2003 IBC,2003 NFPA 5000 n Steel Section HSS3.5XO.216 Fy 35.00 ksi X-X Sidesway: Restrained Duration Factor 1.000 Y-Y Sidesway: Restrained Column Height 8.250 ft Elastic Modulus 29,000.00 ksi End Fixity Pin-Pin X-X Unbraced 8.250 It Kxx 1.000 Live&Short Term Loads Not Combined Y-Y Unbraced 8.250 ft Kyy 1.000 Loads Axial Load... Dead Load 8.13 k Ecc.for X-X Axis Moments 0.000 in Live Load 6.92 k Ecc.for Y-Y Axis Moments 0.000 in Short Term Load k Summary Column Design OK Section:HSS3.5XO.216, Height= 8.25ft,Axial Loads: DL= 8.13, LL= 6.92, ST= O.00k, Ecc. = 0.000in Unbraced Lengths: X-X= 8.25ft, Y-Y= 8.251t Combined Stress Ratios Dead Live DL+LL DL+ST+(LL if Chosen) AISC Formula H1 -1 0.2688 0.2288 0.4976 0.2688 AISC Formula H1 -2 0.1861 0.1584 0.3446 0.1861 AISC Formula H1 -3 XX Axis : Fa calc'd per Eq.E2-1,K*Llr<Cc YY Axis: Fa calc'd per Eq._E2-1.K*Llr<Cc Stresses Allowable&Actual Stresses Dead Live DL+LL DL+Short Fa:Allowable 14.54 ksi 14.54 ksi 14.54 ksi 14.54 ksi fa:Actual 3.91 ksi 3.33 ksi 7.24 ksi 3.91 ksi Fb:xx:Allow[F1-6] 23.10 ksi 23.10 ksi 23.10 ksi 23.10 ksi Fb:xx:Allow[F1-7]&[F1-8] 23.10 ksi 23.10 ksi 23.10 ksi 23.10 ksi fb:xx Actual 0.00 ksi 0.00 ksi 0.00 ksi 0.00 ksi Fb:yy:Allow[F1-6] 23.10 ksi 23.10 ksi 23.10 ksi 23.10 ksi Fb:yy:Allow[F1-7]&[F1-8] 23.10 ksi 23.10 ksi 23.10 ksi 23.10 ksi fb:yy Actual 0.00 ksi 0.00 ksi 0.00 ksi 0.00 ksi Analysis Values F'ex: DL+LL 20,803 psi Cm:x DL+LL 0.60 Cb:x DL+LL 1.00 F'ey:DL+LL 20,803 psi Cm:y DL+LL 0.60 Cb:y DL+LL 1.00 F'ex: DL+LL+ST 20,803 psi Cm:x DL+LL+ST 0.60 Cb:x DL+LL+ST 1.00 F'ey:DL+LL+ST 20,803 psi Cm:y DL+LL+ST 0.60 Cb:y DL+LL+ST 1.00 Max X-X Axis Deflection O.Ot�(fi[I At'; ;OAOQ% ; N4x"-Y Axis Deflection 0.000 in at 0.000 ft •• ••• •• • • • •• • ••• ••• ••• ••• • •• • • • • • • • • ••• • • • • ••• • • • • • • • • • • • • • •• •• • • • •• •• ••• • • • ••• • • Title: Job# Dsgnr: Date: 12:31 PM. 9 FEB 16 Description fScope: Rev: 560008 --- -- --— -- —— --- -- — User:KW-0605358,Ver 5.80,1-Dec-2003Steel Column Page 2 (c)1983-2003 ENERCALC Engineering Software 150907 additional works.ecw:Calculations Description STEEL COLUMN Section Properties HSS3.5X0.216 Diameter 3.500 in Weight 7.07#/ft Values for LRFD Design.... Ixx 2.840 in4 1 5.690 in4 lyy 2.840 in4 CW 3.25 in6 Thickness 0.201 in Sxx 1.630 in3 Zx 2.190 in3 Area 2.08 in2 Syy 1.630 in3 Zy 2.190 in3 Rxx 1.170 in 0.000 Ryy 1.170 in Section Type= HSS-Pipe • ••• •. • •• •. • •• • •• • 000 V ••• • • • ••• • • PLF STRUCTURAL ENGINEERS, INC. Project Name: 1051 NE 92 St.Miami Shores CA# 30758 Project No.: 150907 Sheet No.: 3� 4960 SW 52nd ST, Suite#407, Davie, FL 33314 Calculated By: Date: Ph: (954) 533-3237 Fax: (954) 533-2117 Checked By: Date: email: pfiallo@plfengineers.com ge�a AVeu �G j12 m SB-J _ -- — � �r�A�bowr►� D L ZxB/� CPQ P2-) TIG .f�oor�nf /(o�sf q�y2': gr_ MY, X Y i�iOr/5 A _�_ � ,ra►rtrDPyf 2 OX 4- 2xX3,8/6.5 �` 2/Og136 lbs 4- a>3�,qc/ -F (21 Y2, ►bS� } P�N LL P - '4"* �vf2'x `lvl's� l -795; 2- /)s ,1>0 U-)Q • DL+ LL P = 21g2r //,-,5 4- t35512AJ - 3g 38 l6S Gs pz .32l014S�- 2_ s/�5 /�s'x g,8 :•.g"1?•,52 �.2..16s �{�•• �' so, s , "c . .. . . . . ... . . . . ... . . . . . . . . . . . . . .. .. . . . .. .. ... . . . ... . . PLF STRUCTURAL ENGINEERS, INC. Project Name: 1051 NE 92 St.Miami Shores CA# 30758 Project No.: 150907 Sheet No.: rZ 4960 SW 52nd ST, Suite#407, Davie, FL 33314 Calculated By: Date: Ph: (954) 533-3237 Fax: (954) 533-2117 Checked By: Date: email: pfiallo@plfengineers.com _,_] w ;z Elf 3E E 3Xzq aooKs� x(�5'XI2 10214 ja 5'x 6e-tgee W-14x22 l Q[�r�j cr •� ""7 J��2�/ CO/157Y1�C CJVJ Me,64.11, , T4!-1-'4 3 4 01 26 - � � �x 2 141 N .. ... . . . . . .. Mh f /��00— $ 3 2�/o;��•�'/•j��c :�.��.� e� f � �-l.�.E.-X 54, 5 1P��,° -n-b . .. . . . . . . . . ... . . . . •t• . . . . . . . . . . . . ... . .. .. . . . . ... . . _ PLF STRUCTURAL ENGINEERS, INC. Project Name: 1051 NE 92 St.Miami Shores CA# 30758 Project No.: 150907 Sheet No.: 33 4960 SW 52nd ST, Suite#407, Davie, FL 33314 Calculated By: Date: Ph: (954) 533-3237 Fax: (954) 533-2117 Checked By: Date: email: pfiallo@plfengineers.com 4W4 tl �l �� �•�l�r,�//1vm � �„ , 311�� 4 A= 4��X 034- 3'�E11��X�, _ Aw //X 5,�°�/�sC✓r c A ----- _ _ 2, 2� A-VII cit-ec.k: _ \/4,r �rQ �`, r ����� , - 36 ks/ ' l/ 2 012 � I !✓1� .:._,- 21,5ks f J/ k rn w�rILA �3/��✓ A 3oa /Is >v�» PLF STRUCTURAL ENGINEERS, INC. Project Name: 1051 NE 92 St.Miami Shores CA# 30758 Project No.: 150907 Sheet No.: 4960 SW 52nd ST, Suite#407, Davie, FL 33314 Calculated By: Date: Ph: (954) 533-3237 Fax: (954) 533-2117 Checked By: Date: email: pfiallo@plfengineers.com hoof' - er 66,4 ve/y Laar�s DL 100o cp �00� (S�s�t n /,5 - 2 Z,S /&3/f /°rsr jF LL zo L /HSf ( s�-� • w�� - 35r� �s� X /�5 � 53,as �s/�.f w3a ; - so, 2 P-/ (�v ' las A4 �2 \ f t s . w f ✓y lot r ti .. ... . . . . . .. . .. . . . . ... . • . .. ... .. . . . .. �.. ••• ••n ... ••• 0.: . be 00 • • • • • ••• • • • + ••V • • • • • ••• • • • •• •• • • • •• •• .� lBGnt(ey, Microsoft 3� Current Date:2/2/2016 1:28 PM Units system:English Member 8 F T E R Design status OK PROPERTIES Section information Section name: S4S 2x6 (US) Dimensions ------------------------------------------------------------------------------------------------------- d g b = 1.500 [in] Width d = 5.500 [in] Height Properties --------------------------------------------------------------------------------------------------------- Section properties Unit Major axis Minor axis Gross area of the section. (Ag) [in2] 8.250 Moment of Inertia(principal axes) (I') [in4] 20.797 1.547 Top elastic section modulus of the section(local axis) (Ssup) [in3] 7.562 2.063 Material:SPine Not beam Properties Value ------------------------------------------------------------------------------------------------------------------------------------------ Type: Lumber Species: Southern Pine Grade: No.2 Coefficient of variation: 0.25 -------------------------------------------------------------------------------------------------------------------------------------- DESIGN CRITERIA Description Unit Value ------------------------------------------------------------------------------------------------------------------------------------------ Temperature: T-100F Moisture conditions: Dry Wood: Unincised Repetitive member: - Yes Type: - Beam End notches at top: - Top Notch length: [in] 0.00 Notch depth: •• •.• • • 4in] • • •a..00 • •• • • • • ••• • Description •• ••• •• 'Unit* • •• Major axis Minor axis ------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Physical length IN 11.45 Effective length for bending(Le) ••. ';• ••; •t$] "; •'• 0.00 Unbraced length for bending(Lu) '�; ; • • •tft] •• ; ; 11.45 Unbraced compression length(Lx,Ly) ••• :• 000 •jft] 000 .0. 6.40 4.00 Effective length factor(K) -- 1.00 1.00 Lateral bracing -- No No Bearing length(Lb) ... . . . . 41 . . 0.50 • • • • • • • • • • Length between inflection points(Li) [ft] 11.45 --------------------------------------------------------------------------------------------------------------------------------------------------------------------------- SERVICE CONDITIONS ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- • Verification Unit Value Ctrl EQ Reference ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Deflection in compression and/or bending -- -0.01 LLDL at 62.50% -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- DESIGN CHECKS DESIGN FOR TENSION J Ratio 0.15 Capacity 0.88[Kip/in2] Reference (Sec.3.8) Demand 0.13[Kip/in2] Ctrl Eq. WLDLD at 46.88% ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Intermediate results Unit Value Reference ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Axial design value for tension(Ft) [Kip/in2] 0.55 Duration factor(CD) 1.60 (Table 2.3.2) Wet service factor(CM) - 1.00 (Sec.4.3.3) Temperature factor(Ct) - 1.00 (Sec.2.3.3) Size factor(CFt) - 1.00 (Sec.4.3.6) Incising factor(CiFt) - 1.00 (Sec.4.3.8) Tension axial force(P+) [Kip] 1.10 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- DESIGN FOR COMPRESSION J Ratio 0.70 Capacity 0.29[Kip/in2] Reference (Sec.3.6.3) Demand -0.20[Kip/in2] Ctrl Eq. LLDLD at 100.00% ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Axial design value for compression(Fc) [Kip/in2] 0.53 Duration factor(CD) 1.00 (Table 2.3.2) Wet service factor(CM) - 1.00 (Sec.4.3.3) Temperature factor(Ct) 1.00 (Sec.2.3.3) Size factor(CF) 1.00 (Sec.4.3.6) Incising factor(Ci) 1.00 (Sec.4.3.8) Column stability factor(CP) 0.54 (Eq.3.7-1) Compression axial force(P-) [Kip] -1.65 Modulus of elasticity for stability(Emin) [Kip/in2] 440.00 Adjusted modulus of elasticity for stability(Emin') [Kip/in2] 440.00 Wet service factor(CM) -- 1.00 (Sec.4.3.3) Temperature factor(Ct) 1.00 (Sec.2.3.3) Incising factor(Ci) - 1.00 (Sec.4.3.8) Buckling stiffness factor(CT) - 1.00 (Sec.4.4.2) Critical buckling design value(FcE1) [Kip/in2] 1.85 (Sec.3.9.2) Critical buckling design value(FcE2) [Kip/in2] 0.35 (Sec.3.9.2) ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ DESIGN FOR FLEXURE le •0 • Bending about major axis.M33 • •. . . • . ..• Ratio 0.42 Capacity 0.74[Kip/in2] Reference (Sec.3.3) Demand 0.31 [Kip/in2] • ••• ••• •C!rl Eq.•• • LLDLD at 75.00% • • • • . • • 000 :0 000 • . . • • • • . .. .. iage2 .. .. ... . • • ... . . --------------------------- ---- --------------- ----- --- - -- -- ---- --------------------- -------- ----------------- ------ Intermediate results Unit Value Reference ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Bendinq design value(Fb) [Kip/int] 0.85 Duration factor(CD) -- 1.00 (Table 2.3.2) Wet service factor(CM) -- 1.00 (Sec.4.3.3) Temperature factor(Ct) -- 1.00 (Sec.2.3.3) Stability Factor(CL) -- 0.76 (Sec.3.3.3) Size factor(CF) -- 1.00 (Sec.4.3.6) Incising factor(Ci) 1.00 (Table 4.3.8) Repetitive member factor(Cr) - 1.15 (Sec.4.3.9) Bending moment(Mxx) [Kip*ft] 0.20 Slenderness Ratio(RB) 24.86 (Eq.3.3-5) Critical buckling design value(FbE) [Kip/int] 0.85 (Sec.3.3.3.8) -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Bending about minor axis.M22 Ratio 0.00 Capacity 1.12[Kip/in2] Reference (Sec.3.3) Demand 0.00[Kip/in2] Ctrl Eq. LLDLD at 0.00% -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Bending design value(Fbvv) [Kip/in2] 0.85 Duration factor(CD) -- 1.00 (Table 2.3.2) Wet service factor(CM) 1.00 (Sec.4.3.3) Temperature factor(Ct) -- 1.00 (Sec.2.3.3) Stability Factor(CL) 1.00 (Sec.3.3.3) Size factor(CF) - 1.00 (Sec.4.3.6) Flat use factor(Cfu) - 1.15 (Sec.4.3.7) Incising factor(Ci) -- 1.00 (Table 4.3.8) Repetitive member factor(Cr) -- 1.15 (Sec.4.3.9) Bending moment(Mvv) [Kip*ft] 0.00 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------- DESIGN FOR SHEAR Shear parallel to minor axis.V2 Ratio 0.17 Capacity 0.17[Kip/in2] Reference (Sec.3.4) Demand 0.03[Kip/in2] Ctrl Eq. LLDLD at 46.88% --------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ------------------------------------------------------------------------------------------------------------------------------------------------------------------- Shear design value(Fv) [Kip/in2] 0.17 Duration factor(CD) -- 1.00 (Table 2.3.2) Wet service factor(CM) -- 1.00 (Sec.4.3.3) Temperature factor(Ct) -- 1.00 (Sec.2.3.3) Incising factor(Ci) -- 1.00 (Table 4.3.8) Shear Force(Vv) [Kip] 0.16 Notch factor(CN) 1.00 (Sec.3.4.3) --------------------------------------------------------------------------------------------------------------------------------------------------------------------- Shear parallel to maior axis.V3 Ratio 0.00 Capacity 0.17[Kip/in2] Reference (Sec.3.4.2) Demand 0.00[Kip/in2] . • . • •ttrl 9q.. • LLDLD at 0.00% -----------------------------------------------------------------------------'--------'---'--'---•---•---k---•-------A----------------------------------------------- Intermediate results Unit Value Reference --------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Shear design value(Fv) • .•• .•. •jKip/in2 .• • 0.17 Duration factor(CD) ; ; ; • s' • ; ; 1.00 (Table 2.3.2) Wet service factor(CM) •• • • • •-- • • • • 1.00 (Sec.4.3.3/5.3.3) Temperature factor(Ct) •• • • •- • • 1.00 (Sec.2.3.3) Incising factor(Ci) -- 1.00 (Table 4.3.8) Shear Force(Vv) [Kip] 0.00 ------------------------------------------------... . . ... . . ------------------------- ------------------------------------------- ---------------------------- • • • • • • • • • • .. .. pac . .. .. ... . . .•. . . DESIGN FOR TORSION J Ratio 0.00 Capacity 0.11 [Kip/in2] Reference (AITC-TCM) Demand 0.00[Kip/in2] Ctrl Eq. LLDLD at 0.00% ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Torsion design value(Fvt) [Kip/in2] 0.11 Torsion moment(Mtorl [Kip*ft] 0.00 --------------------------------------------------------------------------------------------------------------------------------------------------------------------- DESIGN FOR BEARING(informative) ------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference Maximum reaction(Rmax) [Kip] 0.49 (Sec.3.10.3) Load angle(0) -- 90.00 Axial design value for compression(Fc*) [Kip/in2] 0.53 Comp.design value perpendicular to grain(Fcp) [Kip/in2] 0.38 Wet service factor(CM) -- 1.00 (Sec.4.3.3) Temperature factor(Ct) -- 1.00 (Sec.2.3.3) Incising factor(Ci) -- 1.00 (Sec.4.3.8) Bearing area factor(Cb) -- 1.75 (Eq.3.10-2) --------------------------------------------------------------------------------------------------------------------------------------------------------------------------- INTERACTION J Combined axial and bending interaction value Ratio 0.93 Ctrl Eq. LLDLD at 75.00% Reference (Eq.3.9-3) CRITICAL STRENGTH RATIO J .................................................................................................................................................................................. Ratio 0.93 Ctrl Eq. LLDLD at 75.00% Reference (Eq.3.9-3) .................................................................................................................................................................................. • • • • • . . • •• • • • • • • • • • •. • • • • • • • . 00 • • • • • • • • • • • .. •• Pa •rte 4• • .•. . •. ••• • • . • F� f3entle 39 ...� y Microsoft Current Date:2/2/2016 1:38 PM Units system:English Member 4 CCl(- TO l5 r Design status OK PROPERTIES Section information Section name: S4S 2x6 (US) Dimensions ----------------------------------------------------------------------------------------------------- d � b b = 1.500 [in] Width d = 5.500 [in] Height Properties ---------------------------------------------------------------------------------------------------------- Section properties Unit Major axis Minor axis Gross area of the section. (Ag) [in2] 8.250 Moment of Inertia(principal axes) (I') [in4] 20.797 1.547 Top elastic section modulus of the section(local axis) (Ssup) [in3] 7.562 2.063 Material:SPine Not beam Properties Value ------------------------------------------------------------------------------------------------------------------------------------------ Type: Lumber Species: Southern Pine Grade: No.2 Coefficient of variation: 0.25 -------------------------------------------------------------------------------------------------------------------------------------------- DESIGN CRITERIA Description Unit Value ----------------------------------------------------------------------------------------------------------------------------------------- Temperature: -- T-100F Moisture conditions: -- Dry Wood: -- Unincised Repetitive member: -- Yes Type: Beam End notches at top: Top Notch length: [in] 0.00 Notch depth: •• ••• • • Fin] • • •Q.00 -------------------------------------------------------------------------1----------J--- ---•---•---•L--L--L--4---------------------- • •• • • • • ••• • Description ••• ••; ••; •Jhid : •••Major axis Minor axis ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Physical length [ft] 10.45 Effective lnth for 0.00 Unbracedlength for bbending(Lu) :ending(Le) •: •:• ••• • ••• ;•: 10.45 Unbraced compression length(Lx, Ly) •; % • ; • ; [f» • ; • ; ; 10.45 10.45 Effective length factor(K) •• • • !- • • 1.00 1.00 Lateral bracing No No Bearing length(Lb) [inL 0.50 • •• •• bagel • •• •• ••• • • • ••• • Length between inflection points(Li) IN 10.45 GTT ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- SERVICE CONDITIONS -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Verification Unit Value Ctrl EQ Reference ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Deflection in compression and/or bending -- -0.01 LLDL at 0.00% --------------------------------------------------------------------------------------------------------------------------------------------------------------------------- DESIGN CHECKS DESIGN FOR TENSION J Ratio 0.01 Capacity 0.55[Kip/in2] Reference (Sec.3.8) Demand 0.00[Kip/in2] Ctrl Eq. LLDLD at 0.00% ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Axial design value for tension(Ft) [Kip/in2] 0.55 Duration factor(CD) - 1.00 (Table 2.3.2) Wet service factor(CM) - 1.00 (Sec.4.3.3) Temperature factor(Ct) - 1.00 (Sec.2.3.3) Size factor(CFt) 1.00 (Sec.4.3.6) Incising factor(CiFt) 1.00 (Sec.4.3.8) Tension axial force(P+) [Kip] 0.04 --------------•------------------------------------------------------------------------------------------------------------------------------------------------------------ DESIGN FOR COMPRESSION J' Ratio 0.02 Capacity 0.05[Kip/in2] Reference (Sec.3.6.3) Demand 0.00[Kip/in2] Ctrl Eq. WLDLD at 34.38% ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference --------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Axial design value for compression(Fc) [Kip/in2] 0.53 Duration factor(CD) -- 1.60 (Table 2.3.2) Wet service factor(CM) 1.00 (Sec.4.3.3) Temperature factor(Ct) 1.00 (Sec.2.3.3) Size factor(CF) 1.00 (Sec.4.3.6) Incising factor(Ci) 1.00 (Sec.4.3.8) Column stability factor(CP) 0.06 (Eq.3.7-1) Compression axial force(P-) [Kip] -0.01 Modulus of elasticity for stability(Emin) [Kip/in2] 440.00 Adjusted modulus of elasticity for stability(Emin') [Kip/in2] 440.00 Wet service factor(CM) -- 1.00 (Sec.4.3.3) Temperature factor(Ct) -- 1.00 (Sec.2.3.3) Incising factor(Ci) -- 1.00 (Sec.4.3.8) Buckling stiffness factor(CT) -- 1.00 (Sec.4.4.2) Critical bucklinq desiqn value(FcE1) [Kip/in2] 0.70 (Sec.3.9.2) Critical buckling design value(FcE2) [Kip/in2] 0.05 (Sec.3.9.2) ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- DESIGN FOR FLEXURE J •• 000 • • a.0 • • •• Bending about major axis.M33 • •• • . . . ... . •• ••• •• • • • •• Ratio 0.16 Capacity 0.78[Kip/in2] Reference (Sec.3.3) Demand 0.12[Kip/in2] • ••• ••• •Ctrl Eq.•• a LLDLD at 68.75% •• • • • • • • • • • . Qag22 : :.•• -------------------------------------------------------------------------------------------------------------------------------------------------------------------- GT Intermediate results Unit - Value -Reference ---------------------------------------------------------------------------------------------------------- - Bending design value(Fb) [Kip/in2] 0.85 Duration factor(CD) 1.00 (Table 2.3.2) Wet service factor(CM) - 1.00 (Sec.4.3.3) Temperature factor(Ct) - 1.00 (Sec.2.3.3) Stability Factor(CL) 0.80 (Sec.3.3.3) Size factor(CF) -- 1.00 (Sec.4.3.6) Incising factor(Ci) 1.00 (Table 4.3.8) Repetitive member factor(Cr) 1.15 (Sec.4.3.9) Bending moment(Mxx) [Kip*ft] 0.08 Slenderness Ratio(RB) 23.75 (Eq.3.3-5) Critical buckling design value(FbE) [Kip/in2] 0.94 (Sec.3.3.3.8) ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Bending about minor axis.M22 Ratio 0.00 Capacity 1.12[Kip/in2] Reference (Sec.3.3) Demand 0.00[Kip/in2] Ctrl Eq. LLDLD at 0.00% -------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference --------------------------•----------------------------------------------------------------------------------------------------------------------------------------- Bending design value(Fbvv) [Kip/in2] 0.85 Duration factor(CD) -- 1.00 (Table 2.3.2) Wet service factor(CM) - 1.00 (Sec.4.3.3) Temperature factor(Ct) 1.00 (Sec.2.3.3) Stability Factor(CL) 1.00 (Sec.3.3.3) Size factor(CF) 1.00 (Sec.4.3.6) Flat use factor(Cfu) 1.15 (Sec.4.3.7) Incising factor(Ci) -- 1.00 (Table 4.3.8) Repetitive member factor(Cr) -- 1.15 (Sec.4.3.9) Bending moment(MW) [Kip*ft] 0.00 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------- DESIGN FOR SHEAR Shear parallel to minor axis.V2 Ratio 0.06 Capacity 0.17[Kip/in2] Reference (Sec.3.4) Demand 0.01 [Kip/in2] Ctrl Eq. LLDLD at 34.38% --------------------------------------------------------------- Intermediat ---------------------------------------------------------- Intermediate results Unit Value Reference ---------------------------------------------------------------------------------------------------------------------------------------------------------------------- Shear design value(Fv) [Kip/in2] 0.17 Duration factor(CD) -- 1.00 (Table 2.3.2) Wet service factor(CM) -- 1.00 (Sec.4.3.3) Temperature factor(Ct) 1.00 (Sec.2.3.3) Incising factor(Ci) 1.00 (Table 4.3.8) Shear Force(Vv) [Kip] 0.05 Notch factor(CN) -- 1.00 (Sec.3.4.3) ------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Shear parallel to major axis.V3 Ratio 0.00 Capacity 0.17[Kip/in2] Reference (Sec.3.4.2) Demand 0.00[Kip/in2] ,•' '•; ; ; ,•• :Carl FAQ.• LLDLD at 0.00% Intermediate results 00 0*0 U1iit Value Reference ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Shear design value(Fv) . ... 000 000 [ITig/.n2]. 0.17 Duration,factor(CD) • • • • • -- . . . 1.00 (Table 2.3.2) Wet service factor(CM) •: : . .• • ,-y• ; ; 1.00 (Sec.4.3.3/5.3.3) • •. • • . . • • • . Temperature factor(Ct) .• . • . -- , , 1.00 (Sec.2.3.3) Incising factor(Ci) - 1.00 (Table 4.3.8) Shear Force(Vv) [Kip] 0.00 ------------------------------------------------------------------ _---__y._-____________-_-----___---__________________________--_-___ P$9e3:.*.: ... . . . ... . • C—T. DESIGN FOR TORSION J 4-Z Ratio 0.00 Capacity 0.11 [Kip/in2] Reference (AITC-TCM) Demand 0.00[Kip/in2] Ctrl Eq. LLDLD at 0.00% ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Intermediate results Unit Value Reference ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Torsion design value(Fvt) [Kip/in2] 0.11 Torsion moment(Mtorl [Kip*ft] 0.00 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ DESIGN FOR BEARING(informative) ---------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Maximum reaction(Rmax) [Kip] 0.49 (Sec.3.10.3) Load angle(01 -- 90.00 Axial design value for compression(Fc*) [Kip/in2] 0.53 Comp.design value perpendicular to grain(Fcp) [Kip/in2] 0.38 Wet service factor(CM) - 1.00 (Sec.4.3.3) Temperature factor(Ct) - 1.00 (Sec.2.3.3) Incising factor(Ci) -- 1.00 (Sec.4.3.8) Bearing area factor(Cb) -- 1.75 (Eq.3.10-2) ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ INTERACTION J Combined axial and bending interaction value Ratio 0.16 Ctrl Eq. LLDLD at 68.75% Reference (Eq.3.9-3) CRITICAL STRENGTH RATIO J .................................................................................................................................................................................. Ratio 0.16 Ctrl Eq. LLDLD at 68.75% Reference (Eq.3.9-3) .................................................................................................................................................................................. .. .. . Paged. .. ... • . . ... . . SentLey Microsoft (94- Current Date:2/2/2016 1:43 PM Units system: English Member 9 LOE-6 Design status OK PROPERTIES Section information Section name: S4S 2x6 (US) Dimensions -------------------------------------------------------------------------------------------------------- d �f b = 1.500 [in] Width d = 5.500 [in] Height Properties -------------------------------------------------------------------------------------------------------- Section properties Unit Major axis Minor axis Gross area of the section. (Ag) [in2] 8.250 Moment of Inertia(principal axes) (I') [in4] 20.797 1.547 Top elastic section modulus of the section(local axis) (Ssup) [in3] 7.562 2.063 Material:SPine Not beam Properties Value Type: Lumber Species: Southern Pine Grade: No.2 Coefficient of variation: 0.25 ---------------------------------------------------------------------------------------------------------------------------------------- DESIGN CRITERIA Description Unit Value ------------------------------------------------------------------------------------------------------------------------------------- Temperature: -- T-100F Moisture conditions: -- Dry Wood: -- Unincised Repetitive member: -- Yes Type: -- Column End notches at top: -- Top Notch length: [in] 0.00 Notch depth: s. • [irl • 0.00 ------------------------------------------------------------------1---------- " '--i--� •--;--+------------------------------ Description ••• ••: `•: `•' :Utit..• Major axis Minor axis ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Physical length [ft] 2.47 Effective length for bending(Le) • ••• ••• ••• Fq•• • 0.00 Unbraced length for bending(Lu) : •` •• [ft]•` ; ; 2.47 Unbraced compression length(Lx,Ly) •: :• ` ; • ; . '[fa . ; ; 2.47 2.47 Effective length factor(K) " ' • • -- • • 1.00 1.00 Lateral bracing - No No Bearing length(Lb) ••• s s [in] 0.50 :•`•: : : pige1:.`.: ••• • • • ••• • • Length between inflection points(Li) IN 2.47 �10 ------------------------------------------------------------------------------------------------------------------------------------------------------------------ SERVICE CONDITIONS ------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Verification Unit Value Ctrl EQ Reference ------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Deflection in compression and/or bending - 0.00 WLDL at 0.00% --------------------------------------------------------------------------------------------------------------------------------------------------------------------------- DESIGN CHECKS DESIGN FOR TENSION V Ratio 0.03 Capacity 0.55[Kip/int] Reference (Sec.3.8) Demand 0.02[Kip/in2] Ctrl Eq. LLDLD at 0.00% ------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Intermediate results Unit Value Reference ------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Axial design value for tension(Ft) [Kip/in2] 0.55 Duration factor(CD) - 1.00 (Table 2.3.2) Wet service factor(CM) 1.00 (Sec.4.3.3) Temperature factor(Ct) -- 1.00 (Sec.2.3.3) Size factor(CFt) 1.00 (Sec.4.3.6) Incising factor(CiFt) -- 1.00 (Sec.4.3.8) Tension axial force(P+) [Kip] 0.16 --------------------------------------------------------------------------------------------------------------------------------------------------------------------- DESIGN FOR COMPRESSION V Ratio 0.00 Capacity 0.44[Kip/in2] Reference (Sec.3.6.3) Demand 0.00[Kip/in2] Ctrl Eq. LLDLD at 0.00% ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Axial design value for compression(Fc) [Kip/in2] 0.53 Duration factor(CD) -- 1.00 (Table 2.3.2) Wet service factor(CM) -- 1.00 (Sec.4.3.3) Temperature factor(Ct) -- 1.00 (Sec.2.3.3) Size factor(CF) -- 1.00 (Sec.4.3.6) Incising factor(Ci) -- 1.00 (Sec.4.3.8) Column stability factor(CP) -- 0.84 (Eq.3.7-1) Compression axial force(P-) [Kip] 0.00 Modulus of elasticity for stability(Emin) [Kip/in2] 440.00 Adiusted modulus of elasticity for stability(Emin') [Kip/in2] 440.00 Wet service factor(CM) -- 1.00 (Sec.4.3.3) Temperature factor(Ct) -- 1.00 (Sec.2.3.3) Incising factor(Ci) -- 1.00 (Sec.4.3.8) Buckling stiffness factor(CT) -- 1.00 (Sec.4.4.2) Critical buckling design value(FcE1) [Kip/in2] 12.46 (Sec.3.9.2) Critical buckling design value(FcE2) [Kip/in2] 0.93 (Sec.3.9.2) --------------------------------------------------------------------------------------------------------------------------------------------------------------------------- DESIGN FOR FLEXURE 00 f•e 0 • 0 • • •• Bending about major axis.M33 • •• • . • • ••• , Ratio 0.00 Capacity 0.96[Kip/in2] Reference (Sec.3.3) Demand 0.00[Kip/in2L• ••• •,• Y•. Cjd gq. Y LLDLD at 0.00% • .• •• • . P�ge2:• .• ••• • • • ••• • • --------------------------------------------------------------------------------------------------------------------------------------------------------------------------- LU resultsUnitValue Reference ------------------------------------------------------------------- -------------------- Bending design value(Fb) [Kip/in2] 0.85 Duration factor(CD) -- 1.00 (Table 2.3.2) Wet service factor(CM) -- 1.00 (Sec.4.3.3) Temperature factor(Ct) -- 1.00 (Sec.2.3.3) Stability Factor(CL) -- 0.98 (Sec.3.3.3) Size factor(CF) -- 1.00 (Sec.4.3.6) Incising factor(Ci) -- 1.00 (Table 4.3.8) Repetitive member factor(Cr) -- 1.15 (Sec.4.3.9) Bending moment(Mxx) [Kip'ft] 0.00 Slenderness Ratio(RB) - 12.21 (Eq.3.3-5) Critical buckling design value(FbE) [Kip/in2] 3.54 (Sec.3.3.3.8) -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Bending about minor axis,M22 Ratio 0.00 Capacity 1.12[Kip/in2] Reference (Sec.3.3) Demand 0.00[Kip/in2] Ctrl Eq. LLDLD at 0.00% ---------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Bending design value(Fbvv) [Kip/in2] 0.85 Duration factor(CD) -- 1.00 (Table 2.3.2) Wet service factor(CM) -- 1.00 (Sec.4.3.3) Temperature factor(Ct) - 1.00 (Sec.2.3.3) Stability Factor(CL) -- 1.00 (Sec.3.3.3) Size factor(CF) - 1.00 (Sec.4.3.6) Flat use factor(Cfu) 1.15 (Sec.4.3.7) Incising factor(Ci) -- 1.00 (Table 4.3.8) Repetitive member factor(Cr) 1.15 (Sec.4.3.9) Bending moment(Mvv) [Kip'ft] 0.00 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- DESIGN FOR SHEAR V Shear parallel to minor axis,V2 Ratio 0.00 Capacity 0.17[Kip/in2] Reference (Sec.3.4) Demand 0.00[Kip/in2] Ctrl Eq. LLDLD at 0.00% -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ---------------------------------------------------------------------------------------------------------------------------------------------------------------------- Shear design value(Fv) [Kip/in2] 0.17 Duration factor(CD) -- 1.00 (Table 2.3.2) Wet service factor(CM) -- 1.00 (Sec.4.3.3) Temperature factor(Ct) -- 1.00 (Sec.2.3.3) Incising factor(Ci) -- 1.00 (Table 4.3.8) Shear Force(Vv) [Kip] 0.00 Notch factor(CN) -- 1.00 (Sec.3.4.3) -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Shear parallel to major axis,V3 Ratio 0.00 Capacity 0.17[Kip/in2] Reference (Sec.3.4.2) Demand 0.00[Kip/in2] ••' ••; ; ; .••CSI�q..'• LLDLD at 0.00% -------------------------------------------------------------------------i------1-"Z--f--i-- -- -- -------0-------------------------------------------------------- Intermediate results Urnt Value Reference ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Shear design value(Fv) , .•• ... ..•[Kip/jp�j • 0.17 Duration factor(CD) • ••-- • 1.00 (Table 2.3.2) Wet service factor(CM) •• • • • • --• • • • 1.00 (Sec.4.3.3/5.3.3) Temperature factor(Ct) .• . . . -- • . 1.00 (Sec.2.3.3) Incising factor(Ci) -- 1.00 (Table 4.3.8) Shear Force Nv) [Kip] 0.00 ______________.._________________________________________________________!_!_!___!_______1.__l__1__iti__t______J_____________________________________________________-_ ..• • • • ••. . . DESIGN FOR TORSION � • Ratio 0.00 Capacity 0.11 [Kip/in2] Reference (AITC-TCM) Demand 0.00[Kip/in2] Ctrl Eq. LLDLD at 0.00% --------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Torsion design value(Fvt) [Kip/in2] 0.11 Torsion moment(Mtor) [Kip*ft] 0.00 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------ DESIGN FOR BEARING(informative) ---------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference —---------------- Maximum reaction(Rmax) [Kip] 0.49 (Sec.3.10.3) Load angle(01 -- 90.00 Axial design value for compression(Fc*) [Kip/in2] 0.53 Coma.design value perpendicular to grain(Fcp) [Kip/in2] 0.38 Wet service factor(CM) -- 1.00 (Sec.4.3.3) Temperature factor(Ct) -- 1.00 (Sec.2.3.3) Incising factor(Ci) -- 1.00 (Sec.4.3.8) Bearing area factor(Cb) -- 1.75 (Eq.3.10-2) --------------------------------------------------------------------------------------------------------------------------------------------------------------- INTERACTION V Combined axial and bending interaction value Ratio 0.03 Ctrl Eq. LLDLD at 0.00% Reference (Eq.3.9-1) CRITICAL STRENGTH RATIO .................................................................................................................................................................................. Ratio 0.03 Ctrl Eq. LLDLD at 0.00% Reference (Eq.3.9-1) .................................................................................................................................................................................. n eelritley Microsoft 4104 Current Date:2/2/2016 3:04 PM Units system:English Member 7?1 Design status OK PROPERTIES Section information Section name: S4S 2x6 (US) Dimensions ------------------------------------------------------------------------------------------------------ d b = 1.500 [in] Width d = 5.500 [in] Height Properties --------------------------------------------------------------------------------------------------- Section properties Unit Major axis Minor axis Gross area of the section. (Ag) [int] 8.250 Moment of Inertia(principal axes) (I') [in4] 20.797 1.547 Top elastic section modulus of the section(local axis) (Ssup) [in3] 7.562 2.063 Material:SPine Not beam Properties Value ------------------------------------------------------------------------------------------------------------------------------------ Type: Lumber Species: Southern Pine Grade: No.2 Coefficient of variation: 0.25 --------------------------------------------------------------------------------------------------------------------------------------- DESIGN CRITERIA Description Unit Value -------------------------------------------------------------------------------------------------------------------------------------- Temperature: T-10017 Moisture conditions: Dry Wood: - Unincised Repetitive member: - No Type: - Beam End notches at top: -- Top Notch length: [in] 0.00 Notch depth: •• .•• • • . [41 . •. 0.00 • • • • • • • • - ---- - ----------------------------------------------------- Description •• ••• •• • Unit• •• Major axis Minor axis -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Physical length [ft] 8.90 Effective length for bending(Le) • ••• ••• •••[ft] ••• • 0.00 Unbraced length for bending(Lu) •• • • •• [ft] •• 8.90 Unbraced compression length(Lx, Ly) • % . • . .[ft . . • • 8.90 4.45 • Effective length factor(K) 0• • • -- • • 1.00 1.00 Lateral bracing No No Bearing length(Lb) ••• • • • • •�� • • 0.50 • • • • • • • • • • • •• •• • page} •. •• L.% Length between inflection points(Li) [ft] 8.90 --------------------------------------------------------------------------------------------------------------------------------------------------------------------- SERVICE CONDITIONS ------------------------------------------------------------------------------------------------------------------------------------------------------------------ Verification Unit Value Ctrl EQ Reference --------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Deflection in compression and/or bending -- -0.01 LLDL at 100.00% ------------------------------------------------------------------------------------------------------------------------------------------------------------------------- DESIGN CHECKS DESIGN FOR TENSION J Ratio 0.12 Capacity 0.88[Kip/in2] Reference (Sec.3.8) Demand 0.11 [Kip/in2] Ctrl Eq. WLDLD at 0.00% ------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Intermediate results Unit Value Reference ----------------------------------------------------------------------------------------------------------------------------------------------------------------------- Axial design value for tension(Ft) [Kip/in2] 0.55 Duration factor(CD) -- 1.60 (Table 2.3.2) Wet service factor(CM) -- 1.00 (Sec.4.3.3) Temperature factor(Ct) -- 1.00 (Sec.2.3.3) Size factor(CFt) 1.00 (Sec.4.3.6) Incising factor(CiFt) -- 1.00 (Sec.4.3.8) Tension axial force(P+) [Kip] 0.87 -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- DESIGN FOR COMPRESSION J Ratio 0.66 Capacity 0.24[Kip/in2] Reference (Sec.3.6.3) Demand -0.16[Kip/int] Ctrl Eq. LLDLD at 0.00% ------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Axial design value for compression(Fc) [Kip/in2] 0.53 Duration factor(CD) -- 1.00 (Table 2.3.2) Wet service factor(CM) -- 1.00 (Sec.4.3.3) Temperature factor(Ct) -- 1.00 (Sec.2.3.3) Size factor(CF) -- 1.00 (Sec.4.3.6) Incising factor(Ci) 1.00 (Sec.4.3.8) Column stability factor(CP) -- 0.46 (Eq.3.7-1) Compression axial force(P-) [Kip] -1.32 Modulus of elasticity for stability(Emin) [Kip/in2] 440.00 Adjusted modulus of elasticity for stability(Emin') [Kip/in2] 440.00 Wet service factor(CM) - 1.00 (Sec.4.3.3) Temperature factor(Ct) 1.00 (Sec.2.3.3) Incising factor(Ci) -- 1.00 (Sec.4.3.8) Buckling stiffness factor(CT) -- 1.00 (Sec.4.4.2) Critical buckling design value(FcE1) [Kip/in2] 0.96 (Sec.3.9.2) Critical buckling design value(FcE2) [Kip/in2] 0.29 (Sec.3.9.2) --------------------------------------------------------------------------------------------------------------------------------------------------------------------------- DESIGN FOR FLEXURE J �. •.• • • • • Bending about major axis.M33 • .. . • . . ••• • Ratio 0.00 Capacity 0.76[Kip/in2] Reference (Sec.3.3) Demand 0.00[Kip/in2] •• • • •• •• Ctrl EQ. LLDLD at 0.00% •• • • • • • • • • • •• •• • Hage •• •• -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference --------------------------------------------------------------------------------------------------------------------------------------------------------------------------- + Bending design value(Fb) [Kip/in2] 0.85 Duration factor(CD) -- 1.00 (Table 2.3.2) Wet service factor(CM) -- 1.00 (Sec.4.3.3) Temperature factor(Ct) -- 1.00 (Sec.2.3.3) Stability Factor(CL) 0.90 (Sec.3.3.3) Size factor(CF) 1.00 (Sec.4.3.6) Incising factor(Ci) 1.00 (Table 4.3.8) Repetitive member factor(Cr) 1.00 (Sec.4.3.9) Bending moment(Mxx) [Kip'ft] 0.00 Slenderness Ratio(RB) - 21.92 (Eq.3.3-5) Critical buckling design value(FbE) [Kip/in2] 1.10 (Sec.3.3.3.8) ----------------------------------------------------------------------------------------------------------------------------------------------------------------------- Bending about minor axis.M22 Ratio 0.00 Capacity 0.98[Kip/in2] Reference (Sec.3.3) Demand 0.00[Kip/in2] Ctrl Eq. LLDLD at 0.00% ----------------------------------------------------------- Intermediate results Unit Value Reference -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Bending design value(Fbvv) [Kip/in2) 0.85 Duration factor(CD) -- 1.00 (Table 2.3.2) Wet service factor(CM) -- 1.00 (Sec.4.3.3) Temperature factor(Ct) 1.00 (Sec.2.3.3) Stability Factor(CL) 1.00 (Sec.3.3.3) Size factor(CF) -- 1.00 (Sec.4.3.6) Flat use factor(Cfu) - 1.15 (Sec.4.3.7) Incising factor(Ci) -- 1.00 (Table 4.3.8) Repetitive member factor(Cr) -- 1.00 (Sec.4.3.9) Bending moment(Mvv) [Kip'ft] 0.00 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------- DESIGN FOR SHEAR Shear parallel to minor axis.V2 Ratio 0.00 Capacity 0.17[Kip/in2] Reference (Sec.3.4) Demand 0.00[Kip/in2] Ctrl Eq. LLDLD at 0.00% --------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Shear design value(Fv) [Kip/in2] 0.17 Duration factor(CD) -- 1.00 (Table 2.3.2) Wet service factor(CM) -- 1.00 (Sec.4.3.3) Temperature factor(Ct) -- 1.00 (Sec.2.3.3) Incising factor(Ci) -- 1.00 (Table 4.3.8) Shear Force(Vv) [Kip] 0.00 Notch factor(CN) -- 1.00 (Sec.3.4.3) ------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Shear parallel to major axis.V3 Ratio 0.00 Capacity 0.17[Kip/in2] Reference (Sec.3.4.2) Demand 0.00[Kip/in2] ,'• ": ; ; . ,C+�I t�q.." LLDLD at 0.00% -----------------------------------------------------------------------P------AL--'•--Jk---4---0---a---a-------•-------------------------------------------------------- Intermediate results 0• 600 00 •0 0 Unit• • Value Reference -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Shear design value(Fv) . ... ... ..[Kip/"j . 0.17 Duration factor(CD) ; ; ; • •-- •• 1.00 (Table 2.3.2) Wet service factor(CM) •: • 0 --• 00 00 1.00 (Sec.4.3.3/5.3.3) Temperature factor(Ct) •• • • • -- • . 1.00 (Sec.2.3.3) Incising factor(Ci) -- 1.00 (Table 4.3.8) Shear Force(Vv) [Kip] 0.00 -----------------------------------------------------------------------M --S------'----'----'---eje-q--A-------4------------------------------------------------------ • •. •• • FLge! :00.: DESIGN FOR TORSION Ratio 0.00 Capacity 0.11 [Kip/in2] Reference (AITC-TCM) Demand 0.00[Kip/in2] Ctrl Eq. LLDLD at 0.00% ------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Torsion design value(Fvt) [Kip/in2] 0.11 Torsion moment(Mtor) [Kip'ft] 0.00 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------- DESIGN FOR BEARING(informative) ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference --------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Maximum reaction(Rmax) [Kip] 0.49 (Sec.3.10.3) Load angle(0) -- 90.00 Axial design value for compression(Fc") [Kip/in2] 0.53 Comp.design value perpendicular to grain(Fcp) [Kip/in2] 0.38 Wet service factor(CM) 1.00 (Sec.4.3.3) Temperature factor(Ct) 1.00 (Sec.2.3.3) Incising factor(Ci) 1.00 (Sec.4.3.8) Bearing area factor(Cb) 1.75 (Eq.3.10-2) ----------------------------------------------------------------------------------------------------------------------------------------------------------------- INTERACTION J Combined axial and bending interaction value Ratio 0.43 Ctrl Eq. LLDLD at 0.00% Reference (Eq.3.9-3) CRITICAL STRENGTH RATIO V ................................................................................................................................................................................... Ratio 0.66 Ctrl Eq. LLDLD at 0.00% Reference (Sec.3.6.3) .................................................................................................................................................................................. •• • • • • • • • • 00 • •• . • • • • • 000 PLF STRUCTURAL ENGINEERS, INC. Project Name: 1051 NE 92 St.Miami Shores CA# 30758 Project No.: 150907 Sheet No.: 51 _ 4960 SW 52nd ST, Suite#407, Davie, FL 33314 Calculated By: Date: Ph: (954) 533-3237 Fax: (954) 533-2117 Checked By: Date: email: pfiallo@plfengineers.com /�D of c� <'cg firJt Gt�rJi7�c ho - Coco 74E- - Aw,At eoAh I� 303 lel? 130 3 tGs, a° Fro1J41-O,,UA L. b eSt'6 n 5 p c-c iA-+7 e JJ e, i y ,An�e rcuv� �rets�� paper As�o�ta-f�o�, ,4rn.�rrca�n UJood� (2ouYtV (l• TASc� f A w4 l r Mot', M-2 wt L v 4 is k'?Ys= 5 �� kr, r �c�v�(�.Q�� Pfd goo lbs o3. bpi'_- 2 As CIS 6ie &e,ei; "Ir ,ter �7` I've- 7Z4 3 2— Fe q 5rh'$-4 Fe.- coy�0-- -Fej.;= 2550,,as% A r,--� PA (W 2 9S6 x Cos 2� b L? _ 6�, -Fem •.. ..: : : .• T� SFr•• � 4 /83 . .. . . . . .. . 11 m 11s 7.7V . ... ... ... ... . 90 "" / v !1-?2 . . . . . . . . . . . .. .. . . . .. .. ... . . . ... . . PLF STRUCTURAL ENGINEERS, INC. Project Name: 1051 NE 92 St.Miami Shores CA# 30758 Project No.: 150907 Sheet No.: 4960 SW 52nd ST, Suite#407, Davie, FL 33314 Calculated By: Date: Ph: (954) 533-3237 Fax: (954) 533-2117 Checked By: Date: email: pfiallo@plfengineers.com As i > -0—-J4�P,1 o v �.f�oc�C.�oF' �,c�t Rt ,Fez fo—/-9/s+2�oi 915)^2C! i -I?-)+ 12 (��°J 15�! 6,13157 t4 0/515 (— e3 X�/SO i �t "� X1:5* S 02335 0, 36G0 �� � 724-,, 7fps � , - �, aa(I ?Ln? c n 2-(1 �j 3s5 r 2x�{ �o�al�lt 2x o/b►S) y z 3,Y 4- 3 39/ k- 119-3A5 1/93/. _ K3 D ,Qs Tim 1<3� — I + Flo/ 15) 2x 000 �2 Re (2d1 •.. ..: : : .'. : : .'• yrs . .. . . . . ... . .. ... .. . . . .. 'y S�2g�si . . . . . . . . . . . .. .. . . . .. .. ... . . . ... . . _ PLF STRUCTURAL ENGINEERS, INC. Project Name: 1051 NE 92 St.Miami Shores CA# 30758 Project No.: 150907 Sheet No.: 53 _ 4960 SW 52nd ST, Suite#407, Davie, FL 33314 Calculated By: Date: Ph: (954) 533-3237 Fax: (954) 533-2117 Checked By: Date: email: pfiallo@plfengineers.com Z ' /5?6 49 7Grs���o�' � 'rel 9 os, 2 &4 2 r lbs �-- .. ... . . . . . .. . .. . . . . ... . .. ... .. . . . .. . ... ... ... ... . .. . . . . . . . . . .. . . . . . . . . ... . . . . ... . . . . . . . . . . . . . .. .. . . . .. .. ... . . . ... . . Table 11.3.2 Dowel Bearing Strengths Specific, Dowel bearing strength in pounds per square inch(psi)Z Gravity, Fe Fell Fel G D<1/4" D>1/4" D=1/4" D=5/16" D=3/8" D=7/16" D=1/2" D=5/8" D=3/4" D=7/8" D=1" 0.73 9300 8200 7750 6900 6300 5850 5450 4900 4450 4150 3850 0.72 9050 8050 7600 6800 6200 5750 5350 4800 4350 4050 3800 0.71 8850 7950 7400 6650 6050 5600 5250 4700 4300 3950 3700 0.70 8600 7850 7250 6500 5950 5500 5150 4600 4200 3900 3650 0.69 8400 7750 7100 6350 5800 5400 5050 4500 4100 3800 3550 0.68 8150 7600 6950 6250 5700 5250 4950 4400 4050 3750 3500 0.67 7950 7500 6850 6100 5550 5150 4850 4300 3950 3650 3400 0.66 7750 7400 6700 5950 5450 5050 4700 4200 3850 3550 3350 0.65 7500 7300 6550 5850 5350 4950 4600 4150 3750 3500 3250 0.64 7300 7150 6400 5700 5200 4850 4500 4050 3700 3400 3200 0.63 7100 7050 6250 5600 5100 4700 4400 3950 3600 3350 3100 0.62 6900 6950 6100 5450 5000 4600 4300 3850 3500 3250 3050 0.61 6700 6850 5950 5350 4850 4500 4200 3750 3450 3200 3000 0.60 6500 6700 5800 5200 4750 4400 4100 3700 3350 3100 2900 0.59 6300 6600 5700 5100 4650 4300 4000 3600 3300 3050 2850 C 0.58 6100 6500 5550 4950 4500 4200 3900 3500 3200 2950 2750 C 0.57 5900 6400 5400 4850 4400 4100 3800 3400 3100 2900 2700 n 0.56 5700 6250 5250 4700 4300 4000 3700 3350 3050 2800 2650 17 5550 6150 5150 4600 4200 3900 3650 3250 295 2750 2550 ~ 0.54 5350 6050 50004450 4100 3750 3550 3150 2900 2650 2500 R 0.53 5150 5950 4850 4350 3950 3650 3450 3050 2800 2600 2450IT T 0.52 5000 5800 4750 4250 3850 3550 3350 3000 2750 2550 2350 V 0.51 4800 5700 4600 4100 3750 3450 3250 2900 2650 2450 2300 rr 0.50 4650 5600 4450 4000 3650 3400 3150 2800 2600 2400 2250 R 0.49 4450 5500 4350 3900 3550 3300 3050 2750 2500 2300 2150 :1 V. 0.48 4300 5400 4200 3750 3450 3200 3000 2650 2450 2250 2100 0.47 4150 5250 4100 3650 3350 3100 2900 2600 2350 2200 2050 0.46 4000 5150 3950 3550 3250 3000 2800 2500 2300 2100 2000 0.45 3800 5050 3850 3450 3150 2900 2700 2400 2200 2050 1900 0.44 3650 4950 3700 3300 3050 2800 2600 2350 2150 2000 1850 0.43 3500 4800 3600 3200 2950 2700 2550 2250 2050 1900 1800 0.42 3350 4700 3450 3100 2850 2600 2450 2200 2000 1850 1750 0.41 3200 4600 3350 3000 2750 2550 2350 2100 1950 1800 1650 0.40 3100 4500 3250 2900 2650 2450 2300 2050 1850 1750 1600 0.39 2950 4350 3100 2800 2550 2350 2200 1950 1800 1650 1550 0.38 2800 4250 3000 2700 2450 2250 2100 1900 1750 1600 1500 0.37 2650 4150 2900 2600 2350 2200 2050 1850 1650 1550 1450 0.36 2550 4050 2750 2500 2250 2100 1950 1750 1600 1500 1400 0.35 2400 3900 2650 2404.. .2150. .2000.. 1900 1700 1550 1400 1350 0.34 2300 3800 2550 •2300 • Pt00 •1950 1800 1600 1450 1350 1300 0.33 2150 3700 2450 .;20Q.; •2Q0(Y.• ;105Q.• 1750 1550 1400 1300 1200 0.32 2050 3600 2350 2100 1900 1750 1650 1500 1350 1250 1150 0.31 1900 1 3450 2250 2000 0 1 1600 1400 1300 1200 1100 1.Specific gravity based on weight and volunj xy'hen;oven-drjTsee fable 11.1.2.1);Different specific gravities (G)are possible for different grades of MSR and MEL lumber(see Table 4C;Fo(:aott 2Z. . 2.Fzi= 11200G:Fel=6100G"`/.r;Ft for D<174"=16600 G*";Tatulated values are rounded to the nearest 50 psi. 1 :\MErLC%fQrE,:T&rAPT.AWCIATION 000 0 0 0 ... 0 0 _ PLF STRUCTURAL ENGINEERS, INC. Project Name: 1051 NE 92 St.Miami Shores CA# 30758 Project No.: 150907 Sheet No.: 4960 SW 52nd ST, Suite#407, Davie, FL 33314 Calculated By: Date: �— Ph: (954) 533-3237 Fax: (954) 533-2117 Checked By: Date: email: pfiallo@plfengineers.com • hx,,''�7 a '/a e/lforrf ew wa.6 r Or lse' elt, - ISS' 'E �":4pcv or 0 l;rmm rbc 1/A( /7-N-5 / AF-c� P,4meh7x.- h,ck�rss 1O"'7,7-0,7 "a4 o,IY"9 /O 56 e 66) /1rc/� i�mgr D� /92 tr �cx�.,. +on �w�/ 'O� r Svv �•�rr/ Pial a l�fl�a6Zes/n5� � ��' ��S�6sor /D �adriBjSyS�To�? oh males �,r� �- r•-,a�r� r>-,,e,��iY t wab t�, _ ( (f6i11A) SDis�J •• ••• • • • • • . . . . •.. . .. . .• • . . . .. . ... .. • . . . • . . • .. ... .. . . . .. .. . . . . . . . . • •• • • • Y • • • • ••• • • • • ••• • • • • • • • • • • • • • •• •• • • • •• •• ••• • • • ••• • • Table 11N COMMON WIRE, BOX, or SINKER NAILS: Reference Lateral Design Values (Z) for Single Shear (two member) Connections1,2,3,4 for sawn lumber or SCL with both members of identical specific gravity • z 2 2 O N y� y it lL iL Z CTo C O C V> N aE N E c _ z s 9 E m m ao m cna E E N t0 O W t` N N N (0 (0 N LL c]ll N yI O m t0 E y 1n N Y D E z co O z v CD v M v a vch � o N v m 6 c�_ m u - E x s o-0 6 x 0 0 0 0 E 0 E 0 26 a o 0 y ` w H o r o o c u y u o n o u o ii o o n d n nm m , u M n °' n o <nr z U m in C7x 02(h C7o coo? C7ox cox c�� X� (DWV)33 c7z t, D in. in. I Pennyweight Itis. lbs. I Itis- lbs. lbs. Itis. Itis. lbs. lbs. lbs. 3/4 0.099 6d 7d 73 61 55 54 51 48 47 39 38 36 0.113 6d 8d 8d 94 79 72 71 65 58 57 47 46 44 0.120 10d 107 69 60 77 71 64 62 52 50 48 0.128 10d 121 101 87 84 78 70 68 57 56 54 0.131 Bd 127 104 90 87 80 73 70 60 58 56 0.135 16d 12d 135 108 94 91 84 76 74 63 61 58 0.148 10d 20d 16d 154 121 105 102 94 85 83 70 69 66 0.162 16d 40d 183 138 121 117 108 99 96 82 80 77 0.17720d 200 153 134 130 121 111 107 92 90 87 0.192 20d 30d 206 157 138 134 125 114 111 96 93 90 0.207 30d 40d 216 166 147 143 133 122 119 103 101 97 0.225 40d 229 178 158 154 144 132 129 112 110 106 0.244 50d 60d 234 182 162 158 147 136 132 115 113 109 1 0.099 6d 7d 73 61 55 54 51 48 47 42 41 40 0.113 6d' 8d 8d 94 79 72 71 67 63 61 55 54 51 0.120 10d 107 89 81 80 76 71 69 60 59 56 0.128 10d 121 101 93 91 86 80 79 66 64 61 0.131 Bd 127 106 97 95 90 84 82 68 66 63 0.135 16d 12d 135 113 103 101 96 89 86 71 69 66 0.148 10d 20d 16d 154 128 118 115 109 99 96 80 77 74 0.162 16d 40d 184 154 141 137 125 113 109 91 B9 85 0.177 20d 213 178 155 150 138 125 121 102 99 95 0.192 20d 30d 222 183 159 154 142 128 124 105 102 98 0.207 30d 40d 243 192 167 162 149 135 131 111 109 104 0.225 40d 268 202 177 171 159 144 140 120 117 112 0.244 50d 60d 274 207 181 175 162 148 143 123 120 115 1-1/4 0.099 6d' 7d' 73 61 55 54 51 4B 47 42 41 40 0.113 6d4 8d 8d4 94 79 72 71 67 63 61 55 54 52 0.120 10d 107 89 81 80 76 71 69 62 60 59 0.128 10d 121 101 93 91 86 80 79 70 69 67 0.131 8d° 127 106 97 95 90 84 82 73 72 70 0.135 16d 12d 135 113 103 101 96 89 88 78 76 74 0.148 10d 20d 16d 154 128 118 115 109 102 100 89 87 84 0.162 16d 40d 1B4 154 141 138 131 122 120 103 100 95 0.177 20d 213 178 163 159 151 141 136 113 110 105 0.192 20d 30d 222 185 170 166 157 145 140 116 113 108 0.207 30d 40d 243 203 186 182 169 152 147 123 119 114 0.225 40d 268 224 200 193 177 160 155 130 127 121 0.244 50d 6Gd . . 276 230 204 197 181 163 158 133 129 124 1-1/2 0.099 7d4 73 61 55 54 51 48 47 42 41 40 0.113 8d' 8d4 94 79 72 71 67 63 61 55 54 52 0.120 10d 107 89 81 80 76 71 69 62 60 59 ub D f- a 0.128 10d 121 101 93 91 86 80 79 70 69 67 w e..o?iwq to 0.131 8d° 127 106 97 95 90 84 82 73 72 70 0.131 96 89 88 78 76 74 ®20d 16d 154 1L16d 12d 135 3 108 1105 109 02 100 89 87 84 0.162 16d 40d 184 154 141 138 131 122 120 106 104 101 191920d 213 178 163 159 151 141 138 123 121 117 /-'- 0.19 14!g> 30d 222 18 170 166 157 147 144 128 126 120 yj�,Q•C,Sols r 0.207 30d 40d 243 203 186 182 172 161 158 135 131 125 0.225 40d 268 224 205 201 190 178 172 143 138 132 0.244 50d 60d 276 230 211 206 196 181 175 146 141 135 1-3/4 0.113 8d4 94 79 72 71 67 63 61 55 54 52 0.120 10d4 107 89 81 80 76 71 69 62 60 59 0.128 10d4 121 101 93 91 86 80 79 70 69 67 0.135 16d 12d 135 113 103 101 96 89 88 78 76 74 0.148 10d4 20d 16d 154 128 118 115 109 102 100 89 87 84 0.162 16d 40d 184 15414 138 131 122 120 106 104 101 0.177 20d 213 178 • _ •1� J% : : L51 0 141 138 123 121 117 0.192 20d 30d 222 185 • 170 410 0660 • • 157 147 144 128 126 122 0.207 30d 40d 243 203 •• 1�� 8?• 17!0 161 158 140 137 133 0.225 40d 268 224 •• 0305 41 0 261 • • W 178 174 155 151 144 0.244 50d 60d 276 230 211 206 199 183 179 159 154 147 1.Tabulated lateral design values(Z)shall be multiplied by all applicable adjustment factors(see Table 10.3.1). 2.Tabulated lateral design values(Z)are for cT%ort•site,boxe ar7 sinker nail**t A rendix L)inserted in side grain with nail axis perpendicular to wood fibers;minimum nail penetration,p,into thamain rr:mber egaatto It) and nZilbe diag yield strengths(Fye,):FYI,=100,000 psi for 0.099"S D<_0.142"; Fyh=90,000 psi for 0.142"<D:5 0.177"; FY'-1 80,U pli f:r( 1I I"j 1155 4.236";*FY:=70,000 psi for 0.236"<D<_0.273" 3.When 6D5 p<10D,tabulated lateral desiolialuestZ)shall be multiplied by F/10D.• 4.Nail length is insufficient to provide l OD penetration. Tabulated lateral design values(Z)shall be adjusted per footnote 3. 0.6 i APIERICINtOQESI&P:PER 6,SOCIATION • • • • • • • • • • • •• •• • • • •• •• 6•• 0 0 0 004 • • PLF STRUCTURAL ENGINEERS, INC. Project Name: 1051 NE 92 St.Miami Shores • CA# 30758 Project No.: 150907 Sheet No.: $� _ 4960 SW 52nd ST, Suite#407, Davie, FL 33314 Calculated By: Date: Ph: (954) 533-3237 Fax: (954) 533-2117 Checked By: Date: email: pfiallo@plfengineers.com Gtl/fh nall use gno F r ew - 1,?A -?' ce 4,6/ ah pG.e- V� '�na�ls^ 323, 5 Gl .. ... . . . . . .. . .. . . . . ••• . •• ••• •• Y • • •• • ••• ••• ••• ••• • Y • • • • • • • •• • • • • • • • • • •• • • • • • • • • ••• • • • • ••J • • • •• Y• • • • •• •• ••• • • • ••• • • NATIONAL DESIGN-SPECIFICATICYN FOA4441111 • Table 11R COMMON WIRE, BOX, or SINKER NAILS: Reference Lateral Design Values (Z) for Single Shear (two member) Connections1,2,3,4 ex with wood structural panel side members with an effective G=0.42 Q N y, A z 2 2 ` S 8rLq W LLLIII$� m m � 1-. . a V, iD y d o c o c V cA ,;• 0.a. CL a. LL Z p 1'- dm E C> m N a 'tp z h 2�CE N N N iIt M m E z `8 <o0 InvE x �e ov 6xC' omao �'E of o2 oom oy � a�'im �o o o u m u u o n o z uom a n m r` z U m m C7 C7 (7❑ C7 D o x t9 x t7 m ° C7 w m 3 3 C7 z is D in. in. Pennyweight lbs. lbslbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. 3/8 0.099 6d 7d 41 39 37 37 36 35 35 33 33 32 0.113_ 6d 8d Bd 52 49 48 47 46 45 45 42 42 41 0.120 _ 10d ' S$ - 56" 53 53 52 50 50" 47 47 46 0.128 10d 66 62 60 60 59 57 56 53 53 52 0.131,8d ,- 69.,_,_ 85, 63 . 63_ -,_ 61 _. _59 59 56 55_ 54 0.135 16d 12d 73 69 67 66 65 63 62 59 56 57 0.148 10d 20d 16d 84 79 76 76 74 72 71 67 66 65 7/16 0.099 6d 7d 42 40 39 38 38 37 36 35 34 34 0.113 6d 8d 8d 53 50 49 48 48 46 46 43 43 42 0.120 �10d 59 56 5d 54- 53 51"' 51- 48 48, 47 0.128 10d 67 63 61 61 60 68 57 54. 64 53 0:131, •8d W 70 .. 66 _64� 64_ 62 _ -60_, 80 57 -56 - , - 55 0.135 16d 12d 74 76 68 67 66 64 63 60 597 58 0.148 10d 20d 16d 84 80 77 76 75 73 72 68 67 66 0.162 16d 40d 100 95 92 91 89 86 85 81 80 78 15/32 0.099 6d 7d 43 41 40 39 39 38 37 35 35 35 0.113 6d 8d 8d 54 51 50 49 48 47 47 44 44 43 0.120 10d 60 57 55 55 54 52 52 49 49 48 - 0:128- 10d' 68 64 82 62, 60 59 58. 55 55 54 1 0.131 8d. 70' 8T 66- 64 63 61 0 67 57 56 I 69 0148 10d 26 71 0135 d't6d . 85.......:. _. , __ _ _ _ _ 85 ��. 61 - -�- - 80 78 77 75 73 72 69 68 67 0.162 16d 40d 101 95 92 91 89 87 86 81 80 79 19/32 0.099 6d 17d 47 45 44 43 43 41 41 39 39 38 0.113 6d 8d 58 5 54 53 52 51 50 48 48 47 - 64_ 61 59 59 58 56 56 53 52 52 1 0.128 10d, 71 68 6fi 15� 64 T 62 62 59 S8 57 0,131.;,8d' 74 1'0 68 _ 88 67 BS 64 81 61 80 0.135,_ 16d..12d 78 74 72 ;71, .70 68 '68. 64 64 63 0.148 10d 20d 16d 88 84 81 81 79 77 76 72 72 71 0.162 16d 40d 103 98 95 94 93 90 89 85 84 83 0.177 20d 118 112 108 108 105 102 101 96 95 94 0.192 20d 30d 123 11 16 112 112 109 106 105 100 99 97 23/32 0.099 6d 7d 52 50 48 48 47 46 46 44 43 43 0.113 6d 8d 8d 63 60 58 58 57 56 55 53 52 52 0.120 10d 69 66 64 64 62 61 60 58 57 56 ._. . 0.128 10d 76 73 71' 70 69 6T' 67 63 63 62 0.131 8d 79• 75 73 73 71 70 69 66 65 64 0.135 :16d 12d 83 79 77 76 75 73 72 69 68 67 0.148:_;,16d 20d-l6d 93N ._. _ 89 86 86..... 84 _ .42-.. 81_ 77 _ --77 76 0.162 16d 4011 108 103 100 99 98 95 94 90 89 87 0.177 20d 122 116 113 112 110 107 106 101 100 98 0.192 20d 30d 127 120 117 116 114 111 110 104 103 1 102 44 43 1 0.099 6d 7d 56 53 51 50 49 48 47 44 0.1135 6d4 8d 8d 73 68 66 66 64 62 61 58 57' 56 0.120510d 82 77 75 74 72 70 69 65 64 63 0.128 __._..10d - g1 - 87 85 -84 82 80 -19 74 73 72 0.131' 8d 93 69 87 87 85 83 82 77 77 75 82 81 80 ,0.135 16d'12d 97 93 91 90 89 87 96 91 - 0.148 ;10d 20d;-18d _109- _ ...._104`. - 101 _. - 101_ ... _.99 _�97 . _.. 91 -91_ 90.._ 0.162 16d 40d 124 118 115 115 113 110 109 104 103 102 0.177 20d 137 131 128 127 125 122 121 115 114 112 0.192 20d 30d 141 135 131 131 128 125 124118 117 116 1-1/8 0.128 10d 93 88 85 84 82 80 79 74 73 72 f 0.1315 8d - 98 92 89 88 86 83 82 77 77 75 1( U:1356 - 16 '- d12d 164- 98 94 94 91 88 88 82 81 80 0:148° 10d 20d 16d 117 111 107 104 101 100 94' 93 91 0.182_ 46d 40d 132 127 • • 110 109 1��• X120•• 118 117 111 0.177 20d 146 139 • 136• •• 13Ci • •13: 129 128 122 121 120 23 0.192 20d 30d 150 143 139 0 • 1 • 001360 133 132 126 125 11 1-1/4 0.148 10d 20d 16d _ 118 111 • 108• ;• 1„�•- •1 • _101 - F�12 0 94 93 91 D 182 16d 40d 141"' - '194 -129' 128 12 1210 112 111 109 0.177_, _ 20d 155 148 144 143 141 138 6_ 130 129 126 0.192 120 d 30d 159 152 148 147 144 141 140 134 133 131 ••• ••• • 1.Tabulated lateral design values(Z)shall be mulipyed t'all app4ffble 4.df ustment fact*rs Esee Table 10.3.1). 2.Tabulated lateral design values(Z)are for commdh4wire•box?aryl sinker nails•(seAppeirdj:Q inserted in side grain with nail axis perpendicular to wood fibers;minimum nail penetration,p,into them"member equa?WoiOflod nailbgrfdirVeld strengths(FYb): Fye=100.000 psi for 0.099"<-13<-0.142"; Fyb=90,000 psi for 0.142"<D5 0.177";Fyb=80,000 psi for 0.177'<D:5 0.236" 3.When 6D!5 p<IOD,tabulated lateral design values(Z)shall be multiplied by p/IOD. 4.Nail length is insufficient to provide 10D penetration,.Tabulated lojer11 dpi&n Vues V)shall be adjusted per footnote 3. „( 5.Tabulated lateral design values(Z)shall be permitte'Z to apply fDr Cri4er s�e nit mberthickness when adjusted per footnote 3. AMERICAN FOREST&PAPER AStOCIATION .- _ � ' E'nt�f'y, Microsoft � Current Date:2/2/2016 1:52 PM Units system: English File name:Z:\@ENGINEERING\@@ DESING\150907 Carmen Rojas-1051 NE 92 ST,M.Shores\S-Calcs\ADDITIONAL WORKS 20160201\1051 NE 92 M.SHORES VAR 4-mod.etz\ Analysis result Reactions MY Y `-� 8 J FY PAv A Z F X P •-h.�..� 9 7.k' Direction of positive forces and moments 0 Ntrj(-" i pt }lit�,CMTtC?6�! Forces IKipl Moments IKip*ftl Node FX FY FZ MX MY MZ ------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Condition LLDL=DL+LL 1 1.51454 0.72613 0.00000 0.00000 0.00000 0.00000 ------------------------------------------------------------------------------------------------------------------------------------------------------------------ SUM 1.51454 0.72613 0.00000 0.00000 0.00000 0.00000 Condition WLDL=0.6DL+WL 1 -0.92333 -0.50983 0.00000 0.00000 0.00000 0.00000 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------ SUM -0.92333 -0.50983 0.00000 0.00000 0.00000 0.00000 Condition LLDLD=DL+LL 1 1.51454 0.72613 0.00000 0.00000 0.00000 0.00000 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------- SUM 1.51454 0.72613 0.00000 0.00000 0.00000 0.00000 Condition WLDLD=0.6DL+WL 1 -0.92333 450983 0.00000 0.00000 0.00000 0.00000 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------- SUM -0.92333 -0.50983 0.00000 0.00000 0.00000 0.00000 Points of interest in members J K DistJ Considered points MEMBER3 �• ��• • Plane 1-2 • • • • • • atane 1-3 Condition Dist to J Axial Shear V2 .M33.•Spear IA : ...M Z Torsion Station [ft] [Kip] [Kip] 4V.$*fy.: '.:Kip].' :[Iip*jg* [Kip*ft] ------------------------------------------------------------------------------------------------------------------------------------------------------------ LLDL=DL+LL ®r 0% 0.000 -0.028 0.031 • 0000 ••Q000.0 9.000 . 0.000 20% 2.090 -0.028 0.000 : :0.42 .4000.0 0.00; ; 0.000 65% 6.793 -0.028 -0.071 '4O-1:# ' ; ( 01) . ' 0.0Q0; ; 0.000 68% 7.054 0.036 0.068 •• -0.1146 00.000' 0.000 0 0.000 100% 10.450 0.036 0.017 0.000 0.000 0.000 0.000 WLDL=0.6DL+WL 0 0.000 -0.012 10.022 'Db0D : dot .:• 0.000; 0.000 . . . . . . . . . v t e� -o Fl,4r A7 23% 2.351 -0.012 0.001 0.027 0.000 0.000 0.000 f 65% 6.793 -0.012 -0.039 -0.056 0.000 0.000 0.000 68% 7.054 0.022 0.034 -0.063 0.000 0.000 0.000 100% 10.450 0.022 0.003 0.000 0.000 0.000 0.000 LLDLD=DL+LL 0% 0.000 -0.028 0.031 0.000 0.000 0.000 0.000 20% 2.090 -0.028 0.000 0.032 0.000 0.000 0.000 65% 6.793 -0.028 -0.071 -0.134 0.000 0.000 0.000 68% 7.054 0.036 0.068 -0.146 0.000 0.000 0.000 100% 10.450 0.036 0.017 0.000 0.000 0.000 0.000 WLDLD=0.6DL+WL /' a 0% 0.000 -0.012 0.022 0.000 0.000 0.000 0.000 23% 2.351 -0.012 0.001 0.027 0.000 0.000 0.000 65% 6.793 -0.012 -0.039 -0.056 0.000 0.000 0.000 68% 7.054 0.022 0.034 -0.063 0.000 0.000 0.000 100% 10.450 0.022 0.003 0.000 0.000 0.000 0.000 ---------------------------------------------------------------------------------------------------------------------------------------------------------- MEMBER 4 Plane 1-2 Plane 1-3 Condition Dist to J Axial Shear V2 M33 Shear V3 M22 Torsion Station [ft] [Kip] [Kip] [Kip*ft] [Kip] [Kip*ft] [Kip*ft] ---------------------------------------------------------------------------------------------------------------------------------------------------------- LLDL=DL+LL ez/V,-L t-- 0% 0.000 0.036 0.017 0.000 0.000 0.000 0.000 10% 1.045 0.036 0.002 0.010 0.000 0.000 0.000 33% 3.396 0.036 -0.034 -0.027 0.000 0.000 0.000 35% 3.658 -0.007 0.054 -0.018 0.000 0.000 0.000 70% 7.315 -0.007 -0.001 0.078 0.000 0.000 0.000 100% 10.450 -0.007 -0.048 0.000 0.000 0.000 0.000 WLDL=0.6DL+WL 0 ,>q5-5 R/lf`&k 7 wr 0% 0.000 0.022 �.00 0.000 0.000 0.000 0.000 3% 0.261 0.022 0.001 0.001 0.000 0.000 0.000 33% 3.396 0.022 -0.027 -0.041 0.000 0.000 0.000 35% 3.658 -0.009 0.036 -0.035 0.000 0.000 0.000 73% 7.576 -0.009 0.000 0.036 0.000 0.000 0.000 100% 10.450 -0.009 -0.025 0.000 0.000 0.000 0.000 LLDLD=DL+LL 0% 0.000 0.036 0.017 0.000 0.000 0.000 0.000 10% 1.045 0.036 0.002 0.010 0.000 0.000 0.000 33% 3.396 0.036 -0.034 -0.027 0.000 0.000 0.000 35% 3.658 -0.007 0.054 -0.018 0.000 0.000 0.000 70% 7.315 -0.007 -0.001 0.078 0.000 0.000 0.000 100% 10.450 -0.007 -0.048 0.000 0.000 0.000 0.000 WLDLD=0.6DL+WL 0% 0.000 0.022 0.003 0.000 0.000 0.000 0.000 3% 0.261 0.022 0.001 0.001 0.000 0.000 0.000 33% 3.396 0.022 -0.027 -0.041 0.000 0.000 0.000 35% 3.658 -0.009 0.036 -0.035 0.000 0.000 0.000 73% 7.576 -0.009 0.000 0.036 0.000 0.000 0.000 100% 10.450 -0.009, -0.025 0.000 0.000 0.000 0.000 MEMBER 7 bloZ��= Plane 1-2 Plane 1-3 Condition Dist to J Axial Shear V2 M33 Shear V3 M22 Torsion Station [ft] [Kip) [Kip] [Kip*ft] [Kip] [Kip*ft] [Kip*ft] ----------------------------------------------------------------------------------------------------------------------------------------------------------- LLDL=DL+LI_ 0% 0.000 -1.636 0.127 0.000 0.000 0.000 0.000 25% 2.698 -1.588 -0.002 0.168 0.000 0.000 0.000 58% 6.205 -1.525 -0.170 •a 133•i i Qi00e• i 4.09d 0.000 60% 6.475 -0.317 0.140 -9.159.: tCO$ :.1.06Q 0.000 00 :0 600 so* 000 000 OV • •• •• •.• Pa.ej • e2 •. •• ... . . . . 88% 9.442 -0.264 -0.002 0.046 0.000 0.000 0.000 6( 100% 10.791 -0.240 -0.066 0.000 0.000 0.000 0.000 _ WLDL=0.6DL+WL 0% 0.000 1.063 -0.169 0.000 0.000 0.000 0.000 25% 2.698 1.075 0.003 -0.224 0.000 0.000 0.000 58% 6.205 1.090 0.201 0.147 0.000 0.000 0.000 60% 6.475 0.290 -0.178 0.178 0.000 0.000 0.000 85% 9.173 0.302 -0.007 -0.072 0.000 0.000 0.000 100% 10.791 0.309 0.095 0.000 0.000 0.000 0.000 LLDLD=DL+LL 0% 0.000 -1.636 0.127 0.000 0.000 0.000 0.000 25% 2.698 -1.588 -0.002 0.168 0.000 0.000 0.000 58% 6.205 -1.525 -0.170 -0.133 0.000 0.000 0.000 60% 6.475 -0.317 0.140 -0.159 0.000 0.000 0.000 88% 9.442 -0.264 -0.002 0.046 0.000 0.000 0.000 100% 10.791 -0.240 -0.066 0.000 0.000 0.000 0.000 WLDLD=0.6DL+WL 0% 0.000 1.063 -0.169 0.000 0.000 0.000 0.000 25% 2.698 1.075 0.003 -0.224 0.000 0.000 0.000 58% 6.205 1.090 0.201 0.147 0.000 0.000 0.000 60% 6.475 0.290 -0.178 0.178 0.000 0.000 0.000 85% 9.173 0.302 -0.007 -0.072 0.000 0.000 0.000 100% 10.791 0.309 0.095 0.000 0.000 0.000 0.000 ----------------------------------------------------------------------------------------------------------------------------------------------------------- MEMBER 8 Plane 1-2 Plane 1-3 Condition Dist to J Axial Shear V2 M33 Shear V3 M22 Torsion Station [ft] [Kip] [Kip] [Kip"ft] [Kip] [Kip'ft] [Kip'ft] ---------------------------------------------------------------------------------------------------------------------------------------------------------- LLDL=DL+LL 0% 0.000 -0.226 0.103 0.000 0.000 0.000 0.000 18% 2.004 -0.260 0.006 0.110 0.000 0.000 0.000 45% 5.152 -1.539 0.166 -0.089 0.000 0.000 0.000 75% 8.587 -1.598 0.000 0.197 0.000 0.000 0.000 100% 11.449 -1.646 -0.138 0.000 0.000 0.000 0.000 WLDL=0.6DL+WL 3 23,S' 0% 0.000 0.298 -0.126 0.000 0.000 0.000 0.000 18% 2.004 0.290 0.001 -0.125 0.000 0.000 0.000 42% 4.866 0.278 0.174 0.135 0.000 0.000 0.000 45% 5.152 1.096 -0.157 0.165 0.000 0.000 0.000 78% 8.873 1.081 -0.002 -0.132 0.000 0.000 0.000 100% 11.449 1.070 0.105 0.000 0.000 0.000 0.000 LLDLD=DL+LL 0% 0.000 -0.226 0.103 0.000 0.000 0.000 0.000 18% 2.004 -0.260 0.006 0.110 0.000 0.000 0.000 45% 5.152 -1.539 0.166 -0.089 0.000 0.000 0.000 75% 8.587 -1.598 0.000 0.197 0.000 0.000 0.000 100% 11.449 -1.646 -0.138 0.000 0.000 0.000 0.000 WLDLD=0.6DL+WL 0% 0.000 0.298 -0.126 0.000 0.000 0.000 0.000 18% 2.004 0.290 0.001 -0.125 0.000 0.000 0.000 42% 4.866 0.278 0.174 0.135 0.000 0.000 0.000 45% 5.152 1.096 -0.157 0.165 0.000 0.000 0.000 78% 8.873 1.081 -0.002 -0.132 0.000 0.000 0.000 100% 11.449 1.070 0.105 0.000 0.000 0.000 0.000 ----------------------------------------------------------------------------------------------------------------------------------------------------------- •• • • • • • • • • • •• • • • • • • • • • • • • • • • • • • • •• •• • . Pa e3 .. .. MEMBER 9 b2 Plane 1-2 Plane 1-3 Condition Dist to J Axial Shear V2 M33 Shear V3 M22 Torsion Station [ft] [Kip] [Kip] [Kip*ft] [Kip] [Kip*ft] [Kip*ft] ------------------------------------------------------------------------------------------------------------------------------------------------- LLDL=DL+LL 0% 0.000 0.156 0.000 0.000 0.000 0.000 0.000 100% 2.469 0.156 0.000 0.000 0.000 0.000 0.000 WLDL=0.6DL+WL 0% 0.000 0.082 0.000 0.000 0.000 0.000 0.000 100% 2.469 0.082 0.000 0.000 0.000 0.000 0.000 LLDLD=DL+LL 0% 0.000 0.156 0.000 0.000 0.000 0.000 0.000 100% 2.469 0.156 0.000 0.000 0.000 0.000 0.000 WLDLD=0.6DL+WL 0% 0.000 0.082 0.000 0.000 0.000 0.000 0.000 100% 2.469 0.082 0.000 0.000 0.000 0.000 0.000 ----------------------------------------------------------------------------------------------------------------------------------------------------------- MEMBER 10 Plane 1-2 Plane 1-3 Condition Dist to J Axial Shear V2 M33 Shear V3 M22 Torsion Station [ft] [Kip] [Kip] [Kip*ft] [Kip] [Kip*ft] [Kip*ft] LLDL=DL+LL 0% 0.000 0.101 0.000 0.000 0.000 0.000 0.000 100% 2.336 0.101 0.000 0.000 0.000 0.000 0.000 WLDL=0.6DL+WL 0% 0.000 0.072 0.000 0.000 0.000 0.000 0.000 100% 2.336 0.072 0.000 0.000 0.000 0.000 0.000 LLDLD=DL+LL 0% 0.000 0.101 0.000 0.000 0.000 0.000 0.000 100% 2.336 0.101 0.000 0.000 0.000 0.000 0.000 WLDLD=0.6DL+WL 0% 0.000 0.072 0.000 0.000 0.000 0.000 0.000 100% 2.336 0.072 0.000 0.000 0.000 0.000 0.000 ----------------------------------------------------------------------------------------------------------------------------------------------------------- MEMBER 11 Plane 1-2 Plane 1-3 Condition Dist to J Axial Shear V2 M33 Shear V3 M22 Torsion Station [ft] [Kip] [Kip] [Kip*ft] [Kip] [Kip*ft] [Kip*ft] --------------------------------------------------------------------------------------------------------------------------------------------------------- LLDL=DL+LL 0% 0.000 -1.303 0.000 0.000 0.000 0.000 0.000 100% 8.901 -1.303 0.000 0.000 0.000 0.000 0.000 WLDL=0.6DL+WL 0% 0.000 0.856 0.000 0.000 0.000 0.000 0.000 100% 8.901 0.856 0.000 0.000 0.000 0.000 0.000 LLDLD=DL+LL 0% 0.000 -1.303 0.000 0.000 0.000 0.000 0.000 100% 8.901 -1.303 0.000 0.000 0.000 0.000 0.000 WLDLD=0.6DL+WL 0% 0.000 0.856 0.000 0.000 0.000 0.000 0.000 100% 8.901 0.856 0.000 0.000 0.000 0.000 0.000 ---------------------------------------------------------------------------------------------------------------------------------------------------------- Maximum forces at members . .. . . . . ... . . ... ... ... ... . • .. . . . . . . . . . .. . . . . . . . . ... . . . . ... . . . . . . . . . . . . • •• •. • • Pae4 •. .• Condition:LLDL=DL+LL Axial Shear V2 Shear V3 Torsion M22 M33 [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] --------------------------------------------------------------------------------------------------------------------------------------- MEMBER 3 Max 0.04 0.07 0.00 0.00 0.00 0.03 Y Min -0.03 -0.07 0.00 0.00 0.00 -0.15 MEMBER 4 Max 0.04 0.06 0.00 0.00 0.00 0.08 Min -0.01 -0.05 0.00 0.00 0.00 -0.03 MEMBER 7 Max -0.24 0.14 0.00 0.00 0.00 0.17 Min -1.64 -0.18 0.00 0.00 0.00 -0.16 MEMBER 8 Max -0.23 0.17 0.00 0.00 0.00 0.20 Min -1.65 -0.14 0.00 0.00 0.00 -0.09 MEMBER 9 Max 0.16 0.00 0.00 0.00 0.00 0.00 Min 0.16 0.00 0.00 0.00 0.00 0.00 MEMBER 10 Max 0.10 0.00 0.00 0.00 0.00 0.00 Min 0.10 0.00 0.00 0.00 0.00 0.00 MEMBER 11 Max -1.30 0.00 0.00 0.00 0.00 0.00 Min -1.30 0.00 0.00 0.00 0.00 0.00 -------------------------------------------------------------------------------------------------------------------------------------- Condition:WLDL=0.6DL+WL Axial Shear V2 Shear V3 Torsion M22 M33 [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] ---------------------------------------------------------------------------------------------------------------------------------------- MEMBER 3 Max 0.02 0.03 0.00 0.00 0.00 0.03 Min -0.01 -0.04 0.00 0.00 0.00 -0.06 MEMBER 4 Max 0.02 0.04 0.00 0.00 0.00 0.04 Min -0.01 -0.03 0.00 0.00 0.00 -0.04 MEMBER 7 Max 1.09 0.21 0.00 0.00 0.00 0.18 Min 0.29 -0.18 0.00 0.00 0.00 -0.22 MEMBER 8 Max 1.10 0.18 0.00 0.00 0.00 0.16 Min 0.28 -0.16 0.00 0.00 0.00 -0.13 MEMBER 9 Max 0.08 0.00 0.00 0.00 0.00 0.00 Min 0.08 0.00 0.00 0.00 0.00 0.00 MEMBER 10 Max 0.07 0.00 0.00 0.00 0.00 0.00 Min 0.07 0.00 0.00 0.00 0.00 0.00 MEMBER 11 Max 0.86 0.00 0.00 0.00 0.00 0.00 Min 0.86 0.00 0.00 0.00 0.00 0.00 ----------------------------------------------------------------------------------------------------------------------------------------- Condition:LLDLD=DL+LL Axial Shear V2 Shear V3 Torsion M22 M33 [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] ----------------------------------------------------------------------------------------------------------------------------------------- MEMBER 3 Max 0.04 0.07 0.00 0.00 0.00 0.03 Min -0.03 -0.07 0.00 0.00 0.00 -0.15 MEMBER 4 • • • • • • • . • 00 Max 0.04 0.06 0.00 0.0.00.: f op.(:) ; ;„O.C8. Min -0.01 -0.05 0.00 69C.09.; •.p.00.0 .10.Q%• MEMBER 7 Max -0.24 0.14 0.00 0.00 0.00 0.17 Min -1.64 -0.18 0.00 • G.DG ••0.40•• •%16 • MEMBER 8 ' • • • • • • • Max -0.23 0.17 0.00 • ON • � OF • • :0.30 •• • • • • • ••• • • • • ••• • • • • • • • • • • • • • •• •• • •Pa3 5 •• .• Min -1.65 -0.14 0.00 0.00 0.00 -0.09 MEMBER 9 \ Max 0.16 0.00 0.00 0.00 0.00 0.00 Min 0.16 0.00 0.00 0.00 0.00 0.00 MEMBER 10 Max 0.10 0.00 0.00 0.00 0.00 0.00 Min 0.10 0.00 0.00 0.00 0.00 0.00 MEMBER 11 Max -1.30 0.00 0.00 0.00 0.00 0.00 Min -1.30 0.00 0.00 0.00 0.00 0.00 ----------------------------------------------------------------------------------------------------------------------------------- Condition:WLDLD=0.6DL+WL Axial Shear V2 Shear V3 Torsion M22 M33 [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] ---------------------------------------------------------------------------------------------------------------------------------- MEMBER 3 Max 0.02 0.03 0.00 0.00 0.00 0.03 Min -0.01 -0.04 0.00 0.00 0.00 -0.06 MEMBER 4 Max 0.02 0.04 0.00 0.00 0.00 0.04 Min -0.01 -0.03 0.00 0.00 0.00 -0.04 MEMBER 7 Max 1.09 0.21 0.00 0.00 0.00 0.18 Min 0.29 -0.18 0.00 0.00 0.00 -0.22 MEMBER 8 Max 1.10 0.18 0.00 0.00 0.00 0.16 Min 0.28 -0.16 0.00 0.00 0.00 -0.13 MEMBER 9 Max 0.08 0.00 0.00 0.00 0.00 0.00 Min 0.08 0.00 0.00 0.00 0.00 0.00 MEMBER 10 Max 0.07 0.00 0.00 0.00 0.00 0.00 Min 0.07 0.00 0.00 0.00 0.00 0.00 MEMBER 11 Max 0.86 0.00 0.00 0.00 0.00 0.00 Min 0.86 0.00 0.00 0.00 0.00 0.00 ----------------------------------------------------------------------------------------------------------------------------------- :0 000 see 000 000 :•�•: : :.�Aage6 .•. . • . •.. • . Title: Job# G� Dsgnr: Date: 3:28PM, 8 FEB 16 Description a • Scope r Rev: 580002 User KW-0605358,Ver 5.80,1-Dec-2003 Timber Ledger Design Page 1 (c)1983-2003 ENERCALC Engineering Software 150907 additional works.ecw:Calculalions ���ne�� mwrtl-Imlrtr Description WL 1 General Information Code Ref: 1997/2001 NDS,2000/2003 IBC,2003 NFPA 5000.Base allowables are user defined Ledger Width 1.500 in Uniform Load... Point Load... Ledger Depth 8.000 in Dead Load 62.67#/ft Dead Load 0.00 lbs Ledger is Bolted to Concrete Live Load 53.20#/ft Live Load 0.00 lbs Bolt Diameter 1/2" Spacing 0.00 ft Bolt Spacing 24.000in Horizontal Shear 0.00#/ft Offset 0.00 in Load Duration Factors... Southern Pine, No.2 Non-Dense 2-4 Thic Live Load 1.000 FbAllowable 1,100.0 psi Short Term 1.000 Fv Allowable 175.0 psi Ledger Stresses (] Load Combination: DL+LL DL+ST DL+LL+ST Maximum Moment 463.48 in-# 250.68 in-# 463.48 in-# Bending Stress 28.97 psi 15.67 psi 28.97 psi Stress Ratio 0.026 0.014 0.026 MaximumShear 164.15 lbs 88.78 lbs 164.15 lbs Shear Stress 13.68 psi 7.40 psi 13.68 psi Stress Ratio 0.078 0.042 0.078 Bolt Loading Note:Bolt Design Value from NDS 8.2/UBC 23 Using:Aspen Stress Summary DL+LL DL+ST DL+LL+ST Max.Vertical Load 231.74 lbs 125.34 lbs 231.74 lbs Allow Vertical Load 2,200.00 lbs 2,200.00 lbs 2,200.00 lbs Max. Horizontal Load 0.00 lbs 0.00 lbs 0.00 lbs Allow Horizontal Load 4,350.00 lbs 4,350.00 lbs 4,350.00 lbs Angle of Resultant 90.0 degrees 90.0 degrees 90.0 degrees Diagonal Component 231.74 lbs 125.34 lbs 231.74 lbs Allow Diagonal Force 249.13 lbs 249.13 lbs 249.13 lbs Final Stress Ratio 0.930 :1.00 0.503 :1.00 0.930 :1.00 Summai Wood Stress & Bolts OK Stress Summary DL+LL DL+ST DL+LL+ST Wood Bending Stress Ratio 0.026 : 1.00 0.014 :1.00 0.026 :1.00 Wood Shear Stress Ratio 0.078 : 1.00 0.042 : 1.00 0.078 : 1.00 Bolt Stress Ratio 0.930 :1.00 0.503 : 1.00 0.930 : 1.00 • • • • • • • • • • ••• • • • ••• • • • ' Anchor Designer TM Company: Date: 2/8/2016 Engineer: I Page: 1/4 Software Project: 1051 NE 92St Version 2.4.5673.3 Address: Phone: E-mail: _.... .. . ....... .. ........_._... .... ............ 1.Proiect information Customer company: Project description: Customer contact name: Location: Customer e-mail: Fastening description: Comment: 2.Input Data&Anchor Parameters General Base Material Design method:ACI 318-11 Concrete:Normal-weight Units:Imperial units Concrete thickness,h(inch):8.00 State:Uncracked Anchor Information: Compressive strength,f.(psi):5000 Anchor type:Torque controlled expansion anchor 4),v: 1.4 Material:Carbon Steel Reinforcement condition:B tension,B shear Diameter(inch):0.500 Supplemental reinforcement:No Nominal Embedment depth(inch):2.750 Reinforcement provided at corners:No Effective Embedment depth,her(inch):2.250 Do not evaluate concrete breakout in tension:No Code report:ICC-ES ESR-3037 Do not evaluate concrete breakout in shear:No Anchor category: 1 Ignore Edo requirement:Not applicable Anchor ductility:Yes Build-up grout pad:No hrri„(inch):4.50 cac(inch):6.50 Base Plate Cma(inch):4.00 Length x Width x Thickness(inch):3.00 x 8.00 x 0.25 Sawn(inch):4.00 Load and Geometry Load factor source:ACI 318 Section 9.2 Load combination:not set Seismic design:No Anchors subjected to sustained tension:Not applicablez Apply entire shear load at front row:No Anchors only resisting wind and/or seismic loads:No <Figure 1> 0 Ib 0 ft-lb 1395 Ib 0ft-Ib 65 Ib 1 •• • • • • • • • • • •• • • • • • • • • Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. S€mpc -Stor-1-Te e cr+. _,,!»c. 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax:925.847.3871 www.strongtie.com ••• • • • • ••• • • • • • • • • • • • • • •• •• • • • •• •• ••• • • • ••• • • • Anchor DesignerT"' Company: I Date: 2/8/2016 Engineer: Page: 2/4 ` Software Project: 1051 NE 92St Version 2.4.5673.3 Address: Phone: E-mail: .......... ........... <Figure 2> 8.00 Q 6.00 6.00 6.00 Recommended Anchor Anchor Name:Strong-Bolt®2-1/2"0 CS Strong-Bolt 2,hnom:2.75"(70mm) Code Report: ICC-ES ESR-3037 •• ••• • • • • • •• 000 see •• • • • • • • • • Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. Gimpscr Strong-Te C�ompzny h c. 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax:925.847.3871 www.strongtie.com ••• • • • • ••• • • • • • • • • • • • • • •• •• • • • •• •• ••• • • • ••• • • • Anchor Designer"' Company: Date: 2/8/2016 Engineer: Page: 3/4 I _ Software Project: 1051 NE 92St - �� Version 2.4.5673.3 Address: Phone: E-mail: .................................... 3.Resulting Anchor Forces Anchor Tension load, Shear load x, Shear load y, Shear load combined, Nue(lb) Vuax(lb) Vuay(lb) J(Vuax)Z+(Vuay)z(lb) 1 864.4 0.0 697.5 697.5 2 0.0 0.0 697.5 697.5 Sum 864.4 0.0 1395.0 1395.0 Maximum concrete compression strain(%,):0.08 <Figure 3> Maximum concrete compression stress(psi):351 Resultant tension force(lb):864 Resultant compression force(lb):865 Eccentricity of resultant tension forces in x-axis,e'Nx(inch):0.00 Eccentricity of resultant tension forces in y-axis,e'Ny(inch):0.00 V Eccentricity of resultant shear forces in x-axis,e'w(inch):0.00 f Eccentricity of resultant shear forces in y-axis,e'vy(inch):0.00 01 02 X 4.Steel Strength of Anchor in Tension(Sec.13.5.1) Naa(lb) 0 ON..(Ib) 12100 0.75 9075 5,Concrete Breakout Strength of Anchor in Tension(Sec.13.5.2) Nb=kc.iagfcheP(Eq.D-6) kc Ila fc(psi) her(in) Nb(lb) 24.0 1.00 5000 2.250 5728 ONcb=0(ANcI ANcc)PedNV.NcPcp.NNb(Sec.D.4.1 &Eq.D-3) ANc(in Z) ANco(in') TPad,N VPc,N Vcp,N Nb(Ib) 0 ONO(lb) 45.56 45.56 1.000 1.00 0.923 5728 0.65 3437 6.Pullout Strength of Anchor in Tension(Sec.D.5.3) ¢Nm=OTP.P,i.Np(fcI2,500)"(Sec.D.4.1,Eq.D-13&Code Report) VPc,P Aa Np(lb) fc(psi) n 0 ONp„(lb) 1.0 1.00 3615 5000 0.50 0.65 3323 • •• • • • • ••• • • ••• ••• ••• ••• • •• • • • • • • • • • •• • • • • • • • • Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. 3tror7_T;c,:;omzany.rc. 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax:925.847.3871 www.strongtie.com ••• • • • • ••• • • • •• •• • • • •• •• ••• • • • ••• • • • Company: Date: 2/8/2016 • Anchor Designer TM Engineer: Page: 4/4 G Software Project: 1051 NE 92St Version 2.4.5673.3 Address: Phone: E-mail: ....... ._. .... ......... 8.Steel Strength of Anchor in Shear(Sec.D.6.1) Vsa(lb) 09rout 0 OgmutoVsa(lb) 7235 1.0 0.65 4703 9.Concrete Breakout Strength of Anchor in Shear(Sec.D.6.2) Shear perpendicular to edge in y-direction: Vby=minJ7(le/da)0-NdaAegf cca11 5;9AagP.ca1'"J(Eq.D-33&Eq.D-34) fe(in) da(in) A. P�(psi) cal(in) Vby(lb) 2.25 0.50 1.00 5000 12.00 19655 OVcby=0(Avc/Avce)Ved.v'Vc,vTh,vVby(Sec.D.4.1 &Eq.D-30) Avg(int) Avco(in 2) 'Yd,v '%,v Vh,V Vby(lb) 0 OVcby(lb) 288.00 648.00 1.000 1.400 1.500 19655 0.70 12842 10.Concrete Pryout Strength of Anchor in Shear(Sec.D.6.3) OVcpg=Okc^bg=O1kcp(ANc/ANco)'Fec,N'Ved,N'Yc,N'/lcp,NNb(Eq.D-41) kcp ANc(int) AN—(in 2) V',N 'yed,N P.,N V'.p,N Nb(lb) 0 OVcpg(lb) 1.0 86.06 45.56 1.000 1.000 1.000 0.923 5728 0.70 6991 11.Results Interaction of Tensile and Shear Forces(Sec.D.7) Tension Factored Load,Nva(lb) Design Strength,oNn(lb) Ratio Status Steel 864 9075 0.10 Pass Concrete breakout 864 3437 0.25 Pass Pullout 864 3323 0.26 Pass(Governs) Shear Factored Load,Vua(lb) Design Strength,oW(lb) Ratio Status Steel 698 4703 0.15 Pass T Concrete breakout y+ 1395 12842 0.11 Pass Pryout 1395 6991 0.20 Pass(Governs) Interaction check N..I^ Vua/OVn Combined Ratio Permissible Status Sec.D.7.1 0.26 0.00 26.0% 1.0 Pass 1/2"0 CS Strong-Bolt 2,hnom:2.75"(70mm)meets the selected design criteria. 12.Warnings -Minimum spacing and edge distance requirement of 6da per ACI 318 Sections D.8.1 and D.8.2 for torqued cast-in-place anchor is waived per designer option. Designer must exercise own judgement to determine if this design is suitable. Refer to manufacturer's product literature for hole cleaning and installation instructions. • •• • • • • ••• • •• ••• •• • • • •• • ••• ••• ••• ••• • • • • • • • • • •• • • • • • • • • • •• • • • s • • • • Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. ;,Fmps^r Strorg=fie,;cn-pany inc 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax:925.847.3871 www.strongtie.com ••• • • • • ••• • • • • • • • • • • • • • •• •• ••• • •• •• ••• • • ••• • • Title: Job# Dsgnr: Date: 4:53PM, 8 FEB 16 Description: �D Scope: Rev: 580002 User:KW-0605358,Ver 5.8 0,1-Dec-2003 Timber Ledger Design Page 1 - - - ------- (c)1983-2003 ENERCALC Engineering Software 150907 additional works.ecw:Calculations Description WL 3 General Information Code Ref: 1997/2001 NDS,2000/2003 IBC,2003 NFPA 5000.Base allowables are user defined Ledger Width 3.500in Uniform Load... Point Load... Ledger Depth 8.000in Dead Load 2,142.00#/ft Dead Load 0.00 lbs Ledger is Bolted to Concrete Live Load 1,795.20#/ft Live Load 0.00 lbs Bolt Diameter 7/8" Spacing 0.00 ft Bolt Spacing 3.000 in Horizontal Shear 0.00#/ft Offset 0.00 in Load Duration Factors... Southern Pine, No.2 Non-Dense 2-4 Thic Live Load 1.000 Fb Allowable 1,100.0 psi Short Term 1.000 Fv Allowable 175.0 psi Ledger Stresses (� Load Combination: DL+LL DL+ST DL+LL+ST Maximum Moment 246.07 in-# 133.87 in-# 246.07 ink Bending Stress 6.59 psi 3.59 psi 6.59 psi Stress Ratio 0.006 0.003 0.006 MaximumShear 410.12 lbs 223.12 lbs 410.12 lbs Shear Stress 14.65 psi 7.97 psi 14.65 psi Stress Ratio 0.084 0.046 0.084 Bolt Loading Note:Bolt Design Value from NDS 8.2/UBC 23 Using:Southern Pine n Stress Summary DL+LL DL+ST DL+LL+ST Max.Vertical Load 984.30 lbs 535.50 lbs 984.30 lbs Allow Vertical Load 2,750.00 lbs 2,750.00 lbs 2,750.00 lbs Max. Horizontal Load 0.00 lbs 0.00 lbs 0.00 lbs Allow Horizontal Load 6,150.00 lbs 6,150.00 lbs 6,150.00 lbs Angle of Resultant 90.0 degrees 90.0 degrees 90.0 degrees Diagonal Component 984.30 lbs 535.50 lbs 984.30 lbs Allow Diagonal Force 1,023.78 lbs 1,023.78 lbs 1,023.78 lbs Final Stress Ratio 0.961 :1.00 0.523 : 1.00 0.961 :1.00 Summary I Wood Stress & Bolts OK Stress Summary DL+LL DL+ST DL+LL+ST Wood Bending Stress Ratio 0.006 :1.00 0.003 :1.00 0.006 :1.00 Wood Shear Stress Ratio 0.084 :1.00 0.046 :1.00 0.084 :1.00 Bolt Stress Ratio 0.961 :1.00 0.523 :1.00 0.961 :1.00 • •• • • • • ••• • 000 000 00* 000 0*0 Company: Date: 2/8/2016 Anchor DesignerT"" Engineer: Page: 1/4 Software Project: Version 2.4.5673.3 Address: Phone: E-mail: 1.Proiect information Customer company: Project description: Customer contact name: Location: Customer e-mail: Fastening description: Comment: 2,Input Data&Anchor Parameters General Base Material Design method:ACI 318-11 Concrete:Normal-weight Units:Imperial units Concrete thickness,h(inch):8.00 State:Uncracked Anchor Information: Compressive strength,fc(psi):5000 Anchor type:Cast-in-place 4),v: 1.4 Material:AWS Type A Reinforcement condition:B tension,B shear Diameter(inch):0.500 Supplemental reinforcement:No Effective Embedment depth,he(inch):2.750 Reinforcement provided at comers:No Anchor category:- Do not evaluate concrete breakout in tension:No Anchor ductility:Yes Do not evaluate concrete breakout in shear:No hn„n(inch):4.00 Ignore Edo requirement:Yes Cmc(inch):1.25 Build-up grout pad:No Srrmn(inch):2.00 Base Plate Load and Geometry Length x Width x Thickness(inch):8.00 x 8.00 x 0.25 Load factor source:ACI 318 Section 9.2 Load combination:not set Seismic design:No Anchors subjected to sustained tension:Not applicable Apply entire shear load at front row:No Anchors only resisting wind and/or seismic loads:No Z <Figure 1> 0 Ib 0 -lb :f 5156 Ib 0 Y 0 ft-Ib X 859 ft-lb i .• . . • • . . . . . .. . • . . . . . . Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. S n,_,cn Ii orO-Tie' omnany Inc. 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax:925.847.3871 www.strongtie.com ••• • • • • ••• • • • • • • • • • • • • • •• •• • • • •• •• ••• • • • ••• • • • Anchor Designer TM Company: Date: 2/8/2016 Engineer: Page: 2/4 Software Project: Version 2.4.5673.3 Address: Phone: E-mail: ...... ......_................................ <Figure 2> 8.00 0 LO N Q. p o � o a. a' O 6.00 LQ N Recommended Anchor Anchor Name:Headed Stud-1/2"0 AWS Type A Headed Stud •• ••• • • • • • •• • •• • • • • ••• • •• ••• •• • • • •• • ••• ••• ••• ••• • • • • • • • • • •• • • • • • • • • • •• • • • • • • • • Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. Stror:I-T a"cn:,z ny irc 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax:925.847.3871 www.strongtie.com ••• • • • • ••• • • • • • • • • • • • • • •• •• • • • •• •• ••• • • • ••• • • • Anchor DesignerT"" Company: Date: 2/8/2016 Engineer: Page: 3/4 Software Project: Version 2.4.5673.3 Address: Phone: E-mail: 3.Resulting Anchor Forces Anchor Tension load, Shear load x, Shear load y, Shear load combined, NU.(lb) Wax(Ib) Vuay(lb) J(Vuax)'+(Vuay)Z(lb) 1 809.8 0.0 1289.0 1289.0 2 0.0 0.0 1289.0 1289.0 3 0.0 0.0 1289.0 1289.0 4 809.8 0.0 1289.0 1289.0 Sum 1619.6 0.0 5156.0 5156.0 Maximum concrete compression strain(%o):0.05 <Figure 3> Maximum concrete compression stress(psi):213 Resultant tension force(lb):1620 Resultant compression force(lb):1620 Eccentricity of resultant tension forces in x-axis,e'W(inch):0.00 O Q Eccentricity of resultant tension forces in y-axis,e'Ny(inch):0.00 Eccentricity of resultant shear forces in x-axis,e'vx(inch):0.00 Eccentricity of resultant shear forces in y-axis,e'vy(inch):0.00 O4 X O 4.Steel Strength of Anchor in Tension(Sec.D.5.1) Naa(lb) 0 ON-(Ib) 10800 0.75 8100 5.Concrete Breakout Strength of Anchor in Tension(Sec.D.5.2) Nb=kcA.gfch.r-5(Eq.D-6) kc A. fc(psi) hef(In) Nb(lb) 24.0 1.00 5000 2.750 7739 ONcbg=0(ANcIANco)V c,NPbd,NTc,NVjcp,NNb(Sec.D.4.1 &Eq.D4) ANc(in Z) AN-(Ing) P.,N W d,N Vc,N %p,N Nb(lb) 0 ONcbg(lb) 66.00 68.06 1.000 0.882 1.25 1.000 7739 0.70 5791 6.Pullout Strength of Anchor in Tension(Sec.D.5.3) ONm_(r<V%.^=O'lo,p8Abrgfc(Sec.D.4.1,Eq.D-13&D-14) %,p Abrg(inz) fc(psi) 0 ONp„(lb) 1.4 0.59 5000 0.70 23089 •• • • • • • • • • • •• • • • • • • • • Input data and results must be checked for agreement with the existing circumstances,the Andards and guidelines must be checked for plausibility. Simi :n Strong-Te cn i:;y it c. 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax:925.847.3871 www.strongtie.com ••• • • • • ••• • • • • • • • • • • • • • •• •• • • • •• •• ••• • • • ••• • • • TM"' k Anchor Designer TIVI Company: Date: 2/8/2016 Engineer: Page: 4/4 Software Project: L - Version 2.4.5673.3 Address: Phone: E-mail: ......... .................... 8.Steel Strength of Anchor in Shear(Sec.D.6.1) Vsa(lb) Og,out 0 OgmutOVss(lb) 10800 1.0 0.65 7020 9.Concrete Breakout Strength of Anchor in Shear(Sec.D.6.2) Shear parallel to edge in y-direction: Vbx=min17(1e/da)02Jd.A.4fcca,'5;9.lagfcca,'-51(Eq.D-33&Eq.D-34) 4(in) da(in) Aa fc(psi) ca,(in) Vbx(lb) 2.75 0.50 1.00 5000 2.50 1946 oVcbgy=0(2)(Avc/Avo)'Yc,vV'dyP.,vVIh,Wbx(Sec.D.4.1 &Eq.D-31) Avc(int) Avco(int) Tec,V 'Fed,V `/'c,V Th,V Vb.(lb) 0 OVcbgy(lb) 50.63 28.13 1.000 1.000 1.400 1.000 1946 0.70 6864 10.Concrete Pryout Strength of Anchor in Shear(Sec.D.6.3) OVcpg=OkcpNcbg=Okcp(ANc/A Nc)'Fee,N Ted,N Vlc,N T p,NNb(Eq.D-41) kcp AN.(int) AN..(W) %c,N Yed,N V,N V'p,N Nb(lb) 0 OVcpg(lb) 2.0 114.00 68.06 1.000 0.882 1.250 1.000 7739 0.70 20004 11.Results Interaction of Tensile and Shear Forces(Sec.D.7) Tension Factored Load,Nva(lb) Design Strength,oW(lb) Ratio Status Steel 810 8100 0.10 Pass Concrete breakout 1620 5791 0.28 Pass(Governs) Pullout 810 23089 0.04 Pass Shear Factored Load,Vua(lb) Design Strength,OW(lb) Ratio Status Steel 1289 7020 0.18 Pass II Concrete breakout x- 2578 6864 0.38 Pass(Governs) Pryout 5156 20004 0.26 Pass Interaction check N„a/¢N„ V./OV' Combined Ratio Permissible Status Sec.D.7.3 0.28 0.38 65.5% 1.2 Pass 1/2"0 AWS Type A Headed Stud with hef=2.750 inch meets the selected design criteria. 12.Warnings -Minimum spacing and edge distance requirement of 6da per ACI 318 Sections D.8.1 and D.8.2 for torqued cast-in-place anchor is waived per designer option. -Designer must exercise own judgement to determine if this design is suitable. we ••• • • • • • •• • •• • • • • ••• • so 064 09 e of • ••• ••• ••• ••• • •• • • • • • • • • • •• • • • • • • • • Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. 5:,nipson Ston, T e Con-pany I �. 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax:925.847.3871 www.strongtie.com ••• • • • • ••• • • • • • • • • • • • • • •• at • • • •• •• ••• • 0 • ••• • • PLF STRUCTURAL ENGINEERS, INC. Project Name: 1051 NE 92 St.Miami Shores • CA# 30758 Project No.: 150907 Sheet No.: 4960 SW 52nd ST, Suite#407, Davie, FL 33314 Calculated By: Date: • Ph: (954) 533-3237 Fax: (954) 533-2117 Checked By: Date: email: pfiallo@plfengineers.com S hor�111 Con/vecc O+US 7 ,4X ioJ Co ct.&O: - 2,s g- 1411;- i/ Fo 'a-4 z)/1 Lt., / A m-am6,-r -1ti,;�6%ess• /!lz-v fs ovalow /320 45.e hal/= 299t _ 2 2 &e /32D �A -!I L N.6,�, ��► AF-Z PA -=� DOI, v c� �roi�-c✓t� -S w,� s �� :nom /,, ,, fs = �� Gv1`O� 7,� �-��"��°f� P %2.1/• Al/O�"c��J� �`'tPGr ��/ f�S —4,1, s S v�Q �"�o.�Pco�S. zk f' of t65 .. ••• . . . . O •• • • . .. . . . . ... . --�� rlor,-;?�oN4rLl /0117GzrI7S .. ,.. .. . .. • •• • • • • • • • • • • • • • • • • • • • •• •• • • • •• •• ••• • • • ••• • • PLF STRUCTURAL ENGINEERS, INC. Project Name: 1051 NE 92 St.Miami Shores CA# 30758 Project No.: 150907 Sheet No.: 4960 SW 52nd ST, Suite#407, Davie, FL 33314 Calculated By: Date: ' Ph: (954) 533-3237 Fax: (954)533-2117 Checked By: Date: email: pfiallo@plfengineers.com /L /6 S .. ... . . . . . .. . . . . . . . . . . . .. . . . . ... . .. ... .. . . . .. . ... ... ... ... . .. . . . . . . . . ... . . . . ... . . . . . . . . . . . . . .. .. . . . .. .. ... . . . ... . . Table 11L WOOD SCREWS: Reference Lateral Design Values (Z) for Single Shear(two member) Connections1,2,3 for sawn lumber or SCL with both members of identical specific gravity z _ r L y LL LL .0 oN N 0(O c9E � f � � ' Ym 'Dr N N - a aO ti lL <hL N N Omm i� E a LO E°o °ocm 3NN '° 2� ns � o �z (D Cr � � � 30: 3c:) C zr is D in. in. lbs. lbs. lbs. Ibs. lbs. lbs. Ibs. Ibs. lbs. lbs. -_ 1/2 0.138 6 88 67 59 57 53 49 47 41 40 38 0.151 7 96 74 65 63 59 54 52 45 44 42 0.164 8 107 82 73 71 66 61 59 51 50 48 0.177 9 121 94 83 81 76 70 68 59 58 56 0.190 10 130 101 90 87 82 75 73 64 63 60 0.216 12 156 123 110 107 100 93 91 79 78 75 0.242 14 168 133 120 117 110 102 99 87 86 83 5/8 0.138 6 94 76 66 64 59 53 52 44 43 41 - 0.151 7 104 83 72 70 64 58 56 48 47 45 0.164 8 120 92. 80 77 72 65 63 54 53 51 0.177 9 136 103 91 88 81 74 72 62 61 58 0.190 10 146 111 97 94 88 80 78 67 65 63 0.216 12 173 133 117 114 106 97 95 82 80 77 0.242 14 184 142 126 123 115 106 103 1 89 87 84 G 3/4 0.138 6 94 79 72 71 65 58 57 47 46 44 Q 0.151 7 104 87• 80 77 71 64 62 52 50 48 0.164 B. 120 101- 88 85 78 71 69 58 56 54 m 0.177 9 142 114" 99 96 88 80 78 66 64 61 r 0.190 10 153 122 107 103 95 86 83 71 69 66 -� 0.216 12 192 144 126 122 113 103 100 86 84 80 0.242 14 203 154 135 131 122 111 108 93 91 87 m 1 0:138 6 94' 79 72 71 67 63 61 55 54 51 0.151 7 ,104 87 80 78 74 69 68 60 59 56 a 0.164 8 120 101 92 90 85 80 78 67 65 62 N 0.177 9 142 118 108 106 100 94 90 75 73 70 .� 0.190 10 153 128 117 114 108 101 97 81 78 75 M 0.216 12 193 161 147 143 131 118 114 96 93 89 m 0.242 14 213 178 157 152 139 126 122 102 100 95 M 1-1/4 0.138 6 94 79 72 71 67 63 61 55 54 52 N 0.151 7 104 87 80 78 74 69 68 60 59 57 0.164 8 120 101 92 90 85 80 78 70 68 66 0.177 9 142 118 108 106 100 94 92 82 80 78 0.190 10 153 128 117 114 108 101 99 88 87 84 0.216 12 193 161 147 144 137 128 125 108 105 100 0.242 14 213 178 163 159 151 141 138 1 115 111 106 1-1/2 0.138 6 94 79 72 71 67 63 61 55 54 52 0.151 7 104 80 78 74 69 68 60 59 57 X164 8 120101 92 90 85 80 78 70 68 66 7 142 118 108 106 100 94 92 82 80 78 0.190 10 153 128 117 114 108 101 99 88 87 84 0.216 12 193 161. 147 144 137 128 125 111 109 106 0.2421 14 213 178 163 159 151 141 138 123 1 120 117 1-3/4 0.138 6 94 . 79 72 71 67 63 61 55 54 52 0.151 7 104 87 80 78 74 69 68 60 59 57 0.164 8 120 101 92 90 85 80 78 70 68 66 0.177 9 142 118 108 106 100 94 92 82 80 78 0.190 10 153 128 117 114 108 101 99 88 87 84 0.216 12. 193 161 147 144 137 128 125 111 109 106 0.242 14 213 178 163 159 151 d 141 1 138 1 123 120 117 1.Tabulated lateral design values(Z)shall be multiplied by all aWp cV�,ad_iWstjtent jactojs(See T,1>Ie 10.3.1). 2.Tabulated lateral design values(Z)are for rolled thread wood screws(see Appe%di*L0in9erted it,side-rain with nail axis perpendicular to wood fibers;minimum screw penetration,p,into the main member equal to IOD;ant icrew b(;idj�tg 4L4 sirer4;(Pys):Fyb= 100,000 psi for 0.099"<_D 5 0.142"; Fyb=90,000 psi for 0.142"<D:5 0.177";Fyb=80,000 psi foj Q.177.'•11)SX36`p'yb i 7p,O"a si for 0.236"<D5 0.273" 3.When 6D<_p<IOD,tabulated lateral design values(Z)shall be multiplied by p/lOD. •• • • • • • • • • • •• • • • • • • • • AMERICAN�fiORES.T S:W�ER ISSOCIATIBN • • • • • • • • • • • •• •• • • • •• •• ••• • • • ••• • • 86 DOWEL-TYPE FASTENERS �B Table 11F BOLTS: Reference Lateral Design Values (Z) for Double. Shear (three member) Connections1,2 for sawn lumber or SCL with all members of identical specific gravity Thickness G=0.55 G=0.46 ) m aEi m o m G=0.67 Mixed Maple G=0.50 G=0.49 Douglas Fir(S) 2 2 0 m o Red Oak Southern Pine Douglas Fir-Larch Douglas Fir-Larch(N) Hem-Fir(N) n tm is D Z„ Zsl Z' Zn Z:l Z„LL Zu Z.1 Z-L Zn Zzl Zml Zu 4J. Zml in. in. in. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. Itis. lbs. 1/2 1410 960 730 1150 800 550 1050 730 470 1030 720 460 970 680 420 5/8 1760 1310 810 1440 1130 610 1310 1040 530 1290 1030 520 1210 940 470 1-1/2 1-1/2 3/4 2110 1690 890 1730 1330 660 1580 1170 590 1550 1130 560 1450 1040 520 ` 7/8 -2460 1920 960 2020 1440 720 1840 1260 630 1800 1210 600 1690 1100 550 1 2810 2040 '1020 2310 1530 770 2100 1350 680 2060 1290 650 1930 1200 600 1/2 1640 1030 850 1350 850 640 1230 770 550 1200 750 530 1130 710 490 5/8 2050 1370 940 1680 1160 710 1530 1070 610 1500 1060 600 1410 1000 550 1-3/4 1-3/4 3/4 2460 1810 1040 2020 1550 770 1840 1370 680 1800 1310 660 1690 1210 600 7/8 2870 2240 1120 2350 1680 840 2140 1470 740 2110 1410 700 1970 1290 640 1 1 3280 2380 1190 2690 1790 890 2450 1580 790 2410 1510 750 2250 1400 700 1/2 1530 960 1120 1320 800 910 1230 730 790 1210 720 760 1160 680 700 5/8 2150 1310 1340 1870 1130 1020 1760 1040 880 1740 1030 860 1660 940 780 2-1/2 1-1/2 3/4 2890 1770 1480 2550 1330 1110 2400 1170 980 2380 1130 940 2280 1040 860 7/8 3780 1920 1600 3360 1440 1200 3060 1260 1050 3010 1210 1010 2820 1100 920 1 4690 2040 1700 3840 1530 1280 3500 1350 1130 3440 1290 1080 3220 1200 1000 1/2 1530 960 112 1320 800 940 1230 730 860 1210 720 850 1160 680 810 5/8 2150 1310 1510 197U 1130 1290 1760 1040 1190 1740 1030 1170 1660 940 1090 1-1/2 X3/4 2890 1770 1980 2550 1330 1550 2400 1170 1370 2380 1130 1310 2280 1040 1210 /8 3780 1920 2240 3360 1440 1680 3180 1260 1470 3150 1210 1410 3030 1100 1290 1 4820 2040 2380 4310 1530 1790 4090 1350 1580 4050 1290 1510 3860 1200 1400 1/2 1660 1030 1180 1430 850 1030 1330 770 940 1310 750 920 1250 710 870 5/8 2310 1370 1630 1990 1160 1380 1860 1070 1230 1840 1060 1200 1760 1000 1090 C1/23-1/2 1-3/4 3/4 3060 1810 2070 2670 1550 1550 2510 1370 1370 2480 1310 1310 2370 1210 1210 7/8 3940 2240 2240 3470 1680 1680 3270 1470 1470 3240 1410 1410 3110 1290 1290 1 4960 2380 2380 4400 1790 1790 4170 1580 1580 4120 1510 1510 3970 1400 1400 1/2 1660 1180 1180 1500 1040 1040 1430 970 970 1420 960 960 1370 920 920 5/8 2590 1770 1770 2340 1560 1420 2240 1410 1230 2220 1390 1200 2150 1290 1090 3-1/2 3/4 3730 2380 2070 3380 1910 1550 3220 1750 1370 3190 1700 1310 3090 1610 1210 7/8 5080 2820 2240 4600 2330 1680 4290 2130 1470 4210 2070 1410 3940 1960 1290 1 6560 3340 2380 5380 2780 1790 4900 2580 1580 4810 2520 1510 4510 2410 1400 5/8 2150 1310 1510 1870 1130 1290 1760 1040 1190 1740 1030 1170 1660 940 1110 1-1/2 3/4 2890 1770 1980 2550 1330 1690 2400 1170 1580 2380 1130 1550 2280 1040 1480 7/8 3780 1920 2520 3360 1440 2170 3180 1260 2030 3150 1210 1990 3030 1100 1900 1 4820 2040 3120 4310 1530 2680 4090 1350 2360 4050 1290 2260 3860 1200 2100 5/8 2310 1370 1630 1990 1160 1380 1860 1070 1270 1840 1060 1250 1760 1000 1180 5-1/4 1-3/4 3/4 3060 1810 2110 2670 1550 1790 2510 1370 1660 2480 1310 1630 2370 1210 1550 718 3940 2240 2640 3470 1680 2260 3270 1470 2100 3240 1410 2060 3110 1290 1930 1 4960 2380 3240 4400 1790 2680 4170 1580 2360 4120 1510 2260 3970 1400 2100 5/8 2590 1770 1770 2340 1560 1560 2240 1410 1460 2220 1390 1450 2150 1290 1390 3-1/2 3/4 3730 2380 2480 3380 1910 2180 3220 1750 2050 3190 1700 1970 3090 1610 1810 7/8 5080 2820 3290 4600 2330 2530 4390 2130 2210 4350 2070 2110 4130 1960 1930 1 6630 3340 3570 5740 2780 2680 5330 2580 2360 5250 2520 2260 4990 2410 2100 5/8 2150 1310 1510 1870 1130 1290 1760 1040 1190 1740 1030 1170 1660 940 1110 1-112 3/4 2890 1770 1980 2550 1330 1690 2400 1170 1580 2380 1130 1550 2280 1040 1480 7/8 3780 1920 2520 3360 1440 2170 3180 1260 2030 3150 1210 1990 3030 1100 1900 5-1/2 1 4820 2040 3120 •4'i14♦4j53p *270Q 4690♦ 13b6 2480 4050 1290 2370 3860 1200 2200 5/8 2590 1770 1770 2340 :56t.:15:0 2;40: =410 1460 2220 1390 1450 2150 1290 1390 3-1/2 3/4 3730 2380 2480 •3380 ♦0914) 02140•362D• 1740 2050 3190 1700 2020 3090 1610 1900 7/8 5080 2820 3290 *AOa•b33%t26%♦4:90: 2.V6 2310 4350 2070 2210 4130 1960 2020 1 6630 3340 3740 5740 2780 2810 5330 2580 2480 5250 2520 2370 4990 2410 2200 5/8 2150 1310 1510 1870 1130 1290 1760 1040 1190 1740 1030 1170 1660 940 1110 1-1/2 3/4 2890 1770 1986 V64 1336♦•166 ♦24000#1170♦ 1580 2380 1130 1550 2280 1040 1480 7/8 3780 1920 2:20 33:0 1440.0217q 0 3180 •11262 V030 3150 1210 1990 3030 1100 1900 7-1/2 1 4820 2040 3120 4340 0530 2740 4690♦ 1356 W530 4050 1290 2480 3860 1200 2390 5/8 2590 1770 1-476 23V 15 ♦ 156% 2240 ♦ 41 ♦ 460 2220 1390 1450 2150 1290 1390 3-1/2 3/4 3730 2380 2480 3380 1910 2180 3220 1750 2050 3190 1700 2020 3090 1610 1940 7/8 5080 2820 3290 4600 2330 2890 4390 2130 2720 4350 2070 2670 4130 1960 2560 1 6630 3340 4190 •5744 274 03690 0 53300 2584 3380 5250 2520 3230 4990 2410 3000 • • • • • 1.Tabulated lateral design values(Z)for bolt♦d cc�necti�ns•IJI be•♦nult/ lied 1• all applicable adjustment factors(see Table 10.3.1). 2.Tabulated lateral desi.-n values(Z)are for:full aiirhert�,r"bolts(sef Ap:W8ij2,)with bendin-yield strength(Fy,)of 45,000 psi. YENAN TOMAS LEYVA, PE �.�`��00 P.E. # 67416 ��` •�'�o N '0:. 8306 Mills Dr Suit 369 Miami, FL 33183 PH.305-256-2416 — N g �E or FLOR\vP����� SIONPL STRUCTURAL CALCULATION FOR STAIR GLASS RAILING CONNECTION AT 1051 NE 92 ST Miami Shores, FL 33138 LXt CATS G��l� .. ... . . . . . .. . .. . . . . ... . . ... .. ... ... . . . . . . . . . . . . .. . . .. .. . . ... . . . . ... . . . . . . . . . . . . . .. .. . . . .. .. ... . . . ... . . 1 RAILING DESIGN 1.) MATERIALS 1.a) Members: WOOD SP No. 2 Allowable Stress for components: Bending: Fb= 1200 psi Shear Fv= 90 psi Compression Perpendicular to Grain = 595 psi 2.) DESIGN INFORMATION - Florida Building Code 2014 -Minimum Design Loads for Building and Others Structures, ASCE 7-10 3.) DESIGN LOADS - Uniform Stair Live Load = 100 psf (FBC 2014, Table 1614) -Handrail Design Loads: Concentrated Load = 200 lbs applied at any point in any direction. Uniform Load = 50 plf applied in any direction (for other than dwelling units) -Guardrail System Loads: Concentrated Load = 200 lbs applied at any direction at the top of Guardrail (for other than .. ... "dwelling unit include a load of . .. . . . . ... 100 lbs applied vertically downward . • et the top of guardrail. *UoncentratedVaJ= 200 lbs applied horizontally on a 1 sq. ft. area at any point of the system . ... .. ... ... . . . . . . . . . . . ... . . . . ... . . . . . . . . . . . . . .. .. . . . .. .. ... . . . ... . . Concentrated Load -P:= 200•lb lb Ib lb Uniform Load w:= 50•plf ft int ft2 L:= 18-in 5.) POST DESIGN _.___ __. ._.... . ...................................... .................. ........... .......................- ...................- .... _.._... . ..... . _. t . _. _... _ ..._ _ . _ ._. {. .._..Vertical Load_ _ Ho izontal Load ........_, 5.a) Maximum Reaction Concentrated Load Rpmax:= P Rpmax= 200 lb Uniform Load Rwmax:= 1.1•w•L Rwmax= 82.5 lb Rmax:= if(Rpmax> Rwmax,Rpmax,Rwmax) IRmax= 2001b 5.b) Maximum Moment h := 36-in Mpost:= Rmax•hp Mpost= 7200lb.i .. ... . . . . . .. 5.c) MaximumShea; '• "• .. ... .. . . . .. Vpost:_rnjq& .. Vpq,j.= 2Q0 lb . . . . . . . . . . . .. . . •• •• . • ... . . . . ... . . . . . . . . . . . . . .. .. . . . .. .. ... . . . ... . . POST BASE CALCULATION h M e edg IV (Ib/ft) U (Ib/ft) Lh 1/2" Lag screw 1.) PLATE DMENSIONS Side Lh:= 6.75-in h:= 2-in 2.) LOADS: From Post Calculation Net Uplift - 'U:= 0•lb Moment = �Mp:= 7200-lb-in Gravity = Y:= 9•8.psf. Tbolt:= V (for dead load glass) Lh 3.)ANCHOR BOLT: Bolt Diameter = -(p := 1 —•in Bolt Qty = n:- 2 2 - 4.) LOAD PER BOLT : (per Uplift Load) V per Bolt =Vbolt:= V.11 in•36in lVbolt= 26.95 lb 4.b) LOAD PER BOLT (per Moment): Mpe:= (Mp) + (Vbolt•h) Mpe = 7253.9in.lb Tp := (Mpe) Tr—?®f4.659 lb• : : ..•Lh .. . . .. . . . . ... . (Axial Loa&anehbr )•• •• Tension per Balt r•eTbOl�tr•.y�Z1 . 'Fbvlt=•537.326 lb • . .. n. . . . . . . . . . . . .. . . .. .. . • ... . . . . ... . . . . . . . . . . . • . .. .. • . • .. .• ... . . . ... . . w ANCHOR BOLT CALCULATIONS: 1 1/2"LAG SCREW = ,�= 2 in Screw type: 1/2"LAG SCREW Quick drive pullout capacity from ASD Table 12.2A SC`:-=-4-37-lb per inch of penetration For 1/2"LAG SCREW Constribution of 1/4"LAG SCREW attach to 2" step Pullout capacity on 1/2"LAG SCREW NCp= SCp := SC-2.5 ISCp = 1092.5 lb LOADS: Tension = lTw= Tbolt Shear = IV:= Vbolt AW CHECIUNG ANCHOR BOLT COMBINED STRESS Allowable Tension = Tallow := 1092.5•lb Allowable Shear = Vallow:= 220-lb + (Factor Tbolt ) ( Vbolt:_ /I I\ /I Factor= 0.614 Tallow Vallow Control := if(Factor> 1,"NO TOK","OK") lControl = "OK" Summary: USE 1) 1/2" LAG SCREW X 3" MIN. .. ... . . . . . .. . .. . . . . ... . .. ... .. . . . .. . ... .. ... ... . . . . . . . . . . . . .. . . .. .. . . ... . . . . ... . . . . . . . . . . . . . .. .. . . . .. .. ... . . . ... . . �I , 1 f HANDRAIL SUPPORT DETAIL 1:' r: Design code: Florida Building Code 2007 r G 3" u - 200 G 3.5" i' 1.5" Rxf' ANG •.'- �o r 'L- 8 CMU L I4 M1 Ii k STRUCTURAL LEGEND N 1-1/2" $CH. 40 STL HANDRAIL 34" HIGH: ' 1-1/2"'SCH.40 RAIL EXTERIOR DIM: 1-1/2" MAX, INT. DIM`' 1-1/4" © STL (6A EMBEDMENT ON CMUj 8 " O.C. MAX. WA11 3/8" EXP. BOLT DESIGN CRITERIA LL = 50 PLF OR 200 LB. CONCENTRATED LOAD ` Fy = 36 KSI F ALLOWABf E = 0.60 Fy f. P � I! li MMA = 0 1r 200x (3.5"+1.5")—RX x 1.5"=0 Rx= 200 x 5"/1.5"=667 Ibf Rx= 667 d.b..•• • . . . . .. TrX1) Vg"Oi�'�o t;3; ItS•(� each support 1 2 1/2" fly .lm:b"e8 into'Concrete filled celll F r t' Average.Lltbnate:ten§"ion x 1260#)= 1260# > 667# OK ... . . . . ... . . i ii ' Y. HANDRAIL SUPPORT DETAIL Design co e: Florida Building Code 2007 3' 3 ' MIN. 200# A 'L8- CMU es. Ry STRUCTURAL LEGEND 1-1/21. SCH. 40 STL. HANDRAIL 34" HIGH: 1-1/2" SCH.40 RAIL EXTERIOR DIM: 1-1/2" MAX, INT. DIM: 1-1/4" STL- HA RAIL BRACKET 0 48- O.C. MAX. W/[1] 3/8- HILT('', 2 LLC ADHESI HYBRID ANCHOR (3 3/8- EMBEDMENT ON HOLLOW L 1, OCK) OR 1— 3/8" ';,0 HILTI KB3 EXP. BOLT ON CONCRETE) DESIGN� CRITERIA LL = 50LF OR 200 LB. CONCENTRATED LOAD Fy = 36 �J'ISI F ALLOWABLE = 0.60 Fy CHECK FASTENER DESIGN: -)MMA = 0 200x 3"—RX x 1.5"=0 Rx= 200 x 3"/1.5"=400 lbf Rx= 400 Lb : mFy-0 —200 + Ry 0 0 TrXjj each support 3 min.. embed into Concrete filled cel!. AvAgd ukiftte:teasio b IaMe =(1 x 1260#)= 1260# > 400# OK Nierlagi ultirrfate*Shear*val0e =(1 x 14600= 1460# > 200# OK I' L Fi da • + • •= tt E Ta on to be used: Ta :. pc pconl( rbon Steel) - dual Tension(Nd)= � 100 Ibs Size= 114 rhes (Diam.) Actual Shea VdF 399 lbs hef(Embedment)= 1 314 orches Allow.load in Tension=' 547 lbs S(actual spacing)= 2 Inches Allow-load in Shea - 472lbs Smin= 1.75 inches No.of Tapson= (i 4 Scr.= 3.5 inches C(actual edge dist)= 4 fiches �! B.)Anchor spacing (inches) 2.5 C.)Edge distance Tension= (inches) 2 !, D.)Edge distance Shear- (inches) 2 E.)Recommended Working Loa• tension(Nrec)= 2?88.00 ! F.)Recommended Working Loa ' Shear(Vrec) 1888 (Nd/Nrec)"5/3+(Vd/Vrec)"5/3= 0.080 < 1.00 gTW quanim TJX •4�E�+k�1� i ' - `any MM.11�! .w y�F►,aK�.. .. �~ 1 W'f•h{ .'A:O�/Y/. :'Yt/.�. � •E4s aai baa' :afs �r 'ac' .1i. +�d�ii�ili�� wr wsec .��icahv�twr4•MK ouir.�` M`-•a.�eR wM}'�MCaM�tfaA+ s. ,� e�s�..P.:, ®MOH¢as aa� YUS "' faosSM[�C:w �`' acacm�sw asuaikiatspu enemar a. i t :. . aatimrs•xa.io..c+s+oaw.r � rs m-�a ar _ if�4i'Kaci vow - .. I .'rL Ras.pv/L 4COrtYa -rai�aYrrll.[, - '. Cy 77 ' E�KMlaltar•?. .ORIat��t-' - IR.T�RK,iO� La.iYEIAt.�.e•�L�afY1m O1 - - .. - _ ttO EdOeiA w�.sre+eRse•r'er®w1 mssa�baQ r�ea�,eewa,.itsar.r P�M� ap w.aar wrw .+� X .�.:areasr�+w !w..,....:aer .' .:...q...•sor ,, r a..vr ' lKf�,�tt CO.glpjC !{6,(f� � .. �� A,.• VIJIrONfA4 r4AT 1�M i!M?'. it af9F. Vr 5 '9A'."'!i 'tY•-,:': ?O....�1R lit'.DEQ 1 9M \� ' ��r\-rte-s •� • •. ��. � "' fff' �=Ib�6 •EER �• \../• • • • • • ' (j ;� � � • • ••• it 'Sim.iT`y �: • • • • • �ti; t ..'rvrt•: ..... :r.. .. (4)1/4"diameter STAINLESS STEEL Tapson 11:Y5"ergB&d!jIleq nc.Stair ) . .. . . .. •• •• . . • • �. . . . . . . . . . . • •• •• M • 0 00 •• 1- r Edward C.Robison, P.E. 27 March 2013 C.R. Laurence Co.,Inc. ATTN: Chris Hanstad 2503 East Vernon Los Angeles,CA 90058 SUBJ: CRL SRS STANDOFF RAILING SYSTEM GLASS BALUSTRADE GUARDS The SRS Standoff Railing System is an engineered guardrail system that utilizes point supported glass balustrades. When constructed in accordance with the attached details and installation guidelines the guardrail will safely support the following loading conditions: 200 pound point load on top rail,vertical or horizontal 50 plf load on top rail,vertical or horizontal or 25 psf uniform load on glass panel horizontal or 50 lb conc load on 1 sf Wind load 25 psf or higher loads in accordance with the wind load tables herein. For single family residential construction only the 200#concentrated top rail load,50#concentrated load and wind load are applicable. The SRS is to be used with tempered glass only,laminated or monolithic. Laminated glass shall be made with DuPont SentryGlas+ interlayer. Glass light stresses may be evaluated using either the simplified methods shown herein or by finite element analysis models for the specific proposed installation. For these conditions the railing meets applicable requirements of the 2006,2009 and 2012 International Building Code and state codes adopted from the IBC codes,SEFASCE 8-02 and all requirements of ASTM E 2358-04. Edward Robison,P.E. --DATE-J11�1')_ . .. . . . . ... . . ... .. ... ... . . . 10012 Creviston DR NW •• :'. : : 253-858-0855 . .. . . .. .. . . Gig Harbor,WA 98335 "' fax 253-858-0856 email: elrobison@narrows.com ... . . . . ... . . . . . . . . . . . . . .. .. . . . .. .. ... . . . ... . . CR Laurence Standoff Rail System—SRS Page 2 of 21 Table of Contents Typical Installations 2 Signature Page 3 Glass Strength 4- 5 Glass Panel Loads 5 Wind Loading 6 Glass Bending Moments 7 - 9 1/2" Glass 10 - 11 3/4" Glass 12 - 15 1/2 Glass height-width 16 Glass Standoffs 17 - 18 Custom Standoff lengths 19 RSOB20 Fitting 20 Grab Rails and Cap rails 21 Other Glass Thicknesses 21 Typical Installation: For single family residential: 1/2" tempered glass 2 pairs of standoffs: Interior installation,5' maximum width and 44" maximum height above standoffs. Exterior installation 4' maximum width and 44" maximum height above standoffs, 15.3 psf. 3 pairs of standoffs: Interior installation,7'maximum width and 44" maximum height above standoffs. Exterior installation 5' maximum width and 44" maximum height above standoffs, 15.9 psf. For commercial and other applications: 3/4" tempered glass 2 pairs of standoffs: 5'-6" maximum width and 44" maximum height above standoffs,30.8 psf. 3 pairs of standoffs: 7' maximum width and 44" maximum height above standoffs,28 psf. For other light sizes and wind loads refer to the equations and figures herein. .. ... . . . . . .. . .. . . . . ... . .. ... .. . . . .. . ... .. ... ... . Edward C.Robison,P.E. • .. . . .. .. . . 10012 Creviston DR NW '•• 253-858-0855 Gig Harbor,WA 98335 fax 253-858-0856 •" ' ••• etpail: elrobison@narrows.com . . . . . . . . . . . .. .. . . . .. .. ... . . . ... . . I CR Laurence Standoff Rail System—SRS Page 3 of 21 Signature Page Signed 03/28/2013 si r ICA C. 42123 ti uCENsE7 PROMSSONA1. EDWARD C. + EDWARD C. * ENGINEER �k o ROSMIN n 0 ISO AEXP 04/30/2014 0'17546 EXP 03/31/2014 �p SS/ N a�� ,��r ��` OF�..iy� y .■rico op �•! C? 1I': EDWARD C. ROBISON FUMA r RO RI�c)N+ W ND. 65A83 ' �..---..._. CCif89 CIV 1\, r L EXP 0 :30;2013 FIRM#F-12044 EXP 123112013 EXP 12/31/2013 �D C. R4 o P GEN O +�OF `r� Ed at C. Rob' C_ 6368 081SON (CEDWARD UCTU RAL v, F �r o. 4975? Q�S �LaB►OP G�� 088000 EXP 02/Z8/2015 EXP 03.3112015 EXP 0630-2014 F �► J!, . PRt) C.,' aGINFlc 'argsPE ROBISON - • 081 D07077 QQE�pq sF•' 'a - �� '•' t ,f, 9114 �• Lr* •• •fp•� . .. AL1 '- X11 /30/2014 EXP 12/31/2014 . ... .. ... Or . Edward C.Robison,P.E. . . 10012 Creviston DR NW "' 253-858-0855 Gig Harbor,WA 98335 fax 253-858-0856 "' ' ••• email: elrobison@narrows.com . . . . . . . . . . . .. .. . . . .. .. ... . . . ... . . n t CR Laurence Standoff Rail System—SRS Page 4 of 21 GLASS BALUSTRADE GUARD RAIL GLASS STRENGTH All glass is fully tempered glass conforming to the specifications / of ANSI Z97.1, ASTM C 1048-97b and CPSC 16 CFR 1201. For / the 1/2" glass the typical Modulus of Rupture,F,is 24,000 psi. The applicable safety factor against glass rupture is 4.0 in / accordance with IBC 2407.1.1 / Allowable glass bending stress: 24,000/4=6,000 psi.—Tension stress calculated. / Bending strength of glass for the given thickness: S = 12"* (t)z= 2* (t)2 in3/ft 6 P4 Use the minimum glass thickness for stress calculations: Figure 1 For 1/2" glass,t..in=0.469" ; Weight=6.5 psf S = 2*(0.469)2 =0.44 in3/ft Mauve =6,000psi*0.44 in3/ft=2,640"#/ft=220'# For 5/8" glass,t.i.= 0.595" ; Weight=9.8 psf S = 2*(0.595)2= 0.708 in3/ft Malive =6,000psi*0.708 in3/ft=4,248"#/ft= 354'# For 3/4" glass,tmi„=0.719" ; Weight=9.8 psf S = 2*(0.719)2= 1.034 in3/ft Mauve=6,000psi*1.034 in3/ft=6,204"#/ft=517'# The allowable moments are based on the minimum glass thickness allowed for the nominal thickness. The section properties and allowable moments may be calculated based on the actual glass thickness supplied. Laminated glass shall be evaluated based on the effective thickness determined in accordance with ASTM El 300 or the DuPont online laminated glass calculator. For wind loading the allowable glass stress may be increased in accordance with ASTM E1300. It is recommended that a maximum allowable stress of 9,600 psi be used for wind loads. For wind loads the allowable moment may be taken as: Mawina= Mauve*9,600/6000= 1.6 Malive .. ... . . . . . .. . .. . . . . ... . .. ... .. . . . .. . ... .. ... ... . Edward C. Robison,P.E. . . . .. . . .. .. . . 10012 Creviston DR NW '•• 253-858-0855 Gig Harbor,WA 98335 fax 253-858-0856 • ••• eirail: elrobison@narrows.com . . . . . . . . . . . .. .. . . . .. .. ... . . . ... . . 1• 1 1 CR Laurence Standoff Rail System--SRS Page 5 of 21 For cantilevered elements basic beam theory for cantilevered beams is used. M„=xW*h2/2 for uniform load u or Mp =xP*h/B for concentrated load P or Mu=xU*h for uniform top rail load U or MW =xW*h2*0.55 for uniform wind load W Where x is the moment amplification factor accounting for the increased maximum moment caused by the point supports.Where: x=f(a) where the function is derived from FEA models and a = B/h MOMENT AMPLIFICATION FACTORS: The moment amplification factors were derived from a series of FEA models. The equations are applicable for the geometric configurations shown. In lieu of using the amplification factors shown herein the glass light stresses may be evaluated using either the simplified methods shown herein or by finite element analysis models for the specific proposed installation. GLASS PANELS LOADS: From IBC 1607.7 On hand rail or top of glass—2001b concentrated or 50 plf Any direction Or On panel —25 psf horizontal load Or Wind load horizontal to glass either direction. For vertical glass dead loads will not cause glass bending stress and glass bearing stresses are small and may be ignored. ALLOWABLE WIND LOAD Allowable wind load pressure may be calculated from: W= l.6*Maii,e/(x0.55*h2) = 2.9*Mail,,/(x*h2) .. ... . . . . . .. . .. . . . . ... . .. ... .. . . . .. . ... .. ... ... . Edward C. Robison,P.E. . . 10012 Creviston DR NW ••• •' '•' 253-858-0855 Gig Harbor,WA 98335 fax 253-858-0856 • • ••• eipail: elrobison@narrows.com . . . . . . . . . . . .. .. . . . .. .. ... . . . ... . . CR Laurence Standoff Rail System-SRS Page 6 of 21 WIND LOADING For wind load surface area is full area of guard: Calculated in accordance with SEUASCE 7 Section 6.5.13 Design Wind Loads on Open Buildings and Other Structures. This section is applicable for free standing building guardrails,wind walls and balcony railings that return to building walls. Section 6.5.12.4.4 Parapets may be applicable when the rail is along a roof perimeter. Actual wind loads must be determined by a qualified individual for a specific installation. p =gp(GCp) =gzGCf (SEUASCE 7-05 eq.6-26) For guardrails the coefficients have the following values: G = 0.925 from section 6.5.8.2 for a very flexible structure. Cf= 2.5*0.8*0.6= 1.2 Figure 6-20 with reduction for solid and end returns,will vary. Qz= KZK7tKdV2I Where: I= 1.0 KZ from Table 6-3 at the height z of the railing centroid and exposure. Kd=0.85 from Table 6-4. Kzt From Figure 6-4 for the site topography,typically 1.0. V =Wind speed (mph) 3 second gust,Figure 6-1 or per local authority. Exp B Exp C D Wind Sp Kzt Kd GC Wind sp Kzt Kd GCp Wind Sp Kzt Kd GC 120 1 0.85 1.11 120 1 0.85 1.11 120 1 0.85 1.11 Height Kz qz s Height Kz qz s Height Kz qz s 30 0.7 21.9 1 24.3 15 0.85 1 26.6 29.6 1 15 1.03 32.3 1 35.8 40 0.76 23.8 26.4 20 0.9 28.2 31.3 20 1.08 33.8 37.6 Wind Sp Kzt Kd GCp Wind Sp Kzt Kd GCp Wind Sp Kzt Kd GC 130 1 0.85 1.11 130 1 1 0.85 1.11 130 1 0.85 1 1.11 Height Kz qz s Height Kz qz s Height Kzz s 30 0.7 25.7 28.6 15 0.85 31.3 34.7 15 1.03 37.9 42.0 40 0.76 27.9 31.0 20 0.9 33.1 36.7 20 1.08 39.7 44.1 Wind Sp Kzt Kd GC Wind Sp Kzt Kd - GCp Wind Sp Kzt Kd GC 140 1 0.85 1.11 140 1 0.85 1.11 140 1 0.85 1.11 Height Kz qz s Height Kz qz Height Kz qz s 30 0.7 29.9 33.1 15 0.85 36.3 402 15 1.03 43.9 48.8 40 0.76 32.4 36.0 1 20 0.9 38.4 42.6 20 1.08 46.1 51.1 Wind Sp Kzt Kd GCp Wind Sp Kzt Kd GCp Wind Sp Kzt Kd GC 150 1 0.85 1.11 150 1 0.85 1.11 150 1 0.85 1.11 Height Kz qz s Hei ht Kz z s Height Kz z s 30 0.7 34.3 38.0 15 • so 41, . :442. 15 1.03 50.4 56.0 40 0.76 372 1 41.3 20 '. 0U A4„'1 ; • .9 20 1.08 1 52.9 1 58.7 For free standing guards and wind walls that M not return to a building wind loads shall be determined in accordance with SEUASCE 7-05 section 6.15.14 and figure 6-20. . ... .. ... ... . Edward C. Robison,P.E. . . . . 10012 Creviston DR NW ••• '+ •' 253-858-0855 Gig Harbor,WA 98335 fax 253-858-0856 "' ' ••• eipail: elrobison@narrows.com . . . . . . . . . . . .. .. . . . .. .. ... . . . ... . . CR Laurence Standoff Rail System—SRS Page 7 of 21 CALCULATE PEAK GLASS MOMENT DETERMINATION OF x For two pairs of standoffs: / Applicability—Light Geometry / Standoffs in pairs are located 4" apart. c: 3" :5c:5h d: 2"<_d—<< 10" h: limited by glass stress / B: b+2d a=B/h: 0.1<a—<2.0 p Example: d U Glass light width B =48" and h=48" d a= B/h =48/48 = 1.0 X= 1.85 Determine value of x from graph,figure 2 Load = 50 plf or 200#or 25 psf: Figure 1 Mu =xu*h2/2= 1.90*25psf*4'2/2= 380'#/ft MP=xP*h/B = 1.90*200#*4'/4' = 380'#/ft Mu =xU*h = 1.90*50plf*4'= 380'#/ft 7Wo Standoff Pairs 3.25 2.75 + F 0 2.5 }-I-4- 11ts 411 1 1 c 2.25 2 , ,L _- �,� 1 1.75 A 41 1.5 r' ff -f4 1.25tqit 1 0 0.15 0.3 0.45 0.6 0.75 0.9 1.05 12 1.35 1.5 Bm Figure 2 For 200#concentrated load on 1 sf otgl4j�(at topcorner for worst case) the moment is distributed across the panel width at the standoffs so t1a1Aoal4ntiCe:sentially the same as for a top rail applied . .. . . . . ... . load. C = lesser of B or h • .. ... .. . . . .. MP=xP*(h-6")/C = 1.90*200#*(4'-0.5')/4'= 332.5'#/ft . ... .. ... ... . Edward C. Robison,P.E. �• �• 10012 Creviston DR NW ••• • 253-858-0855 Gig Harbor,WA 98335 fax 253-858-0856 "' ' ••• errail: elrobison@narrows.com . . . . . . . . . . . .. .. . . . .. .. ... . . . ... . . CR Laurence Standoff Rail System—SRS Page 8 of 21 For three pairs of standoffs: Applicability—Light Geometry Center standoff is always located at centerline / Standoffs in pairs are located 4" apart. / a: 6"_<a<_2h b: 12":5bs84" c: 3" <_c<_h / d: 2"<_d<_ 10" / h: limited by glass stress B: b+2d a=B/h: 0.1<a<_2.0 / Example: O Glass light width B =48"and h =48" O O a= B/h=48/48 = 1.0 X= 1.84 Determine value of x from graph 1 d Load=50 plf or 200#or 25 psf: M„=xu*h2/2= 1.84*25psf*412/2= 368'#/ft Figure 3 MP=xP*h/B = 1.84*200#*4'/4' = 368'#/ft Mu =xU*h = 1.84*50plf*4'= 368'#/ft 3 Support pairs 2.8 -rr 2.6 "} +,iti i Itt `0 2.44. 1 - �+ +-+-i +. ti 22 . r ++ 1.8 CL F r+ _ 1.6 1.4 1.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 a1h Figure 4 For 200#concentrated load on 1 sf of glass (at top corner for worst case) the moment is distributed across the panel width at the standoffs so that moment is essentially the same as for a top rail applied load.C = lesser of B or h ** ••0 • Mp =xP*(h-6")/C = 1.84*2UD#*(4.-(r5:)/#';g29.'V/ft . 0: : : : : :0: . .. ••• •• • • • •• . 0:0 •• 0:0 •:• . Edward C. Robison,P.E. . . 10012 Creviston DR NW •" 253-858-0855 Gig Harbor,WA 98335 fax 253-858-0856 err*il: elrobison@narrows.com . . . . . . . . . . . .. .. . . . .. .. ... . . . ... . . CR Laurence Standoff Rail System—SRS Page 9 of 21 For typical 42" guard height,h =44": Figure 5 h=44" 3.4 } 1 t �rtt.wF'1 t+ t +—Two Stando -Palksi ' Lt 3.1 "i* +"± t ~ _ 2.8 — 2.5 * ♦} + + .4 22 i-: U # Ti zL}t x _ tri«T _c ;+ rF r i Q 1.9 — L , 7} + 1.s t t +++ ++ ++ , + 1.3 - - 1 $ +� + 0 10 20 30 40 50 60 70 Width Inches h3. a Three Pairs jar 'r j=t +; {t 3t+ «fir }$ : + 'It +` +. r Ste. } # j t + f + .::T r ii-f.�. .'3` 2.8 — + } t L�$. . j. :i i2 ll + { - LL Y +t+ij y,+ r• ++ t E r+ ++1:--. +. r .Y xa + Tr 3 22 i' `S: r'+ I-1 .�;i ���$� Cj � � y��S � -tet r �, t 7� r t t d 1.9 t t Lt ++ +— #} { 1i ( t 's is xx-$t J1. It 41fl 1.3 3 t $ + F t Y 10 20 30 40 s0 60 70 80 90 Width Inches •• ••• • • • • • •• 'Eig�lr�6: : . .. . . . . ... . .. ... .. . . . .. . ••• •• ••• ... . Edward C. Robison,P.E. • • . .. . . .. .. . . 10012 Creviston DR NW "' 253-858-0855 Gig Harbor,WA 98335 fax 253-858-0856 email: elrobison@narrows.com . . . . . . . . . . . .. .. . . . .. .. ... . . . ... . . CR Laurence Standoff Rail System—SRS Page 10 of 21 1/2"Glass Applications Acceptable light sizes for 1/2" glass: For 1/2" glass,t,ni❑=0.469" S = 2*(0.469)2 = 0.44 in3/ft Maiive = 6,000psi*0.44 in3/ft=2,640"#/ft=220'# For single family residential applications apply 200#concentrated top rail load— 50 plf load is not applicable. With top rail distributing concentrated load to two lights minimum— 100#each light For Two Support Pairs: Try minimum light size of 32",height 44"; a= 32/44=0.727 X2 = 1.57 for 2 pairs M= 1.57*100#*44" =6,90894:5 2.667'*2,640"#/ft=7,041"# For interior residential applications infill load =5 psf for differential pressure: M= 1.57*5psf*3.6672/2= 52.78'#/ft for 32" light width Maximum uniform load = 220/52.78*5 = 20.8 psf Check maximum light width of 66" x 44" high X2=2.5 for 2 pairs M =2.5*5psf*3.6672/2 = 84.04'#/ft for 32" light width Maximum wind load=W= 2.9*Maii,e/(x*h2) =2.9*220/(2.5*3.6672) = 19 psf okay for 85 mph 3 sec gust exposure B below 30' Check wind load for a standard light width,B =48" and h =44" a=48/44= 1.091 X= 2.133 for 2 pairs M= 2.133*Wpsf*3.6672*0.55 <— 1.6*220'# solving for W W= 220'#*1.6/(2.133*0.55*3.6672) =22.3 psf General Equation for 1/2"glass and 2 support pairs: Allowable wind load= 640'#/(x2*h2) For Non-single family residential applications guard must be designed for 50 plf top rail load: For X =2.4,a= 1.364 determine the maximum height: h=220/(2.4*50) = 1.833' (1'-10") B = 1.833'*1.364=2.5' (30") Typically 1/2" Glass is not to be used in N • e a• ' •residential applications. YP� Y �s1G� � >n�Y. PP . •• • • • • :0: •• . •• ••• •• • • • •• . ••• •• •.• ••• . Edward C.Robison,P.E. 10012 Creviston DR NW "' •'• '• '• ••• 253-858-0855 Gig Harbor,WA 98335 fax 253-858-0856 email: elrobison@narrows.com . . . . . . . . . . . .. .. . . . .. .. ... . . . ... . . CR Laurence Standoff Rail System— SRS Page 11 of 21 For Three Support Pairs: Try minimum light size of 30",height 44"; a= 30/44= 0.682 X3 = 1.442 for 3 pairs M = 1.442*100#*44" =6,345"#:5 2.5'*2,640"#/ft= 6,600"# For interior residential applications infill load= 5 psf for differential pressure: M= 1.442*5psf*3.6672/2=48.48'#/ft for 30" light width Maximum uniform load= 220/48.48*5 =22.7 psf Check maximum light width of 84" X3 = 2.749 for 3 pairs M=2.749*5psf*3.6672/2 = 92.41'#/ft for 84" light width Maximum wind load =W=2.9*220/(2.749*3.6672) = 17.3 psf okay for 85 mph 3 sec gust exposure B below 30' Check wind load for a standard light width,B =60" and h =44" a = 60/44= 1.364 X3 = 2.052 for 2 pairs M= 2.052*Wpsf*3.6672*0.55 <_ 1.6*220'# solving for W W= 1.6*220'#/(2.052*0.55*3.6672) =23.2 psf General Equation for 1/2"glass and 3 support pairs: Allowable wind load = 640'#/(x3*h2) For Non-single family residential applications guard must be designed for 50 plf top rail load: For x3 =2.052,a= 1.364 determine the maximum height: h= 220/(2.052*50) = 2.14' (2'- 1-3/4") B = 2.14'*1.364=2.92' (35") For x3 = 1.442,a=0.682 determine the maximum height: h=220/(1.442*50) = 3.051' (3'-0-5/8") B = 3.051*0.682=2.081' (2'-1") Typically 1/2" Glass is not to be used in Non-single family residential applications. .. ... . . . . . .. . .. . . . . ... . .. ... .. . . . .. . ... .. ... ... . Edward C.Robison,P.E. 10012 Creviston DR NW "' '• ••• '• :• ••• 253-858-0855 Gig Harbor,WA 98335 fax 253-858-0856 : en*il: elrobison@narrows.com . . . . . . . . . . . .. .. . . . .. .. ... . . . ... . . CR Laurence Standoff Rail System— SRS Page 12 of 21 3/4"Glass Applications Acceptable light sizes for 3/4" glass: For 3/4" glass,t,,,;,=0.719" S = 2*(0.719)2 = 1.034 in3/ft Mai;,,=6,000psi*1.034 in3/ft=6,204"#/ft=517'#/ft For general applications apply 200#concentrated top rail load or 50 plf load. For rails longer than 4'the 50 plf load will control therefore all checks will be based on 50 plf top rail load 5 y For Two Support Pairs: Try minimum light size of 16",height 44"; (x= 16/44=0.364 X2 = 1.285 for 2 pairs M= 1.285*50#*44" =2,827"#:5 6,204"#/ft Maximum Width B =66",height 44"; a=66/44= 1.50 X,2 = 2.5 for 2 pairs M = 2.5*50#*44" = 5,500"#:5 6,204"#/ft For commercial applications infill load =25 psf: For width B =66" M= 2.5*25psf*3.6672/2 =420.2'#/ft<_517'#/ft W= 517'#*1.6/(0.55*2.5*3.6672) =44.7 psf Check wind load for a standard light width,B =48" and h =44" a =48/44= 1.091 X2 =2.133 for 2 pairs M = 2.133*Wpsf*3.6672/2<_517'# solving for W W= 517'#*1.6/(0.55*2.133*3.6672) =52.4 psf General Equation for 3/4"glass and 2 support pairs: Allowable wind load= 1,504'#/(x2*h2) For heights greater than 44" above the top standoff(h >44")the glass moment is evaluated similarly: Example h =48" and B =60" a=60/48 = 1.25 X =2.32 for 2 pairs W= 1,504'#/(2.32*42) =40.5 psf .. ... . . . . . .. . .. . . . . ... . .. ... .. . . . .. . ... .. ... ... . Edward C. Robison,P.E. . . 10012 Creviston DR NW "' '• •• 253-858-0855 Gig Harbor,WA 98335 fax 253-858-0856 entil: elrobison@narrows.com ... . . . ... . . CR Laurence Standoff Rail System— SRS Page 13 of 21 Three Support Pairs Acceptable light sizes for 3/4" glass: Try minimum light size of 18",height 44"; a= 18/44= 0.409 X3 = 1.105 for 3 pairs M = 1.105*50#*44" = 2,431"#<_6,204"#/ft Maximum Width B = 84",height 44"; a = 84/44= 1.909 X3 = 2.749 for 3 pairs M= 2.749*50#*44" = 6,048"#:5 6,204"#/ft For commercial applications infill load =25 psf: For width B = 84" M= 2.749*25psf*3.6672/2 =462.07'#/ft<—517'#/ft W= 517'#*1.6/(0.55*2.749*3.6672) =40.7 psf Check wind load for a standard light width,B =48" and h =44" a =48/44= 1.091 X3 = 1.915 for 3 pairs M= 1.915*Wpsf*3.6672/2<_517'# solving for W W= 517'#*1.6/(1.915*0.55*3.6672) =58.4 psf General Equation for 3/4"glass and 3 support pairs: Allowable wind load= 1,504'#/(x3*h2) For heights greater than 44" above the top standoff(h>44")the glass moment is evaluated similarly: Example h=48" and B =72" a =72/48 = 1.5 X3 =2.12 for 3 pairs W= 1,504'#/(2.12*42) =44.3 psf EXAMPLE: To determine the allowable wind load for a glass light: t= 3/4",h=483/8" and B =66" a = 66/48.375 = 1.364 From figure 2,)(2 =2.4 or from figure 4 x3 = 2.07 W2 = 1,504'#/(2.4*4.0322) = 38.5 psf W3 = 1,504'#/(2.07*4.0322) =44.7 psf .. ... . . . . . .. . .. . . . . ... . .. ... .. . . . .. . ... .. ... ... . Edward C. Robison,P.E. • . . . . . . . . . . 10012 Creviston DR NW •• '•' 253-858-0855 Gig Harbor,WA 98335 fax 253-858-0856 ••• --.enipil: elrobison@narrows.com . . . . . . . . . . . .. .. . . . .. .. ... . . . ... . . CR Laurence Standoff Rail System— SRS Page 14 of 21 Procedure for checking light sizes where h>44" General equation for determining allowable light size—3/4" glass: For 50 plf load: xmax = 51.7'#/(50*h) Use appropriate figure to determine a from the calculated x Bmax = ah For example for h =60" X= 517'#/(50*5') =2.068 a= 1.4 from figure for 3 support pairs Bmax= 1.4*60" = 84" Check size for wind: X3= 1,504'#/(W*h2) _ For h=60" and W= 25 psf X= 1,504'#/(25*52) = 2.406 a =0.85 from figure for 3 support pairs Bmax=0.85*60" = 51" In this example maximum light width is 51" based on live load of 25 psf., To determine the allowable maximum glass height,h for a given width,B 3/4"Glass and Two Support Pairs 9 7.5 + 25ips Wind load , E 6 E r SO,pV Top Ra: Load 4.5 3 4 4.5 5 :.5: •�� ••0 6.5 7 .. .figure 7.. . . . .. . ... .. ... ... . Edward C.Robison,P.E. . . . . . 10012 Creviston DR NW ••• '• •• 253-858-0855 Gig Harbor,WA 98335 fax 253-858-0856 orft*il: !trobison@narrows.com . . . . . . . . . . . .. .. . . . .. .. ... . . . ... . . L� CR Laurence Standoff Rail System- SRS Page 15 of 21 3/4"Glass and Three Support Pairs tt -- - 9.5 8 I . L � + E 6.5 --- — « �50hyl Load � _ + 1 $ - - - + 25 psf d bad 3.5 — 2 h 3 4 5 6 7 8 9 10 Maximum Height(ft) Figure 8 Acceptable combinations of height and width will plot below the applicable line. For example for a glass light with dimensions: / B =51" (4'-3") wind load=25 psf and 50 plf top rail load is applicable. / From figures 9 and 10 it is determined that 1/2" / glass can't be used. From figure 7 the light size plots below the 50 plf / line but above the 25 psf line therefore 2 standoff pairs isn't acceptable. From figure 8 the light plots just below the 25 psfO �Rd Ione therefore the light is size is acceptable for 7 0- O3/4" glass with three standoff pairs. .. ... . . . . . .. . .. . . . . ... . .. ... .. . . . .. . ... .. ... ... . Edward C. Robison,P.E. 10012 Creviston DR NW :0. •• ••• ••• 253-858-0855 Gig Harbor,WA 98335 fax 253-858-0856 •" *.Vnvil: !zlrobison@narrows.com . . . V: . . . . . V . . . .. .. ... . . . ... . . CR Laurence Standoff Rail System—SRS Page 16 of 21 1/2"Glass and Two Support Pairs s 5.4 t 4.8 25gb + r - 42 ` } 3.5 + + + E 3 y t E t. M2.4 — 1 50 _Top BaUoad 1.B 1.2 a I 0.5 0 + # + { r 2 225 2.5 2.75 3 3.25 3.5 3.75 4 Maximum Height(ft) Figure 9 Figure 10 1/2"Glass and Three Support Pairs 7 } 5.25 I 25 psf wind load 5.5 4.75 a 1 a 4 + – * — t . 325 } « « + 2.5 F 50 p!f Top Ra!1 Load 1.75 1 •,,,! 2 225 2.5 2.75 3.5 3.75 4'• •� •'iii e'•V•� '• •►4axivy4 Holga(ftf•' . . ••' • ••• •• ••• ••• • Edward C. Robison,P.E. 10012 Creviston DR NW "' •• 253-858-0855 Gig Harbor,WA 98335 fax 253-858-0856 ••eni til: glrobison@narrows.com . . . . . . . . . . . .. .. . . . .. .. ... . . . ... . . CR Laurence Standoff Rail System—SRS Page 17 of 21 GLASS STANDOFFS 1-3/4' F-11 3/8' (9.5 mm) To determine reactions on the standoffs: 3/8' (44 mm) .5 mm) Reactions are calculated using summation of forces and summation of moments: V =D+L is Standoff where D=glass dead load plus cap rail or 2'(51 mm) other attachments to the glass. 2'(51 mm) L= greater of 200#or 50pif* B Long 3/8'-16 Mounting Stud For Use With (Included) 1/2'or 3/4' Black Neoprene Vertical load share per standoff: (12 or 19 mm) Gasket VS = D/2 standoffs Glass Assumes vertical load is supported on any 2 standoffs to allow for construction tolerances,glass expansion and contraction and other factors that may cause uneven vertical loading on the standoffs Moment on standoffs from vertical force: u Mv =VS*k where k=distance from centerline of glass to face of support attachment,typically 2"for RSOB2134 standard fitting. 13/4" For horizontal loading,moment about upper standoffs: ML=50plf*B*h or 200#*h MW=w*B*h2*0.55 W= w*B*h MT= greater of(ML or Mw) +Mv Glass standoffs resist loading by forming a couple (tension and compression reactions) Two pairs of standoffs per panel Rum Calculate Ri by I M about R. IM= MT+(a-c)* Ri=0 1 R =MT/(a-c) Typically a-c =4" Ri— Load share to individual standoff: RSi = R /n where n = number of standoff pairs,2 or 3. Ru= R1+F where F= either wind force or live load depending on which produced the greatest moment. •• 00: •• R.,u= Ru/n .. %: 0. . . . . . . . • .. ... .. . . . .. . ... .. ... ... . Edward C. Robison,P.E. 10012 Creviston DR NW "' r :0 253-858-0855 Gig Harbor,WA 98335 fax 253-858-0856 •:0rnail: :1robison@narrows.com . . . . . . . . . . . .. .. . . . .. .. ... . . . ... . . CR Laurence Standoff Rail System—SRS Page 18 of 21 Standoff anchors—3/8" stainless steel threaded rod to standoff and 3/8" rod to steel support. Tensile area of 3/8" threaded rod (UNC) = 0.0775 int Rod strength= (0.6*75ksi) * 0.0775 int = 3,487# Check thread strength into standoff—minimum thread embed = 3/8" Internal thread stripping area=0.828 int for 3/8 — 16 threads Allowable load on threads =0.58*As„*t*Ft„/3 =0.58*0.828*(3/8)*45ksi/3 = 2,700# Allowable shear strength =0.3*75 ksi*0.0775 int= 1,744# Standoff welded to plate— 1/8" fillet weld: (welded option) Ta=0.9*1/8"*n*2"*40 ksi/1.6 = 17.7 k Va= 0.3*17.7k= 5.3k For welded standoff case the button attachment strength limits the loading. Determine tension and shear on mounting stud: From I forces: Vertical loads will increase tension force in mounting stud: T =TM+V*2"/1" Check Interaction of shear and tension. Check combined tension and shear on anchors: H# + V# =0.44< 1.2 Ok 2,700# 1,744 Example for a glass light,3/4" x 52" tall x 84" long with 25 psf wind loading: D =9.8*(7'*4.333')/2= 149#< 1,744# Tension component of reaction W=25psf*3.667'*7'/2= 321#to standoff M = (25psf*3.66712*7'/2)*0.55 =647.1'# R1 _ (647.1*12)/(4") = 1,941# R„= 1,941+321 =2,262# T = 2,262+149*2"/1" =2,560<2,700 Combined tension and shear: 2,560# + 149# = 1.03 < 1.2 Ok 2,700# 1,744 STANDOFF STRENGTH IS ADEQUALE•F©1t4I�LKg-EPIA$LE LIGHT SIZES. . .. . • • • ... . .. ... .. . . . .. . ... .. ... ... . Edward C. Robison,P.E. . . . .. . . .. .. . . 10012 Creviston DR NW "' 253-858-0855 Gig Harbor,WA 98335 fax 253-858-0856 •:en3ail: rlrobison@narrows.com . . . . . . . . . . . .. .. . . . .. .. ... . . . . CR Laurence Standoff Rail System—SRS Page 19 of 21 CUSTOM STANDOFF SIZE: The standoff design allows easy customization by changing the length of the standoff body so as to increase or decrease the standoff distance. The moment and tension on the standoff is u calculated the same as for the standard standoff: =r T=TM+V*(J+t/2)/I" where: T.and V are as previously calculated based on light size and loading; J= standoff body length t= glass thickness based on the calculated T and V the standoff is checked from: T# + V# < 1.2 Ok 2,700# 1,744 and T:5 2,700# For most cases V _<0.2*1,744#= 348.8#so the combined check may be skipped. Example: Determine the maximum allowable standoff length for the glass light checked on previous page: Example for a glass light,3/4" x 52" tall x 84" long with 25 psf wind loading: D =9.8*(7'*4.333')/2 = 149#< 1,744# Tension component of reaction W=25psf*3.667'*7'/2= 321#to standoff M = (25psf*3.66712*7'/2)*0.55 =647.1'# Ri =(647.1*12)/(4") = 1,941# R„ = 1,941+321 =2,262#<2,700 T =2,262+149*(J+0.75/2)/1" _<2,700# J=(2,700-2,262)*1"/(149#)-0.375" = 2.56" For standoff bodies less than 2.56"the light sizes and wind loads are the same as for the standard standoff. For standoffs longer than 2.56" the light size and wind load must be checked. .. ... . . . . . .. . .. . . . . ... . .. ... .. . . . .. . ... .. ... ... . .. Edward C. Robison,P.E. . . 10012 Creviston DR NW ••• '• • • 0•' 253-858-0855 Gig Harbor,WA 98335 fax 253-858-0856 -;email: ;Irobison@narrows.com . . . . . . . . . . . .. .. . . . .. .. ... . . . ... . . • CR Laurence Standoff Rail System—SRS Page 20 of 21 RSOB20 STANDOFF FITTING Bracket strength Bending in plate: --- Bracket bending strength: -- Z=4"*(0.375)2/4=0.1406 in3 OM„=0.85*30 ksi* 0.1406 in3 =3,585"# Ms=OM,/1.6= 3,585/1.6=2241"# Allowable moment on glass standoff: M= 2*2,241"#=4,482"# Or allowable tension T=2,241*4.93/3.5"= 3,157# `t --- Bracket bending will not limit standoff loads below the values based on the stud strength. Bracket reactions on anchors: Anchors form couple to resist moment on the guards. Determine anchor tension from 2M about the bottom of the bracket: IMb=w*B*H2/2+V*2.25"—n2T(7.5"+42/7.5) --- solving for T: --- T= (12"/ft*w*B*H2+2.25V)/(38.5"n) If V is dead load only: V =9.8psf*B*H/2 substitute and simplify T= 12*w*B*H2+11. 25B*H / 38.5"n N where n =number of brackets For typical maximum light size and load: 3/4" x 52"tall x 84" long with 25 psf wind loading T= [12*25*7*4.3332+11.025*7*4.333)]/(38.5") T= 344#/fastener a Typical fastener: 1/2" x 3" lag screw to wood or 3/8" x 3"expansion bolt to concrete or - — 3/8" bolt to steel. N 7/16" • • • • • • • • • 112" 3" I2" • •• • • • • ••• • •• ••• •• • • • •• • ••• •• ••• ••• • •' • • i'• i • i i Edward C.Robison,P.E. •• •• •• • 10012 Creviston DR NW 253-858-0855 Gig Harbor,WA 98335 fax 253-858-0856 tr0ail:tirobison@narrows.com . . . . . . . . . . . .. .. . . . .. .. ... . . . ... . . CR Laurence Standoff Rail System—SRS Page 21 of 21 Cap Rail/Grab Rail For guard installations—Fall protection required,a cap rail or grab rail is required. Cap rails and grab rails are the same as used in the GRS —Glass Rail System,refer to the GRS engineering report for the cap rails and grab rails. All cap rails intended for use with the GRS may be used with the SRS for the appropriate glass thickness. All grab rail brackets used with the GRS may be used with the SRS. The grab rail brackets' installation and strength is the same as for the GRS. Other Glass Thicknesses and Laminated Glass The Standoffs may be used with glass thicknesses other than 1/2" and 3/4". The standoffs may also be used with laminated glass. When used with other glass thicknesses or laminated glass the glass bending moment shall be evaluated using the amplification factors and procedures in this report. .. ... . . . . . .. . .. . . . . ... . .. ... .. . . . .. .. . . Edward C. Robison,P.E. . . . 10012 Creviston DR NW ••• '• :• 253-858-0855 Gig Harbor,WA 98335 fax 253-858-0856 •;eTail:•elrobison@narrows.com . . . . . . . . . . . .. .. . . . .. .. ... . . . ... . .